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Chapter 1
INTRODUCTION

Restoration and segmentation remain necessary steps in medical imaging in order to obtain,
respectively, qualitative measurements such as the location of objects of interest or the location of
singularities associated with lesions or tumors, as well as for quantitative measurements such as area,
volume or the analysis of dynamic behavior of anatomical structures over time and across patients.

In image analysis, most of restoration and segmentation methods have recently been expressed
as a global optimization problem. The general issue is to find the global minimum of an objec-
tive function (also called energy function) describing interactions between the observed and hidden
variables. This energy function involves generally two components. One energy term generally ex-
presses the interaction between the solution to be estimated and the observations whereas the other
allows to encode constraints on the desired solution. It is the case of Markov Random Field-based
segmentation or restoration procedures as well as for deformable template and active contour model-
based segmentation techniques. It is also true for recent deconvolution or restoration techniques
based on optimization strategy encoding a priori known assumed constraints (such as finite-support
constraints of the object to be restored, non negativity constraints of the true undistorted image to
be recovered, etc.).

The use of such energy-functions falls generally into the Bayesian framework. This is now well
established for Markov Random Field-based restoration or segmentation procedures and, although
rarely mentioned, it remains true for deformable template or active contour model-based segmenta-
tion issues. Nevertheless, energy function-based models are usually easier to formalize than probabi-
lities and this probably explained why these abovementioned problems are rather directly formalized
as a cost function minimization problem. This report gives some examples of such energy function-
based segmentation or restoration models and apply them in ultrasound or SPECT imagery context.
We use Markov Random Field formalism in chapter 2, deformable template-based models in this
same chapter, active-contour models in chapter 3, and finally several iterative restoration procedures
including optimal recursive inverse filtering models in chapters 4 and 5.

Unfortunately, minimizing such a global energy function is often an intricate problem : the space
of possible solutions is generally very large and the energy function may exhibit many local minima,
especially when the image contains strong noise, which is frequently the case in medical imaging,
especially in ultrasound and SPECT imagery. Depending on the type of a priori known constraints
(local or global), on the number of hidden variables to be estimated, and on the nature of the observa-
tion field, considered energy landscapes may be very different. A global search is generally impossible
due to the size of the configuration space. Nevertheless, several other minimization methods exist.
Deterministic relaxation techniques can be efficiently used when a good initial guess of the solution
is available, otherwise these methods converge to configurations corresponding to local minima of
the global energy function. Stochastic methods have the capability of avoiding local minima and no
initial guess is required to initialize the search procedure. However, one of their major drawbacks is
their higher computational load. Finally, coarse-to-fine multi-resolution optimization methods can
be used in order to yield fast convergence towards high quality estimates. In our applications, we
will have to find the more appropriate (i.e., the faster and the more efficient) minimization technique
for each of these different energy functions, related to each segmentation and restoration models, we
shall introduce.



This report is organized as follows : chapter 2 presents a deformable template-based detection
and tracking procedure of the endocardial contour in a echographic image sequence. In this model,
the energy function is optimized wia an hybrid genetic exploration stochastic procedure. Compari-
sons with an unsupervised Markov Random Field-based segmentation technique, using a classical
local prior model and a deterministic relaxation technique, is also reported in this chapter. In chap-
ter 3, we present an active contour-based model for the detection issue of anatomical structures in
ultrasound images (echocardiographic and echobrachial images). In this model we efficiently exploit
a multiscale minimization approach. In chapter 4, a comparison of supervised and 2D blind decon-
volution /restoration techniques applied in SPECT imagery are reported. Finally, chapter 5 presents
a finite-support constraints and optimization strategy-based three-dimensional blind deconvolution
models of SPECT images. In this model, due to the convexity of the cost-function used in this pro-
cedure, a classical conjugate gradient descent-based minimization technique is efficiently exploited
in order to cope this optimization problem.
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Chapter 2

SHAPE-BASED SEGMENTATION AND TRACKING OF
ANATOMICAL STRUCTURES USING DEFORMABLE TEMPLATES
AND A NOISE MODEL ESTIMATION IN AN
ECHOGRAPHIC SEQUENCE

This work has been accepted in the International Conference IEEE Conputer Vision and Pattern
Recognition volume 1, pages 225-230, Fort Collins, Colorado, june 1999 [C1] in a very short version
and submitted in this original version to the review IEEE transaction on medical imaging [R1].

2.1 Abstract

We present a new approach to shape-based segmentation and tracking of deformable anatomical
structures in medical images and validate this approach by detecting and tracking the endocardial
contour in an echocardiographic image sequence. To this end, a global prior shape knowledge of the
endocardial boundary is captured by a prototype template with a set of predefined global and local
deformations to take into account its inherent natural variability over time. In this deformable model-
based Bayesian segmentation, the data likelihood model rely on an accurate statistical modeling of
the grey level distribution of each class present in the ultrasound image. The parameters of this
distribution mixture are given by a preliminary estimation step which takes into account the imaging
process as well as the distribution shape of each class present in the image. Then the detection
and the tracking problem is stated in a Bayesian framework where it ends up as a cost function
minimization problem for each image of the sequence. In our application, this energy optimization
problem is efficiently solved by a genetic algorithm combined with a steepest ascent procedure. This
technique has been succesfully applied on synthetic images and on a real echocardiographic image
sequence.

Key Words : deformable templates, Markov Random Fields models, tracking, ultrasound image
sequence.

2.2 Introduction

The segmentation of images is of great importance in medical imaging and remains a necessary
step to obtain qualitative measurements such as the visualization or the location of objects of interest,
the detection of pathological deformations as well as for quantitative measurements such as area,
volume or the analysis of dynamic behavior of anatomical structures over time.

Among these images, ultrasound images play a crucial role, because they can be produced at
video-rate and therefore allow a dynamic analysis of moving structures. Moreover, the acquisition of
these images is non-invasive, rather inexpensive and does not require radiations compared to other
medical imaging techniques (as for example CT techniques). On the other hand, the automatic
segmentation of anatomical structures in ultrasound images is a real challenge due to speckle noise



and artifacts which are inherent in these images. In addition to the poor image quality (i.e., low
signal-to-noise ratio, low resolution and contrast), observed objects, like the heart, are constantly
undergoing motion and non-rigid deformation due to their own deformations as well as the deforma-
tion of adjacent structures. Another common problem are artifacts caused by turbulent blood flow,
air in the lungs, ribs etc. which lead to a loss of signal and temporary occlusion of object boundaries.

Most current automatic segmentation techniques used in medical applications have been develo-
ped for CT and MRI images [26] [52] [45] [13]. Among these segmentation schemes, two of the more
reliable approaches use the Bayesian inference which allows to take into account the available local
or global a priori knowledge. This available knowledge is then used to constraint the segmentation
process. These methods are based on deformable templates or Markov Random Fields (MRF) mo-
dels. Both have advantages and shortcomings. The increased popularity of deformable models and
templates [26] [52] [45] [13] can be explained by their ability to express, via a global prior model,
the geometric information and the shape variability of the object of interest to be detected over
time and across individuals. The major difference between deformable models and templates lies
in the degree of global a priori knowledge which is used for constraining the segmentation process.
While the deformable model-based approach imposes only generic smoothness constraints on the
extracted shape, the deformable template imposes more specific constraints via a predefined prior
distribution. In MRF-based segmentation approaches, the proper use of available prior information
is expressed by a local prior model. This one, described by a Gibbs distribution, expresses the fact
that nearby pixels are fairly likely to belong to the same class. This contextual knowledge is captured
through the specification of spatially local interactions (called clique potentials) that constraint the
segmentation process [4].

The main problem with deformable models is that the likelihood energy are experimentally and
heuristically designed and do not statistically segment the image. As for MRF models, they cannot
incorporate any global shape constraints in the segmentation process. Nevertheless, contrary to
deformable model-based approaches, the likelihood model of an MRF model-based unsupervised
segmentation exploits an accurate statistical modeling of the grey level distribution of each class
present in the input image [35]. Since it seems that deformable templates provide an interesting
framework for structurally analyzing an image and MRFs models provide a good mathematical
setting for statistically analyzing an image, it makes sense to capitalize on the benefits of both
methods.

To this end, we propose in this paper a deformable template-based approach for the segmentation
and the tracking of anatomical deformable structures in medical images. We validate this approach
by detecting and tracking the endocardial contour in an echographic image sequence. In that pros-
pect, we first define a prototype template along with a predefined set of admissible transformations
in order to capture efficiently the available global a priori shape knowledge of the endocardial boun-
dary with its inherent natural variability over time. In this Bayesian segmentation, the likelihood
model rely on an accurate Markovian statistical modeling of the grey level distribution of each class
present in the image. This likelihood is defined as maximal when the deformed template delineates
two regions distributed according the aforementioned distributions. The parameters of this distribu-
tion mixture are given by a preliminary statistical estimation method called Iterative Conditional
Estimation (ICE) [7]. This estimation scheme rely on a local a priori model and takes into account
the distribution shape of each class present in the ultrasound image. Then, the detection and the
tracking problem of the object of interest is stated in a Bayesian framework as the estimation of
the deformation parameters of the template that maximize the posterior Probability Density Func-
tion (PDF). In order to efficiently maximize this function, and contrary to many other approaches
which use gradient-based optimization methods ([26] [52] [22]) and rely on a proper initialization of
the template for each image of the sequence, we will show that an alternative approach consists in
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using a genetic exploration of the parameter space combined with a steepest ascent procedure. The
optimization method we propose is fast, has the capability of avoiding local minima and no human
interactions has to be used to initialize the prototype template on the first frame of the echographic
image sequence.

This paper is organized as follows : Sections 2.3 and 2.4 present the deformable template modeling
and the proposed Bayesian segmentation approach. In Section 2.5, we detail the distribution mixture
parameters estimation step used in the data likelihood model. The stochastic search method using
a Genetic Algorithm (GA) combined with a steepest ascent procedure is described in Section 2.6.
In Section 2.7, we report some experimental results obtained on synthetic images and on a real
ultrasound image sequence. Section 2.8 contains concluding remarks.

2.3 Deformable template representation

In order to model the global shape knowledge of the endocardial contour, we first roughly define
it by a set of n labeled points, equally sampled, which approximate the outline of a circle (see Figure
2.1.a) :

Yo = (-'L'l,yl y L2,Y2 5 --ny wnayn)T

A cubic B-spline shape representation involving these n control points corresponding to “land-
marks” is then defined.

This way of modeling objects has been widely considered in the object recognition literature,
and particularly in the active contour approach [42]. Such a scheme captures the global structure
of a shape without specifying a parametric form for each class of shapes. Let us note that this
original prototype template can also be obtained from a learning population and an off-line training
procedure. This can be done by extracting manually the endocardial outline on different images from
an echocardiographic sequence. The extracted shapes have to be normalized in scale and aligned
with respect to a common reference frame. A mean shape 7y can then be easily computed from this
learning population [9]. Nevertheless, the circular crude representation of the endocardial boundary
remains close to the one given by this type of training procedure (cf. Figure 2.18.b).

The prototype template vy does not describe the possible instances of the object shape to be
detected. In order to take into account the natural variability of the considered object, we introduce
a set of admissible affine transformations, ensuring a first crude registration of the shape, and a set
of non-affine local and global transformations.

Description of local non-affine transformations

First, a local deformation process § applied to the n control points is introduced. These local
deformations applied to the original shape 7 allow to model local random perturbations that can
occur for each control point of the template outline. Mathematically, these local deformations are
represented by local random translations & for each control point of the initial shape template 7o
(cf. Figure 2.1).
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F1a. 2.1. Local non-affine deformations of the initial prototype template. (a)
Initial template (the grid is not part of the model itself). (b) Deformed template
with local random perturbations for each control point.

Description of global non-affine transformations

In order to refine the shape representation, we introduce a global non-affine deformation. The
one used in this paper was first proposed by Jain et al. and is described in detail in [22]. In this
approach, the image is considered to be mapped to the unit square S = [0,1]2. The deformation
is then represented by a displacement function denoted D(z,y). These displacement functions are
continuous and equal to zero on the edges of the unit square. The mapping (z,y) — (z,y) + D(z,y)
is thus a deformation of S, a smooth mapping of the unit square onto itself, that allows to preserve
the connectedness of the initial prototype template. The space of such displacement functions is
spanned by the following orthogonal bases :

ern(zy) = (2 sin(mnz) cos(mmy), 0) (2.1)
ey (zy) = (0, 2 cos(mnz) sin(ﬂmy)) (2.2)
for m,n = 1,2,... Low values of m and/or n correspond to lower frequency components of the

deformation in the x and y directions, respectively. The displacement function is then chosen as
follows :

M N ., z
Dg(m,y) — Z Z mnemn(may) +£?nnegnn(may) (23)

m=1n=1 /\mn

where A\, = m2(n? + m?) are the normalizing constants. The parameter vectors ¢ are the
projections of the displacement function on the orthogonal basis defined in Equations (2.1) and
(2.2). In order to allow a sufficiently wide range of possible deformations, while keeping the number
of parameters reasonable, we use M = N = 2.

Figure 2.2 illustrates the series of deformations of the initial template using higher order terms
and different values of M and N. This template is drawn on a rectangular grid to visualize the
deformations of the original model but this grid is not part of the model itself. We can see that
large value of the deformation coeflicients £ result in large deformation of the template. We can also
notice that the deformation becomes more complex as higher frequency components are added to
the displacement function D.
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Fi1c. 2.2. Global non-affine deformations on the locally deformed template repor-
ted in Figure 2.1.b. This deformation uses the displacement functions defined in
Equation (2.3) along with progressively higher order frequency components and
higher values of deformation coefficients ¢,,,,. (a) M =N =1 and &7, =&/, =1. (b)
M=N=1and &,=¢%,=2 Vm,n € {0,1}*. (¢c) M=N=2and &,,=¢,=1
Vm,n € {0,1,2}%. (d) M=N=2and &, =¢%,=2 Vm,n € {0,1,2}%

Description of affine transformations

Finally, we introduce a set of admissible linear transformations on 7. These deformations involve
translation, scaling, rotation, and stretching of the template as shown in Figure 2.3. Corresponding
transformations are given by :

s 0 cosa  —sina 1 0
As_(O s) Aa_(sina cosa) At_(O t)
with s, t and a being respectively the scale, stretch parameters and the angle of rotation.

Let now g be a deformed version of the original prototype g according to the aforementioned
transformations with parameter vector 6. The globally deformed template is then defined by :

Yo = AsAiAq <’Yo + 8§+ D(yo + 5)) +t
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where t = (¢;,t,) and A;A;A, account for rigid affine transformations of the template (t is
a global translation vector). § = (81,02,...,0, 2) with & = (d,,,0,,)7 is the local translation
vector associated to the (n — 2) translation vectors of the non-affine local deformations and D, the
displacement functions of the global non-affine deformations. (n—2) translation vectors, associated to
the n control points, except the first and last one, are considered in order to ensure the connectedness
of the prototype template !.

A global configuration of the deformable template is thus described by five parameters corres-
ponding to affine transformations, four pairs of global non affine deformation parameters (£%,,,,£%,..),
and (n — 2) pairs of translation vector (d;,dy,) respectively. The circular prototype template along
with the set of aforementioned transformations constitutes our global prior model describing the
different possible configurations of the shape of interest. This three-level description of deformations
has shown itself to be very flexible for representing accurately the inherent natural variability of the
endocardial contour during the cardiac cycle (see Section 2.7 in which a selection of shape models
is presented in Figure 2.16). Now we have defined our global prior model, we can turn our attention
to the likelihood model. We consider this in the next section.

e

LN

&K

(a) (b) ©

Fic. 2.3. Considered affine transformations applied on the locally and globally
deformed prototype template reported in Figure 2.2.d. (a) Scale transformation.
(b) Stretch transformation. (c) Rotation transformation.

2.4 Segmentation model

2.4.1 Introduction

As mentioned in the introduction, the automatic segmentation of anatomical structures in ul-
trasound images is especially challenging due to artifacts caused by the speckle noise effect. This
partially correlated noise, inherent to the imaging process, lead to a poor image quality (with low re-
solution, contrast and signal-to-noise ratio) on which the sharpness of anatomical structure contours
is noticeably reduced (cf. Figures 2.4.a and 2.4.b).

