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SPECT study restoration using anatomical and geometrical constraints

extracted from MRI images

ABSTRACT

Brain SPECT imaging of regional cerebral blood flow distribution (rCBF) is a well established
functional imaging method which is widely used in a variety of clinical and research settings
for the assessment of normal and abnormal neurological function. However, in part because
of the scattering of emitted photons inherent to this imaging process, amongst others causes,
brain SPECT images generally exhibit poor spatial resolution and low signal-to-noise ratio.
This leads to substantial errors in measurements of regional brain radioactivity concentrations,
making difficult to come up with reliable, accurate and objective observations. In order to
improve the resolution of these images and therefore to facilitate their interpretation, we herein
propose an original extension of the NAS-RIF deconvolution technique of Kundur and Hatzinakos
[1]. That extension allows the reconstruction process to be constrained by anatomical and
geometrical information extracted from a high resolution anatomical procedure such as magnetic
resonance imaging (MRI). It also has the advantage of efficiently incorporating, within the NAS-
RIF method, a regularization term which stabilizes the inverse solution. In our application, this
anatomical-based regularization term uses the result of an unsupervised Markovian segmentation
obtained after a preliminary registration step between the MR and SPECT data volumes obtained
from the same patient. This method has been successfully tested on 30 pairs of brain MRI and
SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms.
The experiments reported in this paper demonstrate that the discussed method performs better,
in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz
filter. Also, this method enhances contrast of the SPECT restored images with little increase in
mottle.

Index Terms: SPECT imagery, MR imagery, 3D blind deconvolution, unsupervised seg-
mentation, Markov Random Field model, 3D/3D registration, image restoration, information

fusion.



1. INTRODUCTION

The spatial resolution and signal-to-noise ratio displayed by brain single photon emission com-
puted tomography (SPECT) images is rather limited, when compared with that from other
functional (PET, fMRI) or anatomical techniques (MRI, CT scanning). This fact limits the
potential use of brain SPECT images. For instance, it is not easy to differentiate low tracer
uptake due to a functional deficit, where brain tissue still is anatomically intact, from low uptake
generated by focal atrophy, where tissue is lost and replaced by cerebrospinal fluid (CSF) [2].

Several methods have been proposed to improve the spatial resolution of SPECT images.
These methods can be split into two major classes, namely methods including restoration tech-
niques during or after the reconstruction process from projections.

Amongst the first class of such methods, we can cite the Bayesian tomographic reconstruc-
tion techniques. These methods statistically incorporate, into the tomographic reconstruction
problem, both noise model and a priori knowledge about the types of reconstruction results ac-
ceptable as estimates of the actual spatial distribution of activity. For those approaches, in order
to avoid (to some extent) over-smoothing of edges and details, some priors have been specifically
proposed for SPECT. Among them, we can cite the generalized Gaussian Markov random field
prior model [3]. This model includes a Gaussian MRF and an absolute-value potential function
which varies according to the value of an internal parameter, which in fact controls the degree of
smoothness of the reconstruction and/or the sharpness of the edges to be formed in the recon-
structed image. We can also mention the median prior term, proposed by Alenius et al. in [4]
where a penalty term is set according to the deviance of a pixel from the local median, allowing
for both noise reduction and edge preservation.

One way to improve the spatial resolution of the SPECT images (during the reconstruction
process) consists in taking into account the scatter effect inherent to this imaging process via, for
example, a point spread function including all collimator and detector effects. To this end several
algorithm for scatter compensation in brain SPECT have been proposed in the literature [5, 6, 7,
8,9, 10]. Another way consists in taking into account the distance-dependent collimator blurring
and, at a smaller extent, the intrinsic detector resolution. To this end, a successful correction

method, using the frequency-distance principle [11] [12] has been proposed. Another approach



is the direct incorporation of the collimator blurring in the reconstruction process by using
"Gaussian-diffusion” [13] (allowing to obtain the appropriate blurring with small convolution
kernels). A comparison between these two strategies has been reported in [14].

A second way to accurately model and include the prior information concerning the spatial
properties (anatomy) of the actual brain volume being imaged by SPECT that has also been
proposed utilises the registration of (high resolution) anatomical (CT or MR) images with the
(low resolution) functional (SPECT or PET) images from the same patient. In these models
[15, 16, 17, 18], prior anatomical information (i.e., structural information on the presence and
location of important anatomical “landmarks” such as local discontinuities or the presence of
extended homogeneous regions as seen for instance on an MR anatomical image) is incorporated
into the tomographic reconstruction process in order to rightly constrain the reconstructed image
and thus to improve its spatial resolution. These models usually express that, within a detected
and segmented “uniform” anatomical region, neighboring pixels in the functional image tend to
have similar grey level values (local homogeneity) or follow a Gaussian distribution with a unique
mean value (global homogeneity) [19, 20, 21].

A second class of methods includes restoration or deconvolution techniques used after the
reconstruction process. In this category, we can cite [22] where Rajabi et al. compared four
widely used filters (i.e., Hanning, Butterworth, Metz and Wiener) in myocardial Tc99m-sestamibi
SPECT studies. In [23] a non-negativity and support constraints recursive inverse filtering
(NAS-RIF) algorithm proposed by Kundur and Hatzinakos [1], was extended to the 3D SPECT
imaging restoration context. The NAS-RIF blind deconvolution technique is relevant to any
situations in which an object of finite extend is imaged against a uniformly grey (or noisy)
background [1]. This method can thus be efficiently exploited in brain SPECT imaging since
the true undistorted rCBF map of a human brain consists of a finite support imaged against a
noisy background (the background being secondary to the Poisson noise phenomenon inherent to
imaging with radioactive elements; other sources of background in the images do not concern the
inherent Poisson noise from the actual spatial distribution of radioactivity). The only information
required for this deconvolution procedure is the non-negativity of the true image and the support
of the object to be restored. In [23], this support was accurately determined by an unsupervised

3D Markovian segmentation technique applied to the SPECT volume.