IThe first and last point are the same and their associated local non-affine deformation is incorporated in the
global translation vector t.
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Fic. 2.4. Spatial and temporal edge map derived from two successive frames
of an echographic sequence. (a) Echogram (frame 1). (b) Echogram (frame 2).
(c) Spatial gradient map. (d) Temporal gradient map.
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In a commonly used deformable model-based Bayesian segmentation approach, these contours
(or some spatial and/or temporal gradient measures derived from the input image) are generally
exploited in the data likelihood model. In a Bayesian approach, this likelihood model aims at expres-
sing a measure of similarity between the deformed template and the object(s) present in the image
and constrains the deformable template to be attracted and aligned, via an appropriate likelihood
energy term, to the salient edges of the object to be detected [26] [22] [29] [23] [27].

Due to the speckle noise, our likelihood model cannot rely efficiently on this type of gradient
measures. Figure 2.4 illustrates the temporal and spatial edge map derived from two ultrasound
images. We can see that speckle noise effect induces wrong spatial and temporal edge detection that
cannot be exploited in a reliable likelihood model ensuring a robust contour tracking procedure.
Instead, we propose here a region oriented statistical approach. More precisely, we propose to model
and use the grey level statistical distribution of each homogeneous region existing in an echogram
and to exploit an a priori information about the location of the endocardium with respect to each
other anatomical structures present in the ultrasound image. This a priori anatomical information
expresses the fact that the endocardial contour delineates two homogeneous regions {Rg,R1}. The
first one, called the blood zone (Ryg), arises from the low acoustic wave reverberation in the ventricular
cavity (filled with blood). The second one, called the muscle region (R1), is due to the acoustic signal
reverberation on the cardiac muscles. Each aforementioned region has completely different grey level
intensity distribution and each pixel of the input image has a membership likelihood to each class
{eo=blood, e; =muscle} that we can defined by the following Probability Density Functions (PDFs) :

Py, x,(ys/xs =€)  i€{0,1}

where y, designates the grey level of the pixel at site s and z; is its associated class label. Y and
X, represent the random variables associated to the realizations x5 and y, respectively. Assuming
that N distinct homogeneous regions are present in the input image (N = 2 in our application), the
maximization over 8 of the following expression :

N-1
Pyiow/0) = [ Tl Pr./x.(s/=s) (2.4)

7=0 s:xs=e;

allows to find the optimal template (or the optimal deformation parameter vector € of the original
prototype template o) which best matches the image. Equivalently, we can minimize — In Py, (y/6)
and use this previous expression as our energy function. This energy function is not heuristic and
statistically segments the image in a Maximum Likelihood sense. Let us note also that this term
defined the likelihood distribution used in a classical Markovian segmentation (see Section 2.7 and
Figure 2.15).

2.4.2 Joint model

In that prospect, we let the template define two regions (cf. Figure 2.5) : the first one is the set of
pixels nside the region delimited by the prototype template s, and is denoted ~4. The second one
is the outside region, defined by the set of pixels located on the contour of the deformed template
with a slightly superior scale. This last one is denoted ~§ (with 7§ = (.. s1ss,..), and we recall
that s is the scale parameter of the considered affine transformations). From this, we propose the
following joint model through the Gibbs distribution :

Pey(8,y) = % exp{—e(G, y)}
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where Z is a normalizing constant and € is an objective function measuring how well a given
instance of deformed template vy fits the content of the input image y. The energy function (6, y)
is composed of two terms as explained below :

¢ Likelihood energy term : this first energy term measures the likelihood of the image and is
“related” to the log-likelihood distribution defined in Equation (2.4).

1 1
a(f,y) = N Z In Py, /x, (ys/e0) — N Z In Py, /x,(ys/e1)

7o s€E7y 7o s€Yg

where the summation of the first and second term of € (6, y) is over all the N,s pixels inside the
region defined by the deformed template 74 and over all the N,o pixels delimited by 73 respecti-
vely. Note that the two weighting factors are necessary in order to get a scale-invariant likelihood
measure. This function attains its minimum value when the deformed template delimits exactly two
homogeneous regions with grey level distribution corresponding to blood and muscle class for the
region vy and vy, respectively.

e Prior energy term : the second term penalizes the deviation of the deformed template vy
from the original prototype 7. This function does not penalize affine transformations and is close
to the one proposed by Jain et al. [22], except for the second term.

&0y = (Y[ + €] + Y. (6)?)

&€ ;€0

where (£7,£7) and 6; correspond to displacement function parameters of the global non-affine
deformation and the translation parameter vector of the non-affine local deformations respectively
(see Section 2.3).

2.4.8 MAP detection

Using these two energy terms, the joint distribution P,y (6,y) can be written as :

1
Po,v (6,) =  exp—{(6,9) + pep(8,4) }

€(60,y)

where the factor p provides a relative weighting between the two penalty terms and allows to
control the “rigidity” of the template. The posterior distribution deduced from Equation (2.5) is
given by :

Poyv /) = - exp{~c(6.1)}

where Z, is a normalizing constant depending on y only. We formulate now the detection problem
as the search of the Mazimum A Posteriori (MAP) estimation of 8 :

Orar € argmax{Fo/y(6/y)} (2:5)
€ argmgine(@,y) (2.6)
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The search of éM Ap is therefore equivalent to the minimization of the non concave following
objective function :

(0.9 = 5 Y W Pas /e — g Py n/e)
8 sevg 6 s€vg
+ o (LE?+ €+ 3 0)?)
§i€g 5; €68

This function is minimal when the deformed template delineates two homogeneous regions (blood
and muscle for our application) distributed according to the grey-level distribution corresponding
to each region and when the deformed template is not too different from the original prototype (in
the non-affine deformations sense).

Fi1c. 2.5. The two different regions delimited by the template at a specific
location and transformation. +; is the set of pixels inside the region delimited
by the deformed prototype template vy. v is the set of pixels located on the
contour of vy with a slightly superior scale.

In order to get an unsupervised deformable-based segmentation scheme, we have now to estimate
the distribution mixture parameters, i.e., the distribution parameters associated to each region, blood
and muscle of the ultrasound image. This estimation will allow us to compute the probability map
for each class. The main difficulty is that the distribution mixture parameter estimation is required
for the deformable model-based segmentation process, while the segmentation result is needed for
mixture parameter estimation. To circumvent this problem, a solution consists in implementing the
estimation and the segmentation procedure alternatively. In that prospect, we can start with an
initial configuration of the template and use the resulting partitioned data in order to estimate the
grey level distribution parameters associated to each region. This procedure can then be repeated
until convergence. Nevertheless, it is clear that this process is sensitive to the initial placement of
the template. The alternative approach we choose to solve this unsupervised segmentation problem
consists in having a two-step process. First, a parameter estimation step in which we have to esti-
mate the distribution mixture parameter also called the noise model parameters. We consider this
estimation step in the next section. Then, a second step (segmentation step) in which we apply the
deformable model-based segmentation algorithm with the estimated values of mixture parameters.
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2.5 Distribution mixture parameter estimation

2.5.1 Complete and incomplete data

Consider a couple of random fields Z = (X,Y), where Y = {Y};,s € S} represents the field of
observations located on a lattice S of N sites s (associated to the N pixels of the input image),
and X = {X,,s € S} the label field (related to N blood or muscle class labels of the segmented
image). Each Y; takes its value in {0,...,255}, and each X, in {ey = blood, e; = muscle}. The
distribution of (X,Y) is defined, firstly, by prior distribution Px (x), supposed to be stationary and
Markovian in this distribution mixture parameter estimation step, and secondly, by site-wise like-
lihoods Py, x, (ys/zs), depending on class label x,. Assuming independence between each random
variable Y, given X, the joint distribution Px,y (x,y) can be written as :

PX,Y(Z',Z/) =PX($) HPYS/Xs(ys/ms) (27)

/

~~

Py, x(y/x)

The observable Y is called the “incomplete data”’, and Z the “complete data”.

2.5.2 FEstimation of the mizture parameters for the complete data

Assuming the segmentation result z is known or observable (i.e., we know the “complete data”),
the parameters of the distribution mixture can then be easily computed. To this end, and in order
to take into account the speckle noise phenomenon [18] in the reverberation areas, we model the
conditional density function for the blood and muscle class by a Rayleigh law [47]. It turns out that,
for our application, we have to introduce another parameter to shift this distribution, to take the
different processes forming the final ultrasound image into account (e.g., automatic control of gain,
coding, reduction of the dynamic, offset, ...). We propose to consider the following expression :

o Ys — min (ys — min)?
R imin) = BT (2=

with y >min and a>0. « is the scale parameter. Let now Y = (Y;,Y5,...,Yy) be M random
variables, independent and identically distributed according to a single Rayleigh law Ry (y; ®,), and
y = (Y1,Y2,...,ym) arealization of Y. The Maximum Likelihood estimate of &, = (min, a) consists
in finding ®,, such that :

A

¢, = arg max In Py, (y/®y)

where In Py,g, (y/®,) is the log-likelihood function. Assuming independence between each ran-
dom variable, we obtain the following ML estimators of the “complete data” for the sample y [47] :

—

minL gmin -1

X

M
N 1 —
&y = o ;(yz —minnr)?

where §min = min;(y;), is the minimum grey level of the sample y.
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2.5.8 Ice procedure

When the segmentation result is unknown (or unobservable), the considered problem is more
complex. In this case, the conditional likelihood Py, x (y/z) depends on parameter vector ®,, which
is the distribution mixture parameter vector to be estimated. In order to obtain a reliable estima-
tion of this parameter, we resort to the ICE algorithm. This procedure, described in detail in [46]
[43], is briefly recalled here. This method relies on an estimator ®,(X,Y’) with good asymptotic
properties (consistency properties) for completely observed data case. When X is unobservable, this

procedure starts from an initial parameter vector <I’£,0] (not too far from the optimal one) and gene-
rates a sequence of parameter vectors <I>£,1], @5 ], - @gk] hopefully leading to the optimal parameters
(limg_s o0 <I>_£,k] = @y imar)- TO this end, <I>£,k+1] at step (k+1) is chosen as the conditional expectation
of <i>y given Y = y, computed according to the current value <I>_£,k]. It is the best approximation of @,

in terms of the mean squares error [46] [43]. By denoting Ej, the expectation relative to parameter
vector @E,k], this iterative procedure is defined as follows :
]

- s ey 0
o Consider an initial parameter vector <I>L .

o @™ is computed from @)1 and Y = y by :

ot = B[d,(X, Y)Y =y 28)

The computation of this expectation is impossible in practice, but we can approach Equation
(2.8) thanks to the law of large numbers by :

1 . N
el = — By, y) 4+ By (), y)]
z(;), @ = 1,...,n are realizations of X drawn according to the posterior distribution P(z/y, <I>£,k]).

As explained in subsection 2.5.2, for complete data-based estimator <i>y(X ,Y), we can use a Maxi-
mum Likelihood (ML) estimator for the noise model parameter. Finally, in order to simulate realiza-
tions of X according to the posterior distribution Px,y,, (z/y, ®,), we can use the Gibbs sampler
algorithm [16].

Contrary to classical EM (Expectation Maximization) [12] or SEM (Stochastic Expectation Maxi-
mization) [33] algorithms, the ICE procedure is quite general and can be adapted to different kinds
of conditional distributions involved in the mixture to be estimated. As shown in the following,
this algorithm can be used to estimate a non-Gaussian law distribution mixture [35]. Besides, this
estimation scheme allows to express constraints in the Gibbs sampler simulation process via its local
prior model. In order to decrease the computational load, we can take n = 1 (i.e., simulate only a
single MRF realization) to estimate ®,, without altering the quality of the estimation [7].

2.5.4 FEstimation of the mizture parameters for the incomplete data

Let us recall that this parameter estimation procedure assumes that the luminance distribution
within blood and muscle regions follows two different Rayleigh PDFs. We aim at estimating the
parameters of these two PDFs. For the local a priori model of the Gibbs sampler used to simulate
realizations of the posterior distribution, we adopt a standard isotropic Potts model with the 8-
connexity spatial neighborhood [4]. In this model, there are four parameters, called “the clique
parameters” denoted i, B2, 83, 84 and associated to the horizontal, vertical, right and left diagonal
binary cliques respectively (see Figure 2.6). Given this a priori model, the prior distribution Px (z)
can be written as :
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Px(z) = exp {— Z Bot (1 — 5(%,%))}

<s,t>

where summation is taken over all pairs of neighboring sites and §(.) is the Kronecker delta
function. In order to favor homogeneous regions with no privileged orientation in the Gibbs sampler
simulation process, we choose (s = 31 = B2 = 3 = B4 = 1. The parameter estimation procedure
for the incomplete data using the ICE procedure is outlined below :

Parameter initialization : The initial parameter values have a significant impact on the conver-
gence of the ICE procedure and on the quality of the final estimates. We can use the initialization
method described in [36] or give a parameter vector not “too far” from the optimal one.

ICE procedure : <I>£,k+1] is computed from <I>£,k] in the following way :

1. Using the Gibbs sampler, one realization z is simulated according to the posterior distri-
bution Px,y.e,(z/y, @[yk]), with parameter vector @Lk].

2. The parameter vector <I>£,k+1] is estimated with the ML estimator of the “complete data”

éy(a:,y) described in subsection 2.5.2.

3. If the sequence ®, becomes steady (i.e, if the variance of the N last estimations is below
a given threshold), the ICE procedure is ended, else we return to step 1.

B B2 B3 Ba

Fic. 2.6. 2* order neighborhood and associated two-site cliques.

Figure 2.7 represents the estimated distribution mixture on the echogram shown in Figure 2.4.a
and the histogram of this ultrasound image : the two site-wise likelihoods Py, ,x, s, (ys/€i, ®y),
i = 0,1, (weighted by the estimated proportion 7; of each class e;) are superimposed to the image
histogram. Corresponding estimates obtained by the ICE procedure, requiring about twelve itera-
tions, are given in Table 2.1. The quality of the estimations is difficult to appreciate in absence
of ground truth values. We can roughly perform such an evaluation by comparing the image his-
togram (solid curve) with the probability density mixture corresponding parameters (dotted and
dashed curves). Estimation results on synthetic images with ground truth values will be given in
Section 2.7 in order to appreciate the robustness of this procedure and the quality of the estima-
tions. Experiments have shown that the distribution mixture parameters keep constant for all the
images extracted of the same echographic sequence. For this reason, and in order to decrease the
computational load, the mixture parameters are computed once and for all on the first frame of the
echographic sequence. Now that we are able to estimate the parameters of the mixture-based data
model, we can turn our attention to the optimization problem of €(6,y).
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F1a. 2.7. Image histogram of the picture reported in Figure 2.4.a (solid curve)
and estimated probability density mixture obtained with the ICE procedure (dot-

ted and dashed curves).

ECI Procedure

Brioosy 948y 24(min)  207(a?)
final
Vomueetey  9-92(m)  24(min)  9436(a2)

TAB. 2.1. Estimated parameters for the picture reported in Figure 2.4.a. 7 stands
for the proportion of the two classes within the ultrasound image. min and «

are the Rayleigh law parameters.

2.6 Optimization Problem

The objective function to be minimized in Equation (2.6) is a complex function with several local
extrema over the deformation parameter space. A global search is usually impossible due to the size
of the configuration space. Instead, we have implemented a Genetic Algorithm-based optimization

technique.
Genetic Algorithms (GA) are a class of robust stochastic search and global optimization pro-

cedures which mimic the evolution of natural systems [17]. The algorithm acts in an iterative way
by allowing parallel evolution in a population of N individuals. Each individual represents a point
of the search space and is a candidate solution to the optimization problem. It is represented by a
string or “chromosome”, which is composed of a list of L features (corresponding to the L searched
parameters). The parameters have to be encoded in an appropriate manner. The most common
approach is to quantize the parameter values and to binary code them. The fitness of the various
individuals (the tentative “solution”) to the environment is expressed by a fitness function, which,
after the characteristics contained in a chromosome have been decoded, gives a “performance” value
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to the string. Genetic search is carried out in a sequence of “generations”. In each generation, a
new population of N chromosomes is created with genetic operators. These operators mimic the
biological phenomena of selection, crossover and mutation. The choice of the solution upon which
they are used is dictated by the evolutionary principle of the “survival of the fittest”. The algorithm
begins with an initial population of N chromosomes randomly chosen and terminates when either a
specified number of iterations has been performed or a maximally fitted individual has emerged.

In our application, let us recall that we have to optimize a L dimensional function. Each of
the L parameters 6; is quantified on ¢ bits in order to take any value within the predefined range
[0Lmins O Lmax)- Therefore, the i chromosome, denoted [6];, is a string of gL bits length :

[0]: = (0117012:---701q 3 €215,€225--+5Cog 5 - -- 3 clecL27"'chq)
- 9 97 O 9 g N A
0, 02 oL

where 021 designates the [*" bits associated to the £ parameter and € is the parameter vector
associated to the chromosome [6]; after decoding.

Fitness Measure :

We can easily derive a fitness measure F (to be maximized) directly from equation (2.6) (the
energy function € to be minimized). To turn €(6, y) into a fitness measure for use in genetic algorithm,
we can choose :

F((0)) = exp { = e(6,1)}

The following is the detail of the selection, crossover, and mutation operators. The associated
parameters used in our application will be given in Section 2.7.

Selection :

Individuals with higher fitness survive and individuals with lower fitness die. Let us assume that
at iteration k, the population of the GA is the set of N chromosomes :

POPF = {[e]f, - [0]’,@}

Generation of the next population is based on the evaluation of F for all individuals of POP*.
More precisely, we probabilistically select each chromosome for “reproducing” in the next generation,
using their relative fitness :

F([615)
o)k = i
p([6]7) SN ()

Crossover :

A pair of chromosomes is picked up at random and the single-point crossover operator is applied
according to a fixed crossover probability. For this operation, a random number in the range of 0
to the length Lgq of the string is generated. This is called the crossover point. The portions of two
strings lying to the right of the crossover point are interchanged to yield two new strings as shown
in Figure 2.8.
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Mutation :

Mutation consists in considering in turn each bit of a given chromosome and changing its value
with a predefined low probability called the mutation rate.

Before the crossover After the crossover

Crossover point

Crossover
Bits

String 1 String 2 New New
String 1 String 2

F1c. 2.8. An example of crossover with the partial exchange of information.

In order to speed up the convergence rate, we have developed two strategies and we have combined
them :

1.— The first one is an elite-preservation strategy [17] : the individual with the highest fitness
survives to be an individual of the next generation.

2.— The second strategy (called hybrid GA [17]) consists in associating the genetic search with
a local optimization technique. In each generation, a percentage of the best individuals are used to
initialize a gradient ascent technique. Therefore, these best individuals explore local neighborhoods
in the parameter space to find a point of higher fitness.

In our application, these two strategies are used together in an efficient way to create a global
optimization technique called “hybrid genetic algorithm with an elitist strategy”.

2.7 Experimental results

2.7.1 Distribution mizture estimation step

Based on the distribution mixture parameters given by the ICE procedure (see Table 2.1), we can
compute the probability map for the blood and muscle classes. This map exhibits sharp boundaries
between high and low probability regions for each class. As a result, the probability maps have a
high gradient at the boundary of the different regions and low gradient everywhere else. In order to
constrain the deformable model to be efficiently attracted to the boundaries of two homogeneous re-
gions by the gradient-based local optimization procedure, we need to spread their region of influence
to a larger area. To do this, we convolve 5 times each probability maps with the following 3 x 3
2D Gaussian mask : [1,2,1; 2,4,2; 1,2, 1]. Besides, due to the speckle noise effect, the probability
maps, associated to each class are very noisy. The smoothing process counteracts this problem as
well. Figure 2.9 shows the smoothed probability map for the ultrasound image reported in Figure
2.4.a.

26



@ T ®

Fic. 2.9. Smoothed probability map for the ultrasound image reported in Figure
2.4.a (a) Probability map associated to the blood class. (b) Probability map
associated to the muscle class.

2.7.2 Detection step

This detection step has been carried out with the hybrid genetic algorithm using the elitist
strategy described in Section 2.6 and after the distribution mixture estimation step proposed in
Section 2.5. In order to reduce the size of the parameter search space, the stochastic exploration
based on the GA is used to only estimate the affine transformation parameters (five parameters to
be estimated). This affine deformation parameter estimation ensures a first crude registration of the
shape to be detected. The local exploration technique of the best individuals selected by the GA,
which is based on the steepest ascent procedure, is then used to estimate the whole parameter vector
(including the global and local non-affine deformations parameters).

Tests have shown that this optimization procedure is not very sensitive to the control parameters.
In our application, these parameters are commonly used [17] and are the following : population size =
100, crossover rate = 0.8, mutation rate = 0.008, maximum number of generations = 30. Parameters
value are quantified on ¢ = 8 bits. At each generation, we select 5 % of the best individuals (i.e., five
best parameter vectors) for the hybridation with the local optimization technique. The prototype
template is a connected 12-points model (n = 12). The weighting factor penalizing the prior term
with respect to the likelihood term is set to 0.1 and the size of the image is 256 x 256 pixels. All these
parameters keep constant for the detection and the tracking step. Using this procedure, a reliable
detection of the endocardial contour is obtained for all images of the echographic sequence. Our GA
takes about 5-20 generations to converge to the true solution. In fact, the convergence rate can vary
depending on the complexity of the objective function €(6,y) to be minimized (or the complexity
of the input image and/or the shape to be extracted). Tests have shown that, after a learning step
(i-e., typically 3-6 generations or iterations of the algorithm), the genetic exploration of the search
space parameter provides good initializations for the local exploration technique. In our application,
the optimization procedure for the detection process takes about three minutes (average CPU time)
on a standard Sun/Sparc2 workstation.

Figures 2.10 and 2.11 show two real echograms extracted from an echographic sequence and
illustrate the best deformed template and the best 5 % set of templates before the gradient ascent
technique, and thus before the estimation of parameters associated to global and local non-affine
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transformations, for successive iterations or generations of the genetic search. In spite of the spe-
ckle noise and a random initial population for the GA, an accurate and reliable detection of the
endocardial border is obtained.

Figures 2.12 and 2.13 show two synthetic images with synthetic Rayleigh noise and the resulting
detection/segmentation obtained by the proposed deformable template-based unsupervised segmen-
tation method. Real parameters of the distribution mixture and resulting segmentations can be
compared to estimated parameters by the ICE procedure (see Table 2.2) and to the ground truth
segmentations (cf. Figure 2.14). We can notice that faithful noise model estimations and accurate
segmentation are obtained. These experiments demonstrate that the proposed detection and seg-
mentation scheme is reliable, robust and avoid a manual initialization of the model.

We can compare the result of a Markovian segmentation of the ultrasound image in two classes
(blood, muscle) based on the parameters estimation given by the ICE procedure. In this framework,
the segmentation issue can be viewed as a statistical labelling problem according to a global Bayesian
formulation in which the posterior distribution Py,y (2/y) o exp —U(z,y) has to be maximized [4].
In this case, the corresponding posterior energy is :

Ulz,y) = Z_IHPYS/XS(ys/ms)"' Z Bt [1— (x5, )]

sES <s8,t>

>

>
~~

Uy (‘;73/) Ua (w)

where U; expresses the adequacy between observations and labels, and Us represents the energy of
the a priori model. By = (1 = B2 = B3 =4 =1 according to the type of the clique <s,t> horizontal,
vertical, right and left diagonal respectively (see Figure 2.6). We use the deterministic algorithm
ICM [4] to minimize this global energy function. For the initialization of this algorithm, we exploit
the segmentation map obtained by a ML segmentation. We can notice (cf. Figure 2.15) that the
resulting map exhibits unproper blood or muscle areas due to strong speckle noise. The boundary
of the endocardial contour cannot be efficiently extracted by this method due to the unproper local
prior model.

2.7.8 Tracking step

The tracking strategy used in our application is the following : the final estimate of the previous
time frame is used as an initialization for the steepest ascent procedure for the current time frame.
If the resulting value of energy € at convergence is higher than a given threshold, we can assume
that the inter-frame motion is small and this strategy allows to provide a proper initialization of
the template for the local exploration technique used on the next frame. In this case, the result of
the gradient ascent technique gives the final result for the current time frame. Otherwise, (i.e., if €
is lower than a given threshold), we decide to use the genetic algorithm combined with the steepest
ascent, procedure to re-estimate the whole parameter vector 6. To this end, each of the L (L = 35)
parameters 6; is quantified on 8 bits in order to take any value within the range [6; —d6;, 6; + 66;] with
0; the estimated parameter value given at the previous time. Tests have shown that the tracking
procedure provides often good initializations from one frame to the next, avoiding resorting to the
GA optimization. Nevertheless, this GA-based stochastic minimization procedure remains necessary
to recover the good shape if the inter-frame motion is important. In this tracking process, gradient
ascent technique takes about ten seconds and GA-based optimization takes about one minute on a
standard Sun/Sparc2 workstation.
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Initialization

[0]
(I)l%(ro) 0'50(”) Oo(min) 150(52)
<I>y(51) 0.50(7) 00(;min) 1000042

ICE procedure
(I)Z?:;) 009(#) 19(min) 672(a2)

&5l 0.91(r) 19(min) 2037(a)

Real parameters
‘1’;6;10) OOQ(W) 19(min) 700((12)

‘I);e(aell) Ogl(ﬂ.) lg(mzn) 2000(,12)

TAB. 2.2. Estimated parameters for the picture reported in Figure 2.12. 7 stands
for the proportion of the two classes within the synthetic image. min and « are
the Rayleigh law parameters. From top to bottom (a) Initialization of the ICE
procedure. (b) Estimated parameters by the ICE procedure. (c) Real parameters.

Figure 2.16 shows the tracking of the endocardial contour in a medical echographic image (each
frame size is 256 x 256) at different time frames during the cardiac cycle. Figure 2.17 shows two other
detection/segmentation obtained with our procedure on real ultrasound images. The best resulting
template is drawn on a rectangular grid to visualize the global non-affine deformation estimated by
the hybrid GA. The global prior model seems to be flexible enough for representing accurately the
inherent natural variability of the endocardial contour during the cardiac cycle.

Figure 2.18.a shows the best resulting templates obtained on the twenty first frames of the image
sequence reported in Figure 2.16. The mean shape is computed from this set of deformed templates
(see Figure 2.18.a). We can notice that this mean shape is not too different from the proposed
circular original template p.

2.8 Conclusion

In this paper, we have developed a robust algorithm to detect and track anatomical deformable
structures like the endocardial border in an ultrasound image. We have stated the segmentation and
tracking issues in the Bayesian framework and take into account all the available a priori knowledge
of this problem. First, the proposed global prior model, integrating an original prototype template
along with predefined global and local deformations, has shown itself to be very flexible and well
suited to model the high variability of the endocardial contour over long image sequence. Another
important source of a priori knowledge is information about the intensity and texture of the tissue
of different anatomical structures. These factors are highly dependent on the imaging process and
are taken into consideration by modeling the speckle distribution of each class of the ultrasound
image by a Rayleigh law. Parameters of each PDF are given by a preliminary Markovian estimation
step and are then exploited in the data likelihood model in order to statistically segment the image.
The proposed method can be easily generalized with multidimensional pixel value and/or regions
parameterized with a distribution mixture and presents several attractive features compared to other
related approaches. In particular, it seems to be well suited to handle ultrasound images with strong
speckle noise on which edge information or some gradient measures cannot be exploited. Finally,
we have shown that this problem can be handled as an equivalent energy minimization problem for
each image of the echographic sequence. To this end, the considered optimization problem is tackled
using a genetic exploration combined with a steepest ascent procedure. This combined local and
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global optimization procedure is fast, robust, simple and well suited for our application compared to
other optimization techniques such as gradient-based method or the simulated annealing algorithm
[16]. Besides, this method do not require initialization of the template close to the desired solution.
Initialization may be defined at random, leading to segmentation procedure that are completely data
driven. This method has been applied to a long ultrasound image sequence; the obtained results
demonstrate its efficiency and robustness.
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Fi1c. 2.10. Successive generations of the genetic search on an ultrasound image
showing the endocardium (first frame of the sequence). Best 5 % deformed
templates before the gradient ascent procedure (on the left) and the best resul-
ting template (on the right). Hybrid GA optimization after : (a) 2 generations
(F(e(,y)) = 0.091). (b) 3 generations (F(e(f,y)) = 0.119). (c) 4 generations
(F(e(0,y))=0.173). (d) 8 generations (F(e(d,y)) =0.186). An accurate and re-
liable detection of the endocardial border is obtained.
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F1c. 2.11. Successive generations of the genetic search on an ultrasound image
showing the endocardium (frame 38). Best 5 % deformed templates before the
gradient ascent procedure (on the left) and the best resulting template (on the
right). Hybrid GA optimization after : (a) 0 generation (initial population of the
GA) (F(e(8,y))=0.100). (b) 2 generations (F(e(d,y)) =0.123). (c) 4 generations
(F(e(,y)) = 0.155). (d) 8 generations (F(e(d,y)) = 0.157). An accurate and
reliable detection of the endocardial border is obtained.
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F1c. 2.12. Successive generations of the genetic search on an synthetic image
with synthetic Rayleigh noise. Best 5 % deformed templates before the gra-
dient ascent procedure (on the left) and the best resulting template (on the
right). Hybrid GA optimization after : (a) 2 generations (F(e(6,y)) = 0.149).
(b) 4 generations (F(e(f,y))=0.166). (c) 6 generations (F(e(d,y))=0.167). (d)
10 generations (F(e(f,y)) =0.174). An accurate and reliable detection and seg-
mentation is obtained and can be compared to the ground truth segmentation
reported in Figure 2.14.
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F1c. 2.13. Successive generations of the genetic search on an synthetic image
with synthetic Rayleigh noise. Best 5 % deformed templates before the gradient
ascent (on the left) and the best resulting template (on the right). hybrid GA
optimization after : (a) 2 generation (F(e(,y)) = 0.116). (b) 4 generations
(F(e(0,y)) =0.118). (c) 10 generations (F(e(@,y)) =0.119). (d) 24 generations
(F(e(8,y)) = 0.120). An accurate and reliable detection and segmentation is
obtained and can be compared to the ground truth segmentation reported in
Figure 2.14.
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(a)

Fia. 2.14. Ground truth segmentation (on the left) and segmentation results
obtained with our segmentation method (on the right). (a) Synthetic image
presented in Figure 2.12. (b) Synthetic image presented in Figure 2.13.

F1c. 2.15. Unsupervised Markovian segmentation of an ultrasound image using
the single scale deterministc relaxation technique called ICM and based on
the parameters estimated by the ICE procedure. (a) Real ultrasound image.
(b) Two-class Markovian segmentation. The resulting semented map exhibits
unproper blood or muscle areas due to the strong speckle noise present on this
image.
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FiG. 2.16. Tracking of the endocardial contour in a medical echographic se-
quence at different time frames during the cardiac cycle. From top left to
bottom right : frame 1, 4, 6, 9, 12, 13, 18, 20, 27, 34, 35, 40, 41, 44, 46,
48.
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F1G. 2.17. Detection/Segmentation obtained with our procedure on real ultra-
sound images. The best resulting template is drawn on a rectangular grid to
visualize the global non-affine transformation estimated by the GA. (a) frame
33. (b) frame 45.

(a) (b)

F1G. 2.18. Set of deformed templates and mean shape. (a) Best resulting tem-
plates obtained on the 20 first frames of the image sequence reported in Figure
2.16. (b) Mean shape computed from this set of deformed templates.
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Chapter 3

AN UNSUPERVISED MULTISCALE APPROACH FOR THE
DYNAMIC CONTOUR-BASED BOUNDARY DETECTION ISSUE
IN ULTRASOUND IMAGERY

This work has been submitted to the International Conference IEEE Conputer Vision, Pattern
Recognition and Image Processing, Atlantic city, USA, march 2000 [C3] in a shorter version than
the one presented in this chapter.

3.1 Abstract

We present a new multiscale approach for deformable contour optimization. The method relies on
a multigrid minimization method and a coarse-to-fine relaxation algorithm. This approach consists
in minimizing a cascade of optimization problems of reduced complexity. Contrary to classical multi-
resolution algorithms, no reduction of image is applied. The family of defined energy functions are
derived from the original (full resolution) objective function, ensuring that the same function is
handled at each scale and that the energy decreases at each step of the minimization process. The
efficiency and the speed of this multiscale approach is demonstrated in the difficult context of the
boundary detection of anatomical structures in ultrasound imagery.

3.2 Introduction

Segmentation remains a necessary step in medical imaging to obtain qualitative measurements
such as the location of objects of interest as well as for quantitative measurements such as area,
volume or the analysis of dynamic behavior of anatomical structures over time. Among these images,
ultrasound images play a crucial role, because they can be produced at video-rate and therefore allow
a dynamic analysis of moving structures. Moreover, the acquisition of these images is non-invasive,
cheap, and does not require radiations compared to other medical imaging techniques. On the other
hand, the automatic segmentation of anatomical structures in ultrasound imagery is a real challenge
due to speckle noise and artifacts which are inherent in these images. These artifacts create open
contour and/or ill defined boundaries, making ineffective algorithms such as Markov Random Field-
based classical segmentation technique [4].

Among the existing segmentation techniques, the active contour models, or so-called snakes [24],
are an effective way to overcome these artifacts and to rightly model the fact that the object to be
detected is assumed to be connected. Besides, their ability to efficiently combine both the available
a priori knowledge about the structure of interest (generally a smoothness constraint) and local
correspondances with the image features (such as the grey level statistical distribution inside and
outside the object), makes them very attractive for the segmentation tasks in ultrasound imagery.
Nevertheless, this modeling finally requires to solve an intricate energy function minimization pro-
blem. The configuration space of this optimization problem is generally very large and the resulting
energy function may exhibit many local minima, especially when the image contains strong noise,



which is frequently the case in ultrasound imagery. In order to cope with this optimization problem,
gradient-based methods have originally been proposed [24]. The main drawback of these techniques
is to require a proper initialization of the initial contour not too far from the expected boundary,
otherwise they will converge towards bad local minima. Dynamic Programming [1] solves the op-
timality problem, although at the expense of a very high computational load. In order to shorten
execution times, researchers have recently suggested to combine gradient or DP-based methods with
a multi-resolution framework. Nevertheless, the optimal solution is no more guaranteed. Besides,
the construction of the “multi-resolution pyramid” results in losing some important information that
our energy function is sensitive to.

In order to overcome this problem, we propose herein to extend to our optimization problem, the
multiscale strategy combined with the multi-resolution framework introduced in [20] for the estima-
tion of the optical flow in an image sequence. The key idea of this strategy consists in minimizing
the global energy function through an appropriate hierarchy of subspaces of the whole configura-
tion space. These subspaces contain constrained configurations describing the expected solution at
different scales. In our application, these solutions are modeled as being the optimal positions of a
sequence of dynamic contour models, of decreasing thickness, whose energy function is derived from
the original energy function. This constrained optimization is implemented using a coarse-to-fine
procedure on a pyramidal structure. This method has shown to be very robust for optimizing a
highly non-linear objective function and has turned out to provide quickly a good estimate very
close to the global minima [20].

This paper is organized as follows : Section 3.3 presents the dynamic contour model used in our
application and the resulting energy function to be optimized. The multiscale minimization strategy
adapted to our problem is described in Section 3.4. In Section 3.5, we report some experimental
results on synthetic and real ultrasound images. Finally, Section 3.6 contains concluding remarks.

3.3 The active contour model

The active contour model (or snake), introduced by Kass et al. in [24], formulates the boundary
detection issue as an energy function minimization problem. Formally, an active contour V is simply
defined by an ordered set of n nodes, V' = [v1, v, . .., v,], giving coordinates of points on the contour
in a circular manner. A cubic B-spline curve involving these n control points (or a simple straight
line between each node) allows to completely define this model. Given an input image y, its energy
function is generally given by :

Brnaee(V) =Y (Bini(v3) + BEurs (vi,y)) (3.1)

i=1

where [ is a weighting parameter. F,,, and E.,, are the internal and external energy terms
respectively, also called the constraint forces, of the contour element v;. These two energy terms
play different roles in the energy minimization process. The internal energy allows to express the
available a priori knowledge about the contour shape to be detected whereas the external energy
allows to pull the snake towards the desired image features [24] (such as edges, regions, textures,
etc.). The definition of these energy terms have to be carefully defined according to the application
and the input image. Let us finally add that the use of such global energy-based models fall into the
Bayesian framework [48].
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In order to model our a priori knowledge on the smoothness of the anatomical shape boundary
to be detected, a commonly used solution consists in measuring the curvature at each node of the
contour [50] and then in using this measure as the internal energy term :

B (vi) i1 Dl (3.2)
e (Vi) = arccos .
o 1707 || - 1ol

that is the angle between the two vectors ¥;_10; and ¥;0;51. || 7|| is the norm of the vector o
and “-” represents the dot product between two vectors. In the minimization process, this a priori
energy term penalizes high curvature on the contour.

In a commonly used active contour model-based segmentation approach, spatial gradient mea-
sures derived from the input image, are generally exploited in the external energy term [48]. In our
application, due to the speckle noise and artifacts which are inherent to ultrasound images, our
external energy term cannot rely efficiently on this type of measure. An alternative model consist
in exploiting the statistical distribution of the grey levels inside and outside the boundary of the
object to be detected [39]. Let y = {ys € S}, the set of pixels of the image located on a lattice S
of M sites s. Assuming one Probability Density Function (PDF), P, (.), for the pixels inside the
object and another PDF, P, (.), for the pixels outside the object, we can then define the following
external energy term by :

Fealtip) = =5 Y0 WPuly) = 5— Y 10 Pos(y) (33)

s€vin eut syt
where y, designates the grey level of the pixel at site s. The summation of the first and second
term of E.,, is over all the N, and N, selected points belonging to the straight segment perpen-
dicular to the contour at node v;, passing through this point, and respectively located inside and
outside the contour, as shown in Fig. 3.1. This likelihood term is minimal when the snake delineates
two homogeneous regions, at node v;, distributed according to the grey level statistical distribution
corresponding to each region.

Using these two energy terms, the optimal contour, V,,., can then be obtained by finding the
one that minimizes the energy E.,...(V) :

Voo =argmin E, ... (V) (3.4)

Unfortunately, minimizing such a global energy function is often an intricate problem : the space
of possible contours (2 is generally very large and the energy function may exhibit many local minima,
especially when the image contains strong noise, which is our case in ultrasound imagery (see Section
3.5).

In [24] and in many other works, gradient-based methods are used for the energy minimization of
this energy function type. These methods are simple but have the disadvantage to require a proper
initialization of the dynamic contour not too far from the expected boundary, otherwise they will
converge toward bad local minima. In order to overcome this problem, stochastic methods based on
Simulated Annealing (SA) [48] have then been proposed. These ones have the capability of avoiding
local minima and consequently no human interaction is required to initialize the contour model.
However, one of the major drawbacks of these procedures is their very high computational load.
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Various deterministic algorithms based on Dynamic Programming (DP) or variational methods [1]
have then been constructed for finding the optimal (minimum energy) contour in a neighborhood of
the initial contour. If this neighborhood, also called the search window, is too small and an unproper
initialization of the initial contour is given, a local sub-optimal solution is then found. Nevertheless, if
this search window is large enough, the optimal contour is then guaranteed, although at the expense
of a significant increase of the computational complexity.

In order to shorten execution times for practical applications, researchers have recently suggested
to combine DP algorithm with a multi-resolution framework [15]. The main idea in using a multi-
resolution method is to allow to reduce the number of candidates in the search window, so that the
research process gets faster. Deformable contour optimization algorithm is applied to the coarser
resolution level and the obtained solution is used as the initial snake position for the next lower
level. The process continues until the contour is optimized at the original image level. This procedure
noticeably shorten the computational time. Nevertheless, the optimal solution is no more guaranteed.
Besides, the construction of different resolution levels, usually obtained by low-pass filtering the data,
results in losing some important information that our external energy term is sensitive to. In our
case, this low pass-filter would change the nature and the parameter of the different PDFs exploited
in the external energy term (Eq. (3.3)). It is even more true if the PDFs are not Gaussian, which
is our case (see Section 3.5). At coarser levels, the optimization algorithm will converge towards a
biased solution. The same problem remains valid for external energies using edges or textures. In
these cases, the information used by the external energy can be altered or simply destroyed.

In order to overcome this problem, we propose to extend the discrete multi-scale relaxation
strategy combined with the multi-resolution framework introduced by Heitz et al in [20] for the
minimization of our global energy function and also for all type of energy function associated to a
dynamic contour. We consider this in the next Section.

Fic. 3.1. Portion of a contour model showing five connected nodes and the set
of points vi> and v;** used in the external energy term. N,, = N,,. = 2 in this
example.
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3.4 Multiscale minimization strategy

Instead of minimizing our global energy function directly on the full configuration space 2, i.e.,
the space of possible contours, the optimization is led through a sequence of constrained configuration
subspaces of increasing sizes :

dim(Q*) < dim(Q*7!) <... < dim(Q°)

with Q° = Q and where ), [ = 0,..., L, designates the constrained configuration space at level 1.

At this resolution level, we define V! as a rough estimate of the contour model, defined by a ordered

set of n; nodes, V! = [vy,v51,...,vy | (with VO =V and vy = v;), giving coordinates of points of
bl b2 ny bz

this crude contour. Each point (or node) of this contour is indexed on a grid S! which results from
the reduction of S (= S°) by 2! in each direction and is associated to the block of pixels b, C S of
size 2! x 2!, “descendant” of node vy (see Fig. 3.2).

S

SO

Hierarchical structure Original image

F1G. 3.2. Hierarchical structure (L =1 in this example) involved in the multiscale
minimization strategy and block of pixels b associated to the node UpL -

The constrained optimization in Q' of our original boundary detection problem is then equivalent
to the minimization of the new energy function :

2

Eruae V') = 3 (Bucoy) + B B (01,9))

i=1

Using a multigrid approach [20], we can easily defined E...(vy,y) :

Eulogs) = =5 3 Y lnPu) = 5 3 3 Py

. t
" seviy pebl " seudpt pebl
i i

1

The definition of E...(v,) remains similar to the one given in Eq. (3.2). However, one has to

keep in mind that the angle between the two vectors has to be estimated on the reduced grid S*.
In addition, due to the size of each node at level I, we have 3 = 4!8;. From this family of energy
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functions, we are now able to define our minimization scheme as a cascade (from =1L to [=0) of
optimization problems of reduced complexity :

1
Vope

= argmin E, ... (V?), l=1L,...,0.

These optimization problems are solved using a standard “coarse-to-fine” multigrid strategy.
Starting from a coarse scale L, the optimization problem is first solved in QF. This defines a first
(crude) solution to the original problem and the obtained solution, a rough contour, is then used
as the initial snake position for the next lower level. This process continues until the contour is
optimized at the original image level (see Fig. 3.3). Contrary to standard multi-resolution approaches,
no reduction of image data is applied. The family of defined energy functions uses the original image,
ensuring that the same energy function (or more precisely, different smoothed versions of this energy
function) is handled at each scale, and that the energy decreases at each step of the minimization
process. This method has shown to exhibit fast convergence property and robustness against local
minima for highly non-linear combinational problem [20].

Each of the associated energy minimization problems can be efficiently solved with a standard
deterministic optimization algorithm, such as a classical gradient-based method or a DP algorithm
requiring a small search window. In our application, we use simply the following iterative technique :
for each node Oy of the contour, we compute Esnake(Vl) for the current position of the node and
for the two consecutive points belonging to the perpendicular of the contour at the current node,
respectively located inside and outside the contour. At a given iteration, and for each node, we
accept the position of the contour that minimizes Esnake(vl ) and this process is iterated until there
is no change in the shape of the contour between two iterations.

In our case, once the optimization problem at level [ is solved, the initial snake position for the
next lower level (level [ — 1) is then obtained by keeping the descendant (among four) of each node
ensuring the minimal external energy (see Fig. 3.3).

Level 1
@ Projection Optimization
=>
A
#
/ // é
Level (1-1) iy eto...

Fic. 3.3. “Coarse-to-fine” minimization strategy.

Finally, in order to initialize the model at the coarsest level | = L, we exploit the result of a
two-class segmentation result achieved in a Maximum Likelihood (ML) sense on the coarsest grid
SL. To this end, let z¥ = {zL, s€ST}, the set of labels associated to each block of pixels L. Each 2%
can take two labels {e;,, e..: }, associated to the two homogeneous regions and distributed according
to the conditional distribution P, (ys) and P.,..(ys). This ML blocky segmentation is given by :
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ECI Procedure
D, 048 24(min)  207(a2
D, .. 0.52(x) 24(min) 9436(a2)

TAB. 3.1. Estimated parameters for the ultrasound image reported in Fig.3.5 7
stands for the proportion of the two classes within the image. min and « are
the shifted Rayleigh law parameters.

VseSh, sl =en if Y InPa(y)> Y InP.(y)
peEDbL pEbL
else &k =e,.,
This blocky segmentation is then high-pass filtered in order to extract the initial crude contour
that will be used for the initialization of the optimization procedure at the coarsest level (see Section
3.5 and upper left of the Fig. 3.5a).

3.5 Experimental results

In order to take into account the speckle noise phenomenon [18] in the reverberation areas, we
model the conditional PDFs P, (.) and P,..(.) of each homogeneous region of the input ultrasound
image by a shifted Rayleigh law with different parameters & = (min, @) :

. . 2
) Ys — min Ys — Min
Ry (y;min, ) = =— eXp(—( 57 ) )

with y >min and a>0. The first region arises from the low acoustic wave reverberation in the
different cavity of anatomical structures, generally filled with blood. The second region is due to the
acoustic signal reverberation on the different organs (cardiac muscles for an echographic image, or
wall of arteries for an echobrachial image). In our application, the parameter of these distribution
laws are given by a preliminary statistical estimation method called Iterative Conditional Estimation
(ICE) [39]. Fig. 3.4 represents the distribution mixture estimated on the echogram shown in Fig. 3.5
and the histogram of this ultrasound image : the two site-wise likelihoods are superimposed to the
image histogram. Corresponding estimates obtained by the ICE procedure are given in Table 3.1.

We have validated our multiscale detection method on real echographic and echobrachial images,
in order to detect the endocardial contour or the inner wall of an artery respectively. For the
experiments, we have chosen 3 = 1 for the weighting factor penalizing the internal energy with
respect to the external energy and L = 4 for the number of resolution levels. The size of these
acoustic pictures is 256 x 256 pixels (256 grey levels).

Fig. 3.5a (at upper left) shows the ML blocky segmentation at the coarsest resolution level
I=_L that is used to extract the initial crude endocardial contour. Figs. 3.5[b-f] show the resulting
estimated snakes at different resolution levels. Fig. 3.6 and 3.7 present the segmentation results
obtained on other echographic images and on three echobrachial images respectively. Finally, Fig.

43



Histogram
T T T T T

0.02

0.015

0.01

Occurence probability

0.005

0 50 100 150 200 250
Grey level

F1a. 3.4. Image histogram of the ultrasound image reported in Fig. 3.5 (solid
curve) and estimated PDF mixture obtained with the ICE procedure (dashed
and dotted curves).

3.8 shows a synthetic image presenting an object on a background with a strong synthetic speckle
noise and the resulting segmentation obtained by our method.

We can notice (cf. Figure 3.5a) that the ML blocky segmentation maps exhibits unproper blood
or muscle areas at lower levels (higher resolution levels) of the pyramidal structure due to artifacts
created by the ultrasound imagery process. The boundary of the endocardial contour cannot be
efficiently extracted on these lower levels. Nevertheless, a closed (but crude) contour can be efficiently
extracted at the highest level of the pyramidal structure. We can notice (see Figs. 3.5[a-f]) that the
proposed multiscale strategy allows efficiently to obtain a good initial guess at each level that is
refined at the finer scales. A reliable detection of the endocardial contour or of the inner wall of
an artery is obtained. The proposed boundary segmentation procedure is very fast and takes about
3—4 seconds (average CPU time) on a standard Sun/Sparc 2 workstation that makes this procedure
compatible with a practical application.

3.6 Conclusion

In this paper, we have developed a robust algorithm to detect the boundaries of anatomical struc-
tures, like the endocardial contour or the inner wall of arteries, in ultrasound images. We have stated
this detection problem in the active contour model framework and we have taken into account the
inherent smoothness of these structures and the grey level statistical distribution inside and outside
the boundary of the object to be detected. We have finally presented a multiscale framework for
the minimization of the global energy function resulting of this modeling. The minimization is effi-
ciently performed through a multigrid algorithm which consists in imposing successively weaker and
weaker constraints on the searched estimate. In our application, this procedure results in estimating
successively the optimal position of contour models of decreasing thickness. This framework can be
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easily generalized to edge or texture-based energy-minimizing contour model as well as for three-
dimensional boundary detection. This scheme is fast, exhibits good convergence properties, and is
well suited to automatic extraction of anatomical structure boundaries in ultrasound imagery.
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F1c. 3.5. (a) ML blocky segmentation at different resolution levels and estima-
ted snakes at different resolution levels (b-f).
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Fic. 3.6. Detection of the endocardial contour at different time frames during
the cardiac cycle.
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Chapter 4

A COMPARISON OF SUPERVISED AND BLIND DECONVOLUTION
TECHNIQUES APPLIED IN SPECT IMAGERY

This work has been submitted to the workshop SPIE Conference on Medical Imaging, San Diego,
California, USA, Feb. 00, in a shorter version [C2].

4.1 Abstract

Thanks to its ability to yield functionally rather than anatomically-based information, the
SPECT imagery technique has become a great help in the diagnostic of cerebrovascular diseases
which are the third most common cause of death in the USA and Europe. Nevertheless, SPECT
images are very blurred and consequently their interpretation is difficult. In order to improve the
spatial resolution of these images and then to facilitate their interpretation by the clinician, we
propose to implement and to compare the effectiveness of different existing “blind” or “supervised”
deconvolution methods. To this end, we present an accurate distribution mixture parameter estima-
tion procedure which takes into account the diversity of the laws in the distribution mixture of a
SPECT image. In our application, parameters of this distribution mixture are efficiently exploited
in order to prevent overfitting of the noisy data for the iterative deconvolution techniques without
regularization term, or to determine the exact support of the object to be restored when this one is
needed. Recent blind deconvolution techniques such as the NAS-RIF algorithm [28], combined with
this estimation procedure, can be efficiently applied in SPECT imagery and yield promising results.

Keywords : SPECT imagery, blind deconvolution, distribution mizture estimation, Markov Ran-
dom Field model, image restoration.

4.2 Introduction

SPECT (Single Photon Emission Computed Tomography) images are obtained by the measure
of radiations (gamma rays) coming from radioactive isotopes injected in the human body. Contrary
to other medical imaging techniques, such as X-ray, CT (Computer Tomography), MRI (Magnetic
Resonance Imaging), etc., this imagery process is able to give functionally rather than anatomically-
based information, such as the metabolic behavior of organs (like the human brain), by measuring
and visualizing the level of blood flow. This study of regional Cerebral Blood Flow (rCBF) can aid in
the diagnostic of cerebrovascular diseases and brain disorders (e.g., Alzheimer’s disease, Parkinson’s
disease, etc.) by indicating lower, or abnormal higher, metabolic activity in some brain regions.

Due to the peculiar imaging process, SPECT suffers from poor statistics and poor spatial re-
solution. Poor statistics result from the small number of photons that can be acquired for each
image ; principally owing to the low sensitivity of the collimator and the low dose of the injected
radiopharmaceutical. Factors influencing the spatial resolution are mainly the scattering of the emit-
ted photons and, to a lesser degree, the intrinsic resolution of the camera. Consequently, resulting



cross-sectional SPECT images are very blurred and their interpretation by the nuclear physician is
often difficult, labor-intensive and subjective. If the object to be visualized is small compared to the
source-to-collimator distance, this degradation phenomenon may be considered to be shift-invariant
and, neglecting noise, this one can be modeled by a convolution process between the true undistorted
image and the transfer function of the imaging system [6]. A body of theoretical and experimental
work has led to approximate this transfer function (also called the Point Spread Function or PSF) by
a two-dimensional symmetric Gaussian function [32], [11]. In order to improve the spatial resolution
of SPECT images, some authors have thus investigated the SPECT image deblurring problem with
this class of Gaussian transfer function and by using classical Wiener filter techniques [6], [32] or
supervised maximum entropy filter-based deconvolution technique [49]. This restoration procedure,
also called a deconvolution procedure, is an important consideration in SPECT medical imaging
where there may be localized singularities or cold/hot spots in the true image, associated with le-
sions or tumors. These localized singularities may not be visible in the blurred image, owing to the
diffusive effects associated with the convolution process, which averages out differences in neighbo-
ring values. A deconvolution scheme could then be very useful in order to detect such singularities
by improving the spatial resolution of SPECT images.

Under the assumption that the blur operation is exactly known, many iterative methods have
been proposed by the image processing community for tackling this deconvolution procedure and
for facing the usual difficulties related to this ill-posed problem. Amongst the existing methods,
some of them are structured in the context of regularization problem to make the inversion well
behaved [25], [41], [2], [51]- Others are unregularized and require a termination criteria in order to
stop the iterative procedure at the point where there is a balance between the fit to the image data
and the amplification of the noise, inherent to this ill-posed inverse problem [30], [31], [21], [8], [5]-
Nevertheless, let us note that these supervised deconvolution methods remain limited and sensitive to
the assumption made on the nature of the blurring function. Theoretically, the PSF can be measured
directly from the SPECT camera by visualizing the blurred result of a point source against a uniform
background, but such experiment is generally difficult to obtain in practice and does not necessarily
yield a reliable PSF. In applications such as medical imaging, when little is known about the PSF, it
can turn out often more relevant to estimate directly the PSF from the observed input image. This
problem of simultaneously estimating the PSF (or its inverse) and restoring an unknown image is
called “blind deconvolution” or “deconvolution with blur identification”. Recent techniques exist and
can be used in the SPECT imagery context.

In this paper, we propose a comparative study of existing blind or supervised deconvolution me-
thods. We discuss and compare their respective effectiveness for improving the spatial resolution of
real brain SPECT images. We first briefly review classical supervised deconvolution methods which
assumes the blur is exactly known a priori and, in this context, we exploit the two-dimensional Gaus-
sian assumption for the PSF proposed by some authors [6], [32], [11]. For the class of supervised
deconvolution technique without regularization term, we present an accurate distribution mixture
parameter estimation which takes into account the diversity of the laws in the distribution mix-
ture of a SPECT image. In our application, parameters of this distribution mixture are efficiently
exploited in order to find a reliable stopping rule for these iterative methods and then to prevent
the amplification of the noise. Then, recent blind deconvolution techniques are briefly presented and
tested. We will show that the joint estimation of the image and PSF can lead, for some of them,
to better restoration results and also that the Gaussian assumption, proposed by some authors, is
only a rough approximation. Finally, for the class of blind deconvolution technique in which the
exact support of the object to be recovered is needed, we propose a novel support-finding algorithm
exploiting also the parameters of the aforementioned distribution mixture estimation procedure.
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This paper is organized as follows. Section 4.3 briefly describes supervised deconvolution me-
thods and recent blind deconvolution techniques that we will compare. In Section 4.4, we detail
the distribution mixture parameter estimation procedure. Deconvolution experimental results on
phantoms, synthetic and real brain SPECT images are given in Sections 4.5. Finally, conclusion and
perspectives are given in Section 4.6.

4.3 Deconvolution

4.8.1 Introduction

In our application, the degradation of a SPECT image can be represented as the result of a
convolution of the true image with a blurring function (the PSF) plus an additive term to model the
noise from the physical system. If the imaging system is assumed to be linear and shift invariant,
the degradation process can then be expressed by the following linear model :

9(z,y) = f(z,y) * h(z,y) + n(z,y)

where g(z,y) is the degraded or blurred image, f(x,y) is the undistorted true image, h(z,y)
is the PSF of the imaging system and n(z,y) is the additive corrupting noise. In this notation,
the coordinates (z,y) represent the discrete pixel locations and = is the discrete linear convolution
operator.

4.8.2  Supervised deconvolution methods

Assuming that the blurring function h(z,y) is known, the problem is then to determine f(z,y)
given the observation g(z,y). This one is generally ill-posed owing to the existence of the additive
noise. This means that there is no unique least square solution of minimal norm || g(z,y) — f(z,y) *
h(z,y)||?. Besides, a small perturbation of the given data produces large deviations in the resulting
solution. An appropriate solution may be chosen through proper initialization of the algorithm
or by using deterministic prior information about the original image (via a regularization term)
to make the inversion well behaved. In this way, iterative approaches have been proposed. Their
main advantages are there is no need to explicitly implement the inverse of an operator and the
process may be monitored as it progresses. Some of them are briefly presented in this Section and
are optimal; in the Least Square (LS) sense, under constraints [25] or not [30], in the Maximum
Likelihood (ML) sense [31] or in the Maximum A Posteriori (MAP) sense [41], [21].

Van-Cittert’s algorithm
Van Cittert [8] proposed the following iterative algorithm :

fer1(@,y) = fi(@y) + a(g(2.y) = hlw,y) * fu(z.p))

where a is a convergence parameter generally set to 1. In this iterative scheme, the estimated
image f(z,y) is modified at each iteration by adding a term proportional to the residual r(z,y) =

g9(z,y) — h(z,y) * fk(w,y).
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Landweber’s algorithm
Another iterative algorithm, proposed by Landweber et al. [30], is provided by the minimization
of the norm || g(z,y) — h(z,y) * fr(z,y)||? and leads to the following iteration :

Fri1(@,y) = fr(z,y) + ah(—z, —y) * (g(w,y) — h(z,y) * fk(w,y))

This algorithm, also called the one step gradient, leads to simply move the estimate f(:c,y)
iteratively in the negative gradient direction.

RL’s algorithm

The Richardson-Lucy’s (RL) algorithm [31] is an iterative technique which attempts to maximize
the likelihood of the restored image by using the Expectation Maximization algorithm [12] when
the image is assumed to come from a Poisson process. This iterative algorithm may be succinctly
expressed as :

o) = o) (s ot

In this form of notation, the division and the multiplication is done point-by-point.

Tichonov-Miller’s algorithm

This algorithm, also called the constrained least squares restoration, consists in choosing the
estimate f(z,y) that minimizes the following cost function :

fa,y) = argmin {[lg(z.) = h(z.y) * f(@9) | +a |le(z.v) « fa.) |}

where the term c¢(z,y) * f(z,y) generally represents a high pass filtered version of the image
f (z,y). This is essentially a smoothness constraint which suggests that most images are relatively
flat with limited high-frequency activity, and thus it is appropriate to minimize the amount of high-
pass energy in the restored image. One typical choice for ¢(x,y) is the 2D Laplacian operator. The
minimization of the above equation leads, with the method of successive approximation, proposed

~

in [25], to the following iterative estimation scheme for f(z,y) :

Fr(@y) + B(g(z,y) * h(—z, —y) — (An(z,y) + @A (z,9)) * fr(z,y))
8 (9(.y) * (=2, —))

fk+1 (wa y)

Ap(z,y) = h(z,y) x h(—=z,—y) and A.(z,y) is the autocorrelation function of h(z,y) and c(z,y)
respectively. « is called the regularization parameter which must be carrefully chosen for reliable
restoration. This iteration converges if 0 < < (2/|Amax|) Where A, is the largest eigenvalue of the
matrix Ay (z,y) +ad (z,y).

50



Super Resolution algorithm

Assuming Poisson photon distribution in the image, then a Bayesian and MAP derivation has
been proposed by Hunt et al. [21]. This one leads to the following iterative scheme :

fk+1($7y) = fk(x7y) exp<[% - 10:| * h(l’,y))

Molina’s algorithm

Following the Bayesian paradigm, Molina et al. have proposed to incorporate prior information
to the RL (Maximum Likelihood) restoration method [41]. In order to model the a priori smoothness
of the image to be recovered, this one is defined by the following conditional autoregressive model :

Pr(f) x exp (—% aft(l— ¢N)f)

In this matrix-vector notation, f is the true image ordered lexicographically by stacking the rows
into a vector. a is the unknown regularization parameter, matrix N is such that V;; = 1 if cells
i and j are spatial neighbors (pixels at distance one) and zero otherwise, and scalar ¢ is just less
than 0.25. The term f!(I — ¢N)f represents, in matrix notation, the sum of squares of the values
f; minus ¢ times the sum of fif; for neighboring pixels ¢ and j. Following the RL method, which
corresponds to MAP estimation with an uniform image prior, Molina et al. obtain the following
iterative scheme :

) B R 9(z,y)
fer1(z,y) = p(z,y) fr(z,y) + (1 B Hk(x7y))fk(x7y) (h(_% ) m)

wr(2,y) = 0 corresponds to the classical RL restoration method (we recall that, in this form of
notation, the division and the multiplication are done point-by-point). f,(z,y) is a filtered version
of fr(z,y) in which each pixel is the average of its four neighbors pixels (pixels at distance one).

4.8.8 Blind deconvolution methods

When little is known about the PSF, a solution for the deblurring problem consists in achieving a
blind deconvolution technique. Blind image deconvolution is the simultaneous estimation of the true
image and the PSF from the blurred observation. A commonly used method for blind deconvolution
is by minimization of an error metric that optimizes the form of the restored image and the PSF
(or its inverse) to fit the various constraints on the form of the solution; typically positivity and
known support of the object to be recovered. Steepest descent or conjugate gradient method are
generally used to achieve optimization [28], [51]. A second method, usually called “grouped coordinate
descent”, restores the image and the PSF separately in an iterative form. During each cycle either
the image or the PSF is held static while the other is updated, generally using one of the standard
deconvolution technique [2], [5]. In these methods, that alternate between restoration of the image
and PSF, iterations do not necessarily have to use the same restoration algorithm. In this section,
we describe briefly four recent blind deconvolution techniques stemming from these two different
approaches.
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The IBD method

The Iterative Blind Deconvolution (IBD) method, proposed by Ayers and Dainty [2], requires
that the image and the PSF be non-negative with known finite support (the support is defined as
the smallest rectangle containing the entire object). After a initial guess is made for the true image,
the algorithm alternates between the image and Fourier domains, enforcing known constraints in
each. The constraints are based upon information available about the image and the PSF. The
image domain constraints can be imposed by replacing negative valued pixels within the region of
support with zero and non-zero pixels outside the region of support with the background pixel value.
The Fourier domain constraint involves a Wiener-like filter for the image and the PSF. This filter
allows to efficiently suppress noise amplification resulting from the ill-posed nature of the restoration
problem :

lfIk(u,v) — _ G(“:“) FEA(AU,U) :
[ Fre—1(u,v) |* +a/|Hg—1(u,v) [?
Fk(% b) = G(u,v) Hy_ (u,v)

| Hi-1(u,0) [2 +a/| Fi-i (u,0) ?

where Hy(u,v), G(u,v) and F(u,v) represent the 2D FFT of the PSF, the original image and
the true image respectively. Subscripts denote the iteration number of the algorithm and (.)* is
the complex conjugate of (.). The real constant « represents the energy of the additive noise and
must be carefully chosen for reliable restoration. Figure 4.1 gives an overview of this scheme. The
algorithm is run for a specified number of iteration, or until the estimates begin to converge. The
major drawback of this method is its lack of reliability ; the uniqueness and convergence properties
are uncertain and the algorithm is sensitive to the initial image estimate and can exhibit instability.

Fy (u,v) H, (u,v)

Impose Fourier
Constraints

fk(x’Y)

hk(xyy)
Impose Image Impose Blur
Constraints Constraints
1
k=k+1

£.(xy) foexy) hy(x,y)

. Impose Fourier
Fy(u,v) Constraints H,(u,v)

Fic. 4.1. IBD algorithm.
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The Biggs-Lucy’s algorithm

This method [5] alternates between restoring the image and the PSF using the RL algorithm (by
simply swapping variables h(z,y) and f(z,y) in the RL iteration). The image and the PSF estimates
are given by :

~

) 1 9(z,y)
h 1 , = —_— h ) b * )

IR T e
Zilk+1($7y) fk(may) (hk-i-l( T, y) )

hit(z,y) * fe(@,y)

This method requires a good initial guess for the PSF and a different number of iterations for
the image and the PSF, expressed by an asymmetric factor which is necessary because image and
PSF estimates converge at different rates. Depending on the type of the image and the nature of
the PSF, this factor is generally different and must be carefully chosen for reliable restoration.

fk-i—l (33, y)

The NAS-RIF algorithm

The Non-negativity and Support constraints Recursive Inverse Filtering (NAS-RIF) technique
[28] is applicable to situations in which an object of finite support is imaged against a uniform or
noisy background which is our case. It comprises a 2D variable finite impulse response filter u(z, y)
of dimension N, X Ny, with the blurred image pixels g(z,y) as input. The output of this filter
represents an estimate of the true image f (z,y). This estimate is passed through a nonlinear filter
which uses a non-expansive mapping to project the estimated image into the space representing the
known characteristics of the true image. The difference between this projected image fNL (z,y) and
f(z,y) is used as the error signal to update the variable filter u(z,y). Figure 4.2 gives an overview
of this scheme. The image is assumed to be non-negative with known support. The cost function
used in this restoration procedure is defined as :

J(ll) — Z f2($,y) (1 — sgnéf(w,y)))

(z,y)€Dsup

+ > (f(w,y)—LB>2+7< > U(w,y)—1>2

(z,9)€EDsup v(z,y)

where f(z,y) = g(z,y) * u(z,y), and sgn(f) = —1if f < 0 and sgn(f) = 1 if f > 0. D,,, is the
set of all pixels inside the region of support, and D,,, is the set of all pixels outside the region of
support. The variable v in the third term is nonzero only when Ly is zero, i.e., the background color
is black. The third term is used to constrain the parameter away from the trivial all-zero global
minimum for this situation. Authors have shown that the above equation is convex with respect to
u(zx,y), so that convergence of the algorithm to the global minimum is ensured using the conjugate
gradient minimization routine [28].

The You-Kaveh’s algorithm

This method [51] attempts to minimize a cost function consisting of a restoration error measure
and two regularization terms, one for the image and the other for the blur :
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where a(z,y) and c(x,y) are regularization operator (e.g., a high-pass filter such as the Lapla-
cian). A and ~ are the regularization parameters that control the tradeoff between fidelity to the
observation and smoothness of the estimated image and the estimated PSF. In order to take into
account the scale problem, inherent to this cost function, an alternating minimization using stee-
pest descent or conjugate gradient method is proposed. Note that, using steepest descent method,
resulting iterative procedures are close to the iteration scheme proposed by Landweber (with a
regularization term for the blur) for the alternate restoration of the image and the PSF.

4.4 Distribution mixture parameter estimation

4.4.1 Introduction

In this Section, we present an estimation procedure allowing to estimate the grey level statistical
distribution associated to each class (also called the noise model) of a SPECT image. We will show
also how this information can be exploited in the aforementioned supervised or blind deconvolution
methods.

To this end, we consider a couple of random fields Z = (X, @), where G = {G,, s € S} represents
the field of observations located on a lattice S of N sites s (associated to the N pixels of the SPECT
image), and X = {X,,s € S} the label field (related to the N class labels X, of a segmented
SPECT image). Each aforementioned label is associated to a specific brain anatomical tissue; the
“CSF” area designates the region that is normally due to the lack of radiations. In this distribution
mixture parameter estimation, this region designates the brain region filled with Cerebrospinal Fluid
(without blood flow and thus without radiation) and also the area outside the brain region. The
“white matter” and “grey matter” (brightest region) are associated to a low and a higher level of
blood flow respectively [10]. Each G takes its value in {0,...,255} (256 grey levels), and each X
in {e; = “CSF”, eo = “white matter”’, e3 = “grey matter”}.
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In the following, the parameters in upper case letter designate the random variables whereas
the lower case letters represent the realizations of these concerned random variables. In this es-
timation step, the distribution of (X,G) is defined, firstly, by prior distribution Px(z), supposed
to be Markovian and secondly, by the site-wise conditional likelihoods Pg, /x, (9s/%s) whose shape
and parameter ®(, ) depends on the concerned class label z; (g; designates the grey level intensity
associated to site s). Finally, we assume independence between each random variable G4 given Xj.
The observable G is called the “incomplete data”, and Z the “complete data”.

4.4.2 Estimation of the distribution mizture parameters for the “complete data”

Assuming the segmentation result z is known, the parameters of the grey level statistical distri-
bution associated to each class, can then be easily computed with the ML estimator of the “complete
data”.

¢ Experimentations have shown that we can rightly model the statistical grey level distribution
in the background or in the CSF area by a exponential law (see [11] and also the left part of the
histogram reported in Figure 4.3). This led us to think that the noise in this region is approximately
Poissonian with the following statistical grey level distribution :

1
Ealg;@) = 5 &P (—§>

with g > 0. Let now G = (G4,-..,Gx) be M random variables, independent and identically
distributed according to a “single” exponential law £g(g; ), and g = (g1,---,9m) a realization of
G. The ML estimator of a,y for the “complete data” is simply the mean of the sample g [3].

e In order to describe the luminance within the “white matter” and the “grey matter” regions, we
model the conditional density function for these regions by two Gaussian laws. This assumption of
normality is a reasonable approximation due to the reconstruction physical process used in SPECT
imagery in which the grey level of a given pixel, herein considered as a random variable, are sums of
many variables and the “central limit theorem” can be applied [3]. The corresponding ML estimator
of the “complete data”, for a sample g distributed according to a normal law, is defined simply by
the empirical mean and the empirical variance.

4.4.8 Estimation of the distribution mizture parameters for the “incomplete data”

When the segmentation result is unknown (i.e, the class label of each pixel is not supposed to
be known), the considered problem is more complex. In order to determine ® = (®.,), ®(c,), P(cs)),
we use the ICE (Iterative Conditional Estimation) algorithm. This procedure, described in detail
in [46] relies on an estimator ®(X,G) with good asymptotic properties, like the ML estimator,
for completely observed data case. When X is unobservable, this procedure starts from an initial
parameter vector ®[% (not too far from the optimal one) and generates a sequence of parameter
vectors leading to the optimal parameters, in the least square sense, with the following iterative
scheme :

1 2 N
olrtil = - [2(za),9) + - + 2(2(n), 9)]

where z(;), with ¢ =1,2,...,n, , are realizations of X drawn according to the posterior distribu-
tion Px,g(x/g, ®!7]). In order to decrease the computational load, we can take n=1 without altering
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the quality of the estimation [7]. Finally, we can use the Gibbs sampler algorithm [16] to simulate
realizations of X according to the posterior distribution. For the local a priori model of the Gibbs
sampler, we adopt an isotropic Potts model with a first order neighborhood [4]. In this model, there
are two parameters, called “the clique parameters” denoted 1,32 and associated to the horizontal
and vertical binary cliques respectively !. Given this a priori model, the prior distribution Px (z)
can be written as :

Px(z) = exp (—Z Bt (1 — 5($s,$t)))

<s,t>

where summation is taken over all pairs of neighboring sites and §(.) is the Kronecker delta
function. In order to favor homogeneous regions with no privileged orientation in the Gibbs sampler
simulation process, we choose 35 = 1 = B2 = 1. Finally, ®P+1l is computed from ®! in the
following way :

e Stochastic Step : using the Gibbs sampler, one realization z is simulated according to
the posterior distribution Px,¢(z/g), with parameter vector olrl,

¢ Estimation Step : the parameter vector ®P*+1 is estimated with the ML estimator of the
“complete data” corresponding to each class.

o If Ny= #{s€S : zs=e1} is the number of pixels of the “CSF” area, the ML estimator
®(c,) of a is given by [3] : &(z,9) = (1/N1) X c5.0.—¢, Is-

o If No=#{s€S :z,=e3} and N3=#{s€S : z;=e3} pixels are located in the “white
matter” and “grey matter” regions respectively, the corresponding ML estimator of
each class is given by the empirical mean and the empirical variance. For instance, for
the “white matter” class, we have for @, :

o) =5 Yo Fed=goop O i

2 seS:izs=ea sES:izs=ea

e Repeat until convergence is achieved ; i.e., if Plr+1] % <i>[”], we return to Stochastic Step.

Figure 4.3 represents the estimated distribution mixture of the SPECT image shown in Figure
4.4b The three site-wise likelihoods Py, /x, (9s/€x), k = 1,2, 3, (weighted by the estimated proportion
mr of each class ey,) are superimposed to the image histogram. Corresponding estimates obtained by
the estimation procedure, requiring about ten iterations, are given in Table 4.1.

| | ICE Procedure |
ten || 052t o)

@?é‘;; 0.26(r) 100(,) 648(,2)
(I)’E‘é‘;‘; 0.22(ﬂ.) 172(@ 383(0.2)

TAB. 4.1. Estimated parameters for the picture reported in Figure 4.4b. 7 stands
for the proportion of the three classes within the SPECT image. a are the
exponential law parameter. ;. and o2 are the Gaussian law parameters.

1 Cliques are subsets of sites which are mutual neighbors [4].
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Fic. 4.3. Image histogram of the picture reported in Figure 4.4b (solid curve)

and estimated probability density mixture obtained with the ICE procedure (dot-
ted and dashed curves).

4.4.4 Determination of the support and stopping rule

o In the case of supervised deconvolution techniques without regularization term, such as the Van-
Cittert, the Landweber, the RL, and the Super Resolution algorithms, the iterative deconvolution
procedure is generally monitored as it progresses and stopped after some iterations, generally by
visual inspection. This iteration number may be very different for each SPECT image and is generally
related to the behavior of each iterative method near the convergence. In fact, at some point of the
iteration procedure, the solution fit more to the noise than the image data. Therefore, for these
methods, the process has to be stopped at the point where there is a balance between the fit to the
image data and the amplification of noise. To this end, in order to stop automatically these algorithms
before the amplification of the noise, we propose to compute the parameters of the distribution
mixture of fi, regularly, namely every k iterations (k depends on the speed of convergence of the
considered deconvolution method). If the parameter associated to the background noise (i.e., @) is
above a fixed threshold, we decide to stop the procedure. Of course, this threshold has to be fixed
empirically like the iteration number. Nevertheless, contrary to the iteration number, this threshold
does not depend of the adopted unregularized method or the speed of convergence of each method as
well as the used SPECT images. Besides, it does not require a visual inspection, for each iteration of

the deconvolution procedure, that can be cumbersome and unreliable for an automatic deconvolution
of a set of SPECT images.

For the supervised deconvolution methods using a regularization term (e.g., the Tichonov-Miller’s
algorithm), or prior information (e.g., the Molina’s algorithm), the termination criteria consists
simply in stopping the algorithm when the solution is stable. Nevertheless these methods require
a regularization parameter which must be chosen carefully for reliable restoration. This parameter
can be also derived efficiently from the proposed noise model estimation procedure.
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Fi1G. 4.4. Examples of support determination for some cross-sectional brain
SPECT slices.

e In the case of blind deconvolution techniques, in which the rectangular support of the object to
be restored is needed and unknown, we can also efficiently exploit the parameters of the distribution
mixture of the input image g by adopting the following strategy ; we assume that the row R; € S
contains the object O to be restored if we can find two consecutive sites € R; for which :

P(gi;/"CSF") < P(g;;/ "white matter”)

where the subscripts i, j refer to the pixel located at the i** row and the j** column and g to the
luminance. We adopt an identical reasoning for the column and the object support is then accurately
determined by the set of pixels g;; which belong to a row R; and a column C; containing the object
O. Figure 4.4 displays examples of rectangular support determination for some cross-sectional brain
SPECT images. A more accurate support could be given by an unsupervised Markovian segmentation
based on parameters given by the ICE procedure. Finally, let us recall also that for these blind
deconvolution techniques, there is no need to implement a stopping rule and convergence is reached
when the estimated PSF and image are stable.

4.5 Experimental results

The effectiveness of each deconvolution method was tested on several cross-sectional phantoms,
synthetic and real human brain SPECT images of 64 x 64 pixels size with 256 grey levels. Those
presented in this Section are only a few examples.

Except for the Tichonov-Miller’s algorithm, the initial estimated image of these iterative schemes
is the original input image (i-e., fo(z,y) = g(z,v)). Besides, except for the NAS-RIF blind de-
convolution technique, the original PSF estimate, a priori fixed for the supervised deconvolution
methods, is approximated for the real SPECT images by a two-dimensional Gaussian distribution
(i-e., ho(z,y) = Gz,y(0?)) with variance o? = 1.5 (i.e., about 3 pixels of width at half maximum as
shown in Figure 4.5). This variance value has been chosen empirically, for each set of deconvolution
experiments presented in this Section, in order to obtain the best supervised restoration results. The
initial inverse FIR filter required by the NAS-RIF algorithm is simply the Kronecker delta function
[28] and we have used v = 0 because the background of SPECT images is not completely black.
Finally, parameters A and <, used in the You & Kaveh’s algorithm, are given by the estimation
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method proposed by the authors in [51]. In order to objectively compare the spatial resolution im-
provements and the contrast enhancement between the original and estimated image as well as the
resolution improvement of these different restoration approaches, we have stretched the histogram
of the estimated image at convergence (i.e., fauu(z,9)) in order to get the same mean value as the
original input image g(z,y).

For the unregularized supervised deconvolution methods, the termination criteria is given by the
stopping strategy presented in Section 4.4.4 (see Table 4.2). For the blind deconvolution methods
requiring the exact support of the object to be restored, deconvolution results are based on the
support-finding algorithm presented in this same Section.

The computational cost for a SPECT image and for each supervised or blind deconvolution
procedure is indicated in Table 4.3.

e Figures 4.7 presents examples of brain SPECT image deconvolutions obtained by these different
methods. Figure 4.6 displays the PSF estimated by the You-Kaveh’s algorithm.

Amongst the supervised deconvolution schemes, the Van-Cittert’s method seems to improve
slightly the resolution of the original SPECT image. The Landweber’s algorithm seems to give quite
good results relatively to its implementation simplicity and its low computational complexity. The
Tichonov Miller and the Molina’s algorithms, which impose a priori smoothness of the true image
in an effort to control noise, seem to fail to detect all details and singularities of the true undistorted
image. In fact, the used prior model seems to be to much simple to model accurately all the property
of the true unblurred image. The RL and the Super Resolution algorithms give similar results and
allow to improve slightly the spatial resolution of these SPECT images.

Amongst the blind deconvolution techniques, the IBD is unable to converge for 200 iterations
and more. The algorithm fails to produce a reliable estimate of the true image for all the presented
SPECT images. Deconvolution experiments with the exact rectangular support of the object to be
restored, various initial conditions and different noise parameter values o produced poor results as
well. The Biggs-Lucy and the You-Kaveh’s algorithms seem to give quite good contrast enhancement
results but also show undesirable artifacts all around (and maybe inside) the object to be restored. In
addition, these techniques remain sensitive to the initial PSF given to the deconvolution procedure.
A random initial guess for the PSF or an initial Kroenecker delta function lead to poor results. Let
us note that these methods are not ensured to converge to the global minimae and remain highly
sensitive to the initial conditions. Finally, the NAS-RIF technique seems to converge to a good
estimate of the solution without a priori information or good initial guess about the PSF. Figure
4.8 gives examples of five cross-sectional SPECT image deconvolutions of human brain given by the
NAS-RIF algorithm.

e The effectiveness of these deconvolution techniques is also tested on a real SPECT phantom
(i.e., a physical plexiglas head phantom filled with radioactive material and measured by a SPECT
system) for which the ground truth of this segmented phantom is exactly known and thus for which
the performance of each deconvolution method can then be objectively judged. Figure 4.9 presents an
example of deconvolution results, on this SPECT phantom, obtained by the different aforementioned
deconvolution methods. We can easily notice that this SPECT volume is less noisy and less blurred
than the real human brain SPECT slice previously presented and processed (due to several factors
such as a different dose of radioactive isotopes contained in each uniform region of this SPECT
phantom, a longer acquisition time, the stillness of this simulated brain during the SPECT process,
a reduced attenuation, etc.). In order to fully assess the success of this restoration procedure, we
use the specific evaluation criteria proposed in [49], based on the estimation of the three following
measures :
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(i) Firstly, the average contrast of the image, defined by C'=(1 — ma/m3), where my and mg are
the mean of the pixel value in the “white matter” and “grey matter” area respectively.

(ii) Secondly, the image mottle M5 in the “white matter” region, characterized by taking the
ratio of the standard deviation o of pixel values in this area to the mean ms.

(iii) Thirdly, the image mottle M3 in the “grey matter” area.

These two last parameters allow to measure the amplification of the noise and/or measure the
presence of undesirable artifacts that can be created by the deconvolution procedure in a uniform
region of the real SPECT phantom (thus with ideally uniform radioactive activity). Due to the
difference of proportion of pixels belonging to each brain anatomical tissue, we consider the total
mottle measure given by M = pa Ms + p3 M3, with pa and ps designates the proportion of pixel belon-
ging to the “white matter” and “gray matter” area respectively. A reliable SPECT image restoration
technique will then allow to enhance the contrast of the image with little increase in mottle, i.e.,
without amplifying too much the noise and/or without creating false artificial features (technically,
an increase by a factor of 10% —15% of the original mottle of the image remains acceptable if the
contrast enhancement is significantly increased [49]). Due to the difference of thickness between
the cross-sectional slices of the real and segmented phantom, these abovementioned measures are
estimated on the whole 3D phantom after this one has been registered [14] on the ground truth
of the segmented phantom volume (see Figure 4.10 where some consecutive slices of the segmented
phantom are shown). Table 4.4 gives the contrast and image mottle for each deconvolution technique
applied on this SPECT phantom.

Amongst the supervised deconvolution schemes, the Landweber’s algorithm allows to increase
significantly the contrast of the image but at cost of an unacceptable increase of the mottle of the
image (+33.0% of mottle). Deconvolution results, obtained on this SPECT phantom, by the Van-
Cittert, the RL, the Tichonov-Miller and the super resolution algorithm are nearly similar; they
allow to obtain a good contrast enhancement but also present some artifacts, visible all around the
object to be restored. Molina’s algorithm gives the best results for this SPECT volume; i.e., a good
contrast enhancement with only a little increase of the mottle. Experiments have shown that this
method is well suited for cross-sectional SPECT images not too blurred.

Amongst the blind deconvolution techniques, the IBD algorithm fails to produce a reliable es-
timate of the true image. the You-Kaveh’s algorithm allows to increase the contrast of the image
but this technique also creates undesirable artifacts and/or an unacceptable amplification of the
noise (+30.2% of mottle). Deconvolution result given by the Biggs-Lucy’s algorithm is very poor.
Finally, the NAS-RIF blind deconvolution technique produce contrast enhancement result as good
as the best supervised deconvolution technique (i.e., the Molina’s algorithm) along with the sligh-
test increase of the mottle amongst the considered supervised and blind deconvolution techniques.
Experiments have shown that this method is well suited both for very blurred SPECT slices and
also in the case of less blurred SPECT images.

¢ Finally, we have also tested the effectiveness of these deconvolution techniques on a cross-
sectional slice of a synthetic SPECT volume. In order to simulate at best the typical characteristics
of real human brain SPECT images, we have re-created three homogeneous regions and added
the corresponding noise for each ones, according to the grey level statistical distribution already
estimated on a real human brain SPECT slice (see the distribution mixture presented in Figure 4.3
and parameters given in Table 4.1). We have also added a 3D Gaussian blur in order to simulate the
3D scattering of the emitted photons. Figure 4.11 shows the ground truth of a segmented synthetic
slice, the synthetic SPECT slice and finally the deconvolution results obtained by our different
restoration methods.
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Amongst the supervised deconvolution schemes, the Van-Cittert and the Landweber’s algorithm
give quite good results although at cost of a slight amplification of the noise in each uniform region
of the synthetic SPECT slice. The RL, the Tichonov-Miller and the super resolution algorithm show
clearly some artifacts all around the object to be restored. Deconvolution result given by the Molina’s
algorithm is very poor for this synthetic image; experiments have shown that this method is not
well suited for highly blurred image.

Amongst the blind deconvolution techniques, the IBD does not converge. The You-Kaveh and
the Biggs-Lucy’s algorithm shows clearly false and undesirable artificial features created by the
iterative blind deconvolution procedure. Once again, the NAS-RIF technique produces a relative
good restoration result.

4.6 Conclusion

In this paper we have shown that a deconvolution procedure noticeably improves the spatial
resolution of human brain SPECT images and can be a great help to facilitate their interpretation
by the nuclear physician. The proposed distribution mixture estimation procedure allows efficiently
to give a reliable termination criteria for the unregularized iterative deconvolution techniques or
to accurately determine the exact support of the object to be restored when this one is needed by
some blind deconvolution techniques. This estimation procedure is quite general and can be used for
other applications such as an unsupervised Markovian segmentation of brain SPECT images into
different anatomical tissues, or to give relevant information in order to classify these brain images
into different pathology classes. Amongst existing deconvolution techniques, the NAS-RIF algorithm
performs better than other deconvolution schemes for SPECT image restoration. This technique can
be efficiently combined with our estimation procedure to find the support of the object to be restored
and yield very promising results without a priori assumption on the nature of the blurring function
or for all type of SPECT images (more or less blurred). Finally, let us note also that this method
can efficiently be extended in order to take into account the inter-slice blur inherent to this 3D
imaging process. This can be done by simply considering a 3D variable FIR filter with a blurred
SPECT volume pixels as input. This 3D blind deconvolution NAS-RIF procedure combined with a
3D unsupervised Markovian segmentation procedure, allowing to find accurately the object support
to be restored, will be the topic of our next research.
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| Tteration Number |

VC|LW | RL | TM | SR | MO
10 4 |200| 50 | 100 | 10

TAB. 4.2. Iteration number for each supervised deconvolution method as chosen
by the proposed stopping rule. Respectively; the Van-Cittert (VC), the Land-
weber (LW), the Richardson-Lucy (RL), the Super Resolution (SR) and the
Molina's (MO) algorithms.

| Computational Cost |
| Supervised Methods | Blind Methods |

VC | LW | RL | TM | SR | MO || IBD | BL | NAS-RIF | YK
3 1 18 8 18 2 30 | 120 129 345

TAB. 4.3. Computational cost for each deconvolution method. Respectively ; the
Van-Cittert (VC), the Landweber (LW), the Richardson-Lucy (RL), the Super
Resolution (SR), the Molina (MO), the IBD, the Biggs-Lucy (BL), the NAS-RIF
and finally, the You-Kaveh’s (YK) algorithm. Results are obtained on a standard
SunSparc 2 workstation and are expressed in seconds.

I Supervised | Blind

VC Lw RL ™ SR MO IBD BL NAS-RIF | YK
AC || 34.5% | 62.0% | 35.1% | 28.7% | 35.1% | 28.0% | -6.1% | 12.2% 24.7% 29.0%
AM || 15.3% | 33.0% | 14.9% | 13.5% | 14.9% | 12.6% || 3.8% | 13.8% 11.5% 30.2%

TAB. 4.4. Contrast and Image mottle enhancement from the original input image
and for each deconvolution method (enhancement expressed in percentage).
Respectively ; the Van-Cittert (VC), the Landweber (LW), the Richardson-Lucy
(RL), the Super Resolution (SR), the Molina (MO), the IBD, the Biggs-Lucy
(BL), the NAS-RIF and finally, the You-Kaveh’s (YK) algorithm.
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F1Gc. 4.5. Original PSF defined as a two-dimensional Gaussian distribution with
variance 02 = 1.5 in a 7 x 7 support.

Fi1G. 4.6. Estimated PSF by the You-Kaveh’s algorithm in a 7 x 7 support.
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(h) i j (k)

F1c. 4.7. Examples of brain SPECT image deconvolutions. (a) Original image.
(b-g) Supervised deconvolution methods, respectively; (b) Van-Cittert, (c)
Landweber, (d) RL, (e) Tichonov-Miller, (f) Super Resolution, (g) Molina’s
algorithm. (h-k) Blind deconvolution methods, respectively; (h) IBD, (i) Biggs-
Lucy, (j) You-Kaveh, (k) NAS-RIF algorithm.
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F1G. 4.8. Examples of human brain cross-sectional SPECT image deconvolutions
given by the NAS-RIF algorithm. Top : five consecutive real cross-sectional
SPECT slices. Bottom : deconvolution results.



(a)
(d) (e)
(h) (i)

Fic. 4.9. Examples of phantom SPECT image deconvolutions. (a) Original
image. (b-g) Supervised deconvolution methods, respectively; (b) Van-Cittert,
(c) Landweber, (d) RL, (e) Tichonov-Miller, (f) Super Resolution, (g) Moli-
na’s algorithm. (h-k) Blind deconvolution methods, respectively; (h) IBD, (i)
Biggs-Lucy, (j) You-Kaveh, (k) NAS-RIF algorithm.

8) (k)
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F1c. 4.10. Examples of some consecutive cross-sectional slices of the segmented
phantom (ground truth).
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(h) (i) 0)) (k)

F1a. 4.11. Examples of phantom SPECT image deconvolutions. (a) Top : ground
truth of the segmented synthetic slice. Bottom : synthetic SPECT slice. (b-g)
Supervised deconvolution methods, respectively; (b) Van-Cittert, (c) Landwe-
ber, (d) RL, (e) Tichonov-Miller, (f) Super Resolution, (g) Molina’s algorithm.
(h-k) Blind deconvolution methods, respectively; (h) IBD, (i) Biggs-Lucy, (j)
You-Kaveh, (k) NAS-RIF algorithm.
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Chapter 5

THREE-DIMENSIONAL BLIND DECONVOLUTION
OF SPECT IMAGES

This work has been accepted in the original version (presented here) to the review IEEE. trans on
Biomedical Engineering as a short length paper [R2].

5.1 Abstract

Thanks to its ability to yield functionally rather than anatomically-based information, the three-
dimensional (3D) SPECT imagery technique has become a great help in the diagnostic of cerebro-
vascular diseases. Nevertheless, due to the imaging process, the 3D SPECT images are very blurred
and consequently their interpretation by the clinician is often difficult and subjective. In order to
improve the resolution of these 3D images and then to facilitate their interpretation, we propose
herein, to extend a recent image blind deconvolution technique (called the NAS-RIF deconvolution
method) in order to improve both the spatial and the inter-slice resolution of SPECT volumes. This
technique requires a preliminary step in order to find the support of the object to be restored. In
this paper, we propose to solve this problem with an unsupervised 3D Markovian segmentation
technique. This method has been successfully tested on numerous real and simulated brain SPECT
volumes, yielding very promising restoration results.

Keywords : SPECT imagery, 3D blind deconvolution, unsupervised segmentation, Markov Ran-
dom Field model, image restoration.

5.2 Introduction

3D SPECT (Single Photon Emission Computed Tomography) images are obtained by the de-
tection of radiations (gamma rays) coming from radioactive isotopes injected in the human body.
Contrary to other medical imaging techniques, such as X-ray, CT (Computer Tomography), MRI
(Magnetic Resonance Imaging), etc., this imagery process is able to give functionally rather than
anatomically-based information, such as the 3D metabolic behavior of human brain, by visualizing
the level of blood flow of a set of cross-sectional images. This study of regional Cerebral Blood Flow
(rCBF) can aid in the diagnostic of cerebrovascular diseases (e.g., Alzheimer’s disease, Parkinson’s
disease, etc.) by indicating lower, or abnormal higher, 3D metabolic activity in some brain regions.

Due to the imaging process, SPECT suffers from poor spatial resolution mainly owing to the
3D scattering of the emitted photons. Consequently, resulting 3D SPECT images are blurred and
their interpretation by the nuclear physician is often difficult and subjective. If the object to be
visualized is small compared to the source-to-collimator distance, this degradation phenomenon
may be considered to be shift-invariant [6] and, neglecting noise, this one can be modeled by a 3D
convolution process between the true undistorted 3D image and the transfer function of the imaging
system (also called the Point Spread Function or PSF).



In order to improve the spatial resolution of SPECT volumes, some authors have thus investigated
the SPECT image deblurring problem by neglecting the inter-slice blur and by approximating this
transfer function with a 2D symmetric Gaussian function [32], [11] or by considering an a priori
known PSF [49]. In this context, classical Wiener filter techniques [32], [6] or maximum entropy
filter-based deconvolution technique [49] have then been proposed to achieve this deconvolution
procedure and significant resolution improvements have been noticed [32], [49], [6]. Nevertheless, let
us note that these methods don’t take into account the inter-slice blur inherent to this 3D SPECT
imagery process and are sensitive to the assumption made on the nature of the blurring function. In
our applications where little is known about the PSF, it can turn out to be more relevant to estimate
directly the PSF from the observed input image. This problem of simultaneously estimating the PSF
(or its inverse) and restoring an unknown image is called a “blind deconvolution” problem. Recent 2D
deconvolution techniques exist, such as the NAS-RIF algorithm, and can also be efficiently extended
in the 3D SPECT imagery context. These techniques require to find, in a preliminary step, the
support of the object to be restored. In this paper, we propose to solve this problem thanks to an
unsupervised 3D Markovian segmentation technique.

This paper is organized as follows. Section 5.3 briefly describes the proposed 3D extension of
the NAS-RIF deconvolution technique. In Section 5.4, we detail the 3D unsupervised Markovian
segmentation algorithm allowing to find the exact support of the object to be restored. Deconvolution
experimental results on phantoms, synthetic and real brain SPECT volumes and conclusion are given
in Section 5.5. Finally, we conclude Section 5.6.

5.3 3D Deconvolution Method

5.8.1 Introduction

In our application, the degradation of a 3D SPECT image (i.e., a SPECT volume) can be
represented as the result of a convolution of the true SPECT volume with a 3D blurring function
(the PSF), plus an additive term to model the noise from the physical system. If the imaging system
is assumed to be linear and shift invariant, this degradation process can then be expressed by the
following linear model :

9(x,y,2) = f(z,y,2) * h(z,y,2) + n(2,y, 2)

where g(z,y, z) is the degraded or blurred 3D image, f(z,y, z) is the undistorted true 3D image,
h(z,y,z) is the PSF of the imaging system and n(z,y, z) is the corrupting noise (assumed additive
in our model). In this notation, the coordinates (z,y) represent the discrete pixel spatial locations,
z the slice location and * designates the 3D discrete linear convolution operator. The 3D blind
deconvolution problem consists then in determining f(z,y, z) and h(z,y, z) (or its inverse) given the
blurred observation g(z,y, z).

When the object to be recovered is imaged against a uniform or a noisy background, a com-
monly used method for solving the 2D blind deconvolution problem consists in minimizing an error
metric that optimizes the form of the restored image and the PSF (or its inverse) to fit the various
constraints, a priori known, on the form of the solution ; typically positivity and known support of
the object. The steepest descent or conjugate gradient method are then generally used to achieve op-
timization 28], [51] 2. In our application, the true undistorted rCBF map of a human brain consists
of a finite support imaged against a noisy background due to the Poisson noise phenomenon. In this
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Section, we propose to find accurately this support thanks to an unsupervised 3D Markovian seg-
mentation technique and then to use a 3D extension of such deconvolution technique for improving
both spatial and inter-slice resolution of the SPECT volumes.

5.8.2 8D extension of the NAS-RIF algorithm

In the 3D SPECT imagery context, the recent Non-negativity and Support constraints Recursive
Inverse Filtering (NAS-RIF) algorithm [28] can be easily extended in order to take into account both
the 2D spatial and the inter-slice blur. We can derive a 3D extension of this technique by simply
considering a 3D variable FIR filter u(x,y, 2) of dimension NgyX Ny, x N, with the blurred SPECT
volume pixels g(z,y, z) as input (see Figure 5.1). The output of this filter gives an estimate of each
cross-sectional 2D true image f(z,y,z = k) (with k € [1, K] and K representing the number of
transversal slices in the considered SPECT volume). Each resulting estimation is passed through a
nonlinear filter which uses a non-expansive mapping to project the estimated 2D image into the space
representing the known characteristics of the true image. The difference between this projected image
fao(z,y,2=k) and f(z,y,z=k) is used as the error signal to update the variable filter u(z,y, z).
Figure 5.1 gives an overview of the proposed 3D-extended NAS-RIF deconvolution algorithm. Each
cross-sectional 2D image is assumed to be non-negative with known support. The cost function used
in the deconvolution procedure of the k** transversal 2D image is defined as :

Je = Z fZ(m,y,Zzk)(l_Sgn(f(xay,zzk))>

2
(2,y) €Dy
~ 9 2
+Z (f(xay)_LB) +’7<Z u(:c,y,z)—l)
(z,y) €D, Y(z,y,2)

where f(z,y,2) = g(z,y,2) *u(z,y,z), and sgn(f) = —1 if f <0 and sgn(f) =1 if f > 0. Dy
is the set of all pixels of g(z,y,2z = k) inside the region of support, and ﬁ[k] is the set of all pixels
outside the region of support. The variable « in the third term is nonzero only when Ly is zero,
i.e., the background color is black. The third term is used to constrain the parameter away from
the trivial all-zero global minimum for this situation. The authors have shown in [28] that the
above equation is convex in the 2D case with respect to w. This property remains true in the 3D
case so that convergence of the algorithm to the global minimum is ensured using the conjugate
gradient minimization routine [28]. Let us note that a fully 3D deconvolution scheme would consist
in minimizing directly the cost function J = Zle J. Nevertheless let us also notice that J; and
J being convex and the global minimum being ensured in both cases by the conjugate gradient
optimization routine, the estimated solution (i.e., the SPECT volume given by minimizing J and
the set of SPECT images given by minimizing each cost function Ji) are thus identical.

2This class of methods has appeared more reliable in the SPECT image 2D deconvolution context than the one
called “grouped coordinate descent” that alternates between restoration of the image and PSF (see chapter 4).
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Fic. 5.1. 3D extension of the NAS-RIF deconvolution algorithm.

5.4 Support determination method

5.4.1 Introduction

In the 2D case, the support can be roughly approximated by the smallest rectangle containing the
entire object [28]. In order to automatically determine this rectangular frame, some of the proposed
methods are based on hold-out methods [28], or inspired by the constraint assessment algorithm
proposed in [44]. These methods are reliable for assessing the optimal 2D rectangular support but
cannot be easily extended in order to define a more accurate segmentation.

To this end, an alternative approach consists in exploiting the result of a 3D unsupervised Mar-
kovian segmentation. Nevertheless, the problem of “unsupervised” Markovian segmentation is quite
complex ; the main difficulty is that the estimation of model parameters is required for the segmenta-
tion, while the segmentation result is needed for model parameter estimation. In order to solve this
problem, a simple and reliable approach consists in having a two-step process. First, a parameter
estimation step in which we have to estimate the MRF model parameter (i.e., the parameters of the
grey level statistical distribution associated to each class of the SPECT volume). Then, a second
step devoted to the segmentation itself based on the values of the estimated parameters.

5.4.2 38D Unsupervised Markovian segmentation

We consider a couple of random fields Z = (X, G), where G = {Gs,s € S} represents the field
of observations located on the 3D lattice S consisting of K lattices Sj of N sites s (associated to
the N pixels of each transversal slice of the SPECT volume), and X = {X,,s € S} the label field
(related to the K x N class labels X of a segmented SPECT volume). Each aforementioned label
is associated to a specific brain anatomical tissue or region of the SPECT volume; the “CSF” area
designates the region that is normally due to the lack of radiations. In this distribution mixture
parameter estimation and segmentation problems, this region designates the brain region filled with
Cerebrospinal Fluid (without blood flow and thus without radiation) and also the area outside the
brain region. The “white matter” and “grey matter” (brightest region) are associated to a low and a
higher level of blood flow respectively [10]. Each G takes its value in {0, ...,255} (256 grey levels),
and each X; in {e; =“CSF”, e, =“white matter”, es =“grey matter”}.

In the following, the parameters in upper case letter designate the random variables whereas the
lower case letters represent the realizations of these concerned random variables. The distribution
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of (X, G) is defined, firstly, by prior distribution Px (x), supposed to be Markovian and secondly, by
the site-wise conditional data likelihoods Pg,,x,(gs/®s) whose shape and parameter vector ®,,)
depends on the concerned class label z,; (g; designates the grey level intensity associated to the site
s). In order to take into account the Poisson noise phenomenon inherent to the SPECT imaging
process in the “CSF” area, we model Py, ,x,(g9s/e1), by a exponential law [11] with parameter a,
namely; (1/a)exp[—(gs/a)]- To describe the brightness within the “white matter” and the “grey
matter” regions, we model the conditional density function for these two regions by two different
Gaussian laws [11]. Finally, we assume independence between each random variable G given X;.
The observable G is called the “incomplete data” whereas Z constitutes the “complete data”.

Estimation Step

In order to determine ® = (®(c,), ¥(c,), P(e;)), We use the Iterative Conditional Estimation (ICE)

algorithm. This estimation procedure [46] relies on an estimator ®(X,G) for completely observed
data case. This iterative method starts from an initial parameter vector ®° (not too far from the
optimal one) and generates a sequence of parameter vectors leading to the optimal parameters (in
the least squares sense) with the following iterative scheme :

1 .2 N
(I)[p+1] = ﬁ [(I)('T(l)ag) +--+ (I)(m(n)ag)]

where z(;,7 = 1,...,n are realizations of X drawn according to the posterior distribution
Px/a(z/ g,<I>[p]). In order to decrease the computational load, we can take n =1 without altering
the quality of the estimation [7]. Finally, we can use the Gibbs sampler algorithm [16] to simulate
realizations of X according to the posterior distribution. For the local a priori model of the Gibbs
sampler, we adopt a three-dimensional isotropic Potts model with a first order neighborhood [4].
In this model, there are three parameters denoted (1, 82, 33, called “the clique parameters” [4], and
associated to the horizontal, vertical, and transverse binary cliques respectively 3. Given this a priori
model, the prior distribution Px (z) can be written as :

Px(w) = exp (_Z ﬁst(l - 6(1‘.373775)))

<s,t>

where summation is taken over all pairs of spatial and inter-level neighboring sites and ¢ is the
Kronecker delta function. In order to favor homogeneous regions with no privileged orientation in the
Gibbs sampler simulation process, we choose 84 = 31 = 82 = B3 = 1. Finally, ®*!l is computed
from ®[?] in the following way :

e Stochastic Step : using the Gibbs sampler, one realization z is simulated according to the
posterior distribution Px,¢(z/g), with parameter vector olrl,

¢ Estimation Step : the parameter vector ®P11] is estimated with the Maximum Likelihood
(ML) estimator of the “complete data” corresponding to each class :
o If Ny= #{s€ S : x5 =e1} is the number of pixels of the “CSF” area, the ML estimator
®(,) of a is given by [3] : &(z,g) = (1/Ny) 2865:%:61 Js-
o If No= #{s€S :z,=e2} and N3 =#{s€ S : z, =e3} pixels are located in the “white
matter” and “grey matter” regions respectively, the corresponding ML estimator of each

3Cliques are subsets of sites which are mutual neighbors [4].
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class is given by the empirical mean and the empirical variance. For instance, for the
“white matter” class, we have for @, :

o) =5 Yo Cwd=gomp X @i

SES:xs=eo SES:xs=eq

e Repeat until convergence is achieved ; i.e., if plrti] % $!7l we return to Stochastic Step.

Figure 5.2 represents the estimated distribution mixture of the SPECT volume shown in Figure
5.4. The three site-wise conditional data likelihoods Py, ,x,(g9s/ex), k = 1,2,3 (weighted by the
estimated proportion mj of each class) are superimposed to the image histogram. Corresponding
estimates obtained by the estimation procedure (requiring about ten iterations) are given in Table
5.3.

Histogram
0.012
Histogram ——
hoise law ----
\ white matter law -----
0.01 grey matter law
0.008

Occurence probability

0.006 ”\h
0.004 UL' ﬂmw . \“n ; H[}Juuu g
/‘ﬂ Iy ﬂﬁﬂ| UH\MM

0.002 H\\UHMHWW I : “\JLLW\A
o ,,,.»*"\'\l‘»;_; L

0 50 100 150 200 250
Grey level

F1G. 5.2. Image histogram of the picture reported in Figure 5.4 (solid curve) and
estimated probability density mixture obtained with the ICE procedure (dotted
and dashed curves).

ICE Procedure
Pfinal 0.52(7r) ll(a)
q)ﬁ“ai 0.26(7,) 100(#) 648(0.2)
Phinal 0.22(7r) 172(,0 383(02)

F1Gc. 5.3. Estimated parameters for the SPECT volume reported in Figure 5.4.
m stands for the proportion of the three classes within the SPECT image. « are
the exponential law parameter. ;i and o2 are the Gaussian law parameters.
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Segmentation Step

Based on the estimates given by the ICE procedure, we can compute an unsupervised 3D Marko-
vian segmentation of SPECT volumes. In this framework, the Markovian segmentation can be viewed
as a statistical labeling problem according to a global Bayesian formulation in which the posterior
distribution Py,g(x/g) oc exp —U(z, g) has to be maximized [4]. The corresponding posterior energy
is given by :

U(mag) = Z lnPG /Xs gs/-q;s Z /Bst( msaxt))

sES <s,t>

] ~ J

Uy E;ag) UQ‘(:E)

where U; expresses the adequacy between observations and labels, and Us represents the energy
of the a priori model. We use the deterministic Iterated Conditional Modes (ICM) algorithm [4] to
minimize this global energy function. For the initialization of this algorithm, we exploit the segmen-
tation map obtained by a ML segmentation. Figure 5.4 displays examples of unsupervised three-class
segmentation, exploiting parameters estimated with the ICE procedure. In this segmentation, the
“CSFE”, the “white matter” and the “grey matter” are represented by a dark, a grey, and a white
region respectively, in order to visually express the activity level of the blood flow. The support D
is then determined simply by the set of pixels belonging to the white and grey matter classes.

-~ -
'I‘i-

Fic. 5.4. Example of an unsupervised three-dimensional Markovian segmenta-
tion of a brain SPECT volume using the ICM deterministic relaxation technique
and based on the parameters estimated by the ICE procedure. Top : real brain
SPECT volume (four central transversal slices). Bottom : three-class Markovian
segmentations.

75



5.5 Experimental results

The effectiveness of this 3D blind deconvolution method was tested on several SPECT volumes
composed of 64 transversal slices of 64x64 pixels with 256 grey levels. Those presented in this Section
are only a few examples.

The initial inverse FIR filter required by the NAS-RIF algorithm is the Kronecker delta function
[28] and the size of this inverse filter is 3 x 3 x 3 pixels. Besides, we have used v = 0 because the
background of SPECT images is not completely black. We recall that the object support deter-
mination is based on the result of the 3D unsupervised Markovian segmentation (see Section 5.4).
Finally, in order to objectively compare the resolution improvements between the original and de-
convolved SPECT volumes, we have decided to stretch the histogram of the estimated 3D volume
at convergence (i.e., fana (,,2)) in order to get the same mean value as the original input SPECT
volume g(z,y, z). The computational cost for a blind deconvolution cross-sectional image is about
50 seconds on a standard SunSparc 2 workstation (20 seconds for the support determination of the
whole volume and 30 seconds for the blind deconvolution of each cross-sectional image).

Figures 5.5 and 5.6 present examples of brain SPECT volume deconvolutions obtained by this
3D blind deconvolution approach. The algorithm (requiring about 250 iterations) converges to a
very good estimate of the solution without a priori information on the PSF and allows to noticea-
bly improve the resolution of the original SPECT volume. For instance, this restoration procedure
allows efficiently to detect small localized singularities associated with lesion or tumors that may
not be clearly visible in the original blurred image. Figures 5.7c and 5.7d show the resolution im-
provement obtained by the 3D-extended version of the NAS-RIF algorithm over its 2D version for a
given cross-sectional image (both methods are combined with the proposed unsupervised Markovian
segmentation-based support-finding algorithm). The resolution improvement is visible (although dif-
ficult to appreciate due to the diffusive effect of the printer) and can be clearly noticed on a computer
screen. Figure 5.8 shows examples of sagittal and coronal sections of the original and deconvolved
human brain SPECT volumes whose cross-sectional slices have been presented in Figures 5.5 and
5.6. The improvement of the inter-slice resolution is also clearly visible.

The effectiveness of this deconvolution technique is also tested on a real SPECT phantom (i.e., a
physical plexiglas head phantom filled with radioactive material and measured by a SPECT system)
for which the ground truth of this segmented phantom is exactly known and thus for which the
performance of our proposed method can then be objectively judged. Figure 5.9 presents examples
of brain SPECT volume deconvolutions obtained by our 3D blind deconvolution approach on this
SPECT phantom. We can easily notice that this SPECT volume is less noisy and less blurred than
the real human brain SPECT volumes previously presented and processed (due to several factors
such as a different dose of radioactive isotopes contained in each uniform region of this SPECT
phantom, a longer acquisition time, the stillness of this simulated brain during the SPECT process,
reduced attenuation, etc.) Nevertheless, once again, the resolution improvement remains visible.

In order to fully assess the success of this restoration procedure, we use the specific evaluation
criteria proposed in [49], based on the estimation of the three following measures :

(i) Firstly, the average contrast of the image, defined by C' = (1 — mz/ms3), where mz and mg
are the mean of the pixel value in the “white matter” and “grey matter” area respectively.

(ii) Secondly, the image mottle M> in the “white matter” region, characterized by taking the
ratio of the standard deviation o of pixel values in this area to the mean ms.

(iii) Thirdly, the image mottle M3 in the “grey matter” area.

These two last parameters allow to measure the amplification of the noise and/or measure the
presence of undesirable artifacts that can be created by the deconvolution procedure in a uniform
region of the real SPECT phantom (thus with ideally uniform radioactive activity). Due to the
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difference of proportion of pixels belonging to each brain anatomical tissue, we consider the total
mottle measure given by M = ps Ms + p3 M3, with p, and ps designates the proportion of pixel belon-
ging to the “white matter” and “gray matter” area respectively. A reliable SPECT image restoration
technique will then allow to enhance the contrast of the image with little increase in mottle, i.e.,
without amplifying too much the noise and/or without creating false artificial features (technically,
an increase by a factor of of 1.1-1.2 of the original mottle of the image remains acceptable if the
contrast enhancement is significantly increased [49]). Due to the difference of thickness between
the cross-sectional slices of the real and segmented phantom, these abovementioned measures are
estimated on the whole 3D phantom after this one has been registered [14] on the ground truth
of the segmented phantom volume (see Figure 5.10 where some consecutive slices of the segmented
phantom are shown). Our proposed restoration technique allows a contrast enhancement from 9% to
21% between the original and deconvolved SPECT phantom along with an acceptable amplification
of the mottle of this 3D image by a factor of 1.18 (from 17% to 20%). This represents a significant
improvement in image quality with a very small penalty and attest the validity of our restoration
method. Let us add that the registration process [14] induces most probably artificial features and
our real restoration results are most likely better.

Finally, we have also tested our 3D deconvolution technique on some cross-sectional slices of
a synthetic SPECT volume. In order to simulate at best the typical characteristics of real human
brain SPECT images, we have re-created three homogeneous regions and added the corresponding
noise for each ones, according to the grey level statistical distribution already estimated on a real
human brain SPECT volume (see the distribution mixture presented in Figure 5.2 and parameters
given in Figure 5.3). We have also added a 3D Gaussian blur in order to simulate the 3D scattering
of the emitted photons. Figure 5.11 shows the ground truth of the segmented synthetic slices, the
synthetic SPECT slices and finally the deconvolution results obtained by our restoration method.
The resolution improvement is visible and the proposed procedure allow efficiently to recover high
frequencies of the undistorted (non-convolved) image.

5.6 Conclusion

In this paper we have shown that a 3D extension of the NAS-RIF deconvolution procedure
noticeably improves the resolution of human brain 3D SPECT images and can be a great help
to facilitate their interpretation by the nuclear physician. We have also shown that this 3D blind
deconvolution technique gives superior performance than its 2D version and can efficiently exploit
the result of a 3D unsupervised Markovian segmentation in order to find the exact support of the
object to be restored. This segmentation allows to accurately fit the finite-support constraint of this
optimization strategy-based deconvolution technique. Finally, this 3D blind deconvolution technique
combined with the unsupervised segmentation leads to a restoration procedure that is completely
data driven and really compatible with an automatic processing of massive amounts of 3D SPECT
data.
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Fic. 5.5. Examples of human brain SPECT volume deconvolution given by the
3D-extended version of the NAS-RIF algorithm combined with the Markovian
segmentation-based support finding algorithm. Top : five consecutive real cross-
sectional SPECT slices. Bottom : deconvolution results.

Fic. 5.6. Examples of human brain SPECT volume deconvolution given by the
3D-extended version of the NAS-RIF algorithm combined with the Markovian
segmentation-based support finding algorithm. Top : five consecutive real cross-
sectional SPECT slices. Bottom : deconvolution results.
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F1c. 5.7. Examples of human brain SPECT cross-sectional image segmentation
and deconvolutions. (a) : Original SPECT cross-sectional human brain image.
(b) : Unsupervised three-dimensional Markovian segmentation. (c) : Deconvolu-
tion result given by the 3D-extended version of the NAS-RIF algorithm (inverse
filter size is 3x3 x3). (d) : Deconvolution result given by its 2D version (inverse
filter size is 5x5) (both deconvolution methods require the same computatio-
nal load and are combined with the proposed Markovian segmentation-based
support-finding algorithm (Figure b)).
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F1c. 5.8. Examples of sagittal (a)(c) and coronal (b)(d) sections of the original

(top) and deconvolved (bottom) human brain SPECT volumes whose cross-

sectional slices have been presented in Figure 5.5 for (a)(b) and in Figure 5.6

for (c)(d).

Fic. 5.9. Examples of deconvolution obtained by our 3D blind deconvolution

approach on some cross-sectional slices of a SPECT phantom. Top : real cross-
sectional SPECT phantom slices. Bottom : deconvolution results.



F1c. 5.10. Examples of some consecutive cross-sectional slices of the segmented
phantom (ground truth).

Fic. 5.11. Example of deconvolution results on some cross-sectional slices of a
synthetic SPECT volume. (a) Ground truth of the segmented synthetic slices.
(b) synthetic SPECT slices. (c) Deconvolution results.
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