In this paper, we propose to extend the method presented in [23] by introducing, into the NAS-
RIF algorithm, a new spatially-adaptive regularization term for SPECT image deconvolution.
This regularization term allows to efficiently include anatomical and geometrical information
extracted from a high resolution anatomical MR image [24] while stabilizing the solution of the
NAS-RIF inverse filter by preventing noise amplification and ringing artifacts. In our applica-
tion, this anatomical-based regularization term exploits the result of an unsupervised Markovian
segmentation obtained after a preliminary registration step between the MR and SPECT volume
coming from the same patient. In our context, the proposed regularization term is quadratic
and the NAS-RIF procedure thus involves recursive filtering of the degraded image to minimize
a newly convex objective cost function. A conjugate gradient-based optimization is then used to
minimize this cost function. This method will be tested on 30 pairs of brain MR and SPECT
images from different patients and on Hoffman and Jaszczak SPECT Phantoms and compared
with a classical supervised deconvolution/restoration approach using a classical Metz filter.

This paper is organized as follows. The section 2 briefly describes the proposed 3D anatom-
ical constraint version of the NAS-RIF deconvolution technique. In section 3, we describe the
registration and segmentation algorithms. The section 4 presents the validation protocol of the
new restoration method. We then show some of our experimental results on a phantom and real
brain SPECT volumes and validate the proposed model in section 5. Finally, we conclude in

section 6.

2. 3D ANATOMICAL CONSTRAINT NAS-RIF ALGORITHM

2.1. 3D extended version of the NAS-RIF

In our application, and as proposed in [23], we will assume that 3D SPECT images are degraded

by the following, classical linear model

g($7y72) = f(x,y,z)*h(az,y,z)+n(x,y,z) (1)

in which g(x,y,z2), f(z,y,2), and h(x,y, z), denote respectively the degraded 3D image, the
true image and the point spread function (PSF). n(z,y,z) represents the additive noise and

* designates the 3D discrete linear convolution operator. The 3D blind deconvolution problem



consists then in determining f(x,y, z) and h(z,y, z) (or its inverse) given the blurred observation

9(x,y, 2).
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Figure 1: Three-dimensional extension of the NAS-RIF deconvolution algorithm [1].

In the 3D extended version of the NAS-RIF deconvolution strategy (cf. Fig. 1), the output
of the FIR filter u(z,y,2) of dimension N, x Ny, X N, gives an estimate of the true image
f(x,y,z). Each resulting estimation is passed through a nonlinear filter which uses a non-
expansive mapping to project the estimated 3D image into the space representing the known
characteristics of the true image (expressing in fact that the image is assumed to be non-negative
with a known support). The difference between this projected image fNL and f is used as the

error signal to update the variable filter u(z,y, z). In the 3D context, the cost function used in

the deconvolution procedure of the 3D image is defined as:
J(u) = Ji(u) + Jo(u) + v J3(u) (2)

with,

Iw) = p(x,y,z)(l —sgno;(x,y,z»)

(z,y,2)€D



where f(x,y,2) = g(z,y,2) *u(z,y, ), and sgn(f)=—1if f <0 and sgn(f)=1if f>0. D is the
set of all pixels of g(z,y, ) inside the region of support, and D is the set of all pixels outside the
region of support.

The first term, J;(u), is used to penalize the negative voxels in the support in order to keep
the image estimate non-negative. The second term .Jo(u) penalizes voxels located outside the
support which show values which deviate significantly from the background average Ls. When
the background of the true image is black, i.e., Ly = 0, the third term, J5(u), is used to avoid a
trivial all-zero minimum solution (7 being a positive constant).

The authors have shown in [25] that the above equation is convex in the 2D case with respect
to u. This property remains true in the 3D case so that convergence of the algorithm to the

global minimum is ensured using the conjugate gradient minimization routine [25].

2.2. Anatomical Constraint 3D NAS-RIF

The major shortcoming of the NAS-RIF technique is its noise amplification at low SNR [1]. This
is due to the high pass property of the inverse filter u(z, y, z) which amplifies high frequency noise.
As a result, the solution at convergence may not be the best estimate of the original image in the
presence of noise. In order to solve this problem, a solution, suggested by Kundur and Hatzinakos
[1], consists in halting the iterative restoration process through visual inspection. In practice,
this requires a strong supervision and, even in this case, it is not so easy to determine which
is the optimal iteration for termination (different parts of the image may converge at different
rates, making this method unreliable).

In this work, we propose an alternative regularization approach for the NAS-RIF algorithm
which can also be viewed as an elegant way to incorporate geometrical information extracted
from a (high resolution) anatomical MR image into the SPECT data. The proposed regular-
ization term also allows stabilization of the inverse solution by preventing noise amplification,
does not require supervision (parameters tuning or stop criterion) and is capable of introducing
better constraints on the solution of our restoration problem. This strategy consists in applying,
over pre-detected and segmented anatomical regions, a piecewise smoothness constraint on the
functional SPECT image to be recovered. To this end, our regularization term exploits the result

of a preliminary registration step between the MR and SPECT image and also the result of a



segmentation of the MRI image into anatomical classes (cf. section 3).
In our model, the new cost function related to the deconvolution of the 3D image is now

defined as:

J(u) = Ji(u) + J2(u) + v J3(u) + 0 Ja(u) (3)

with:

B =3 Y (fewa)w)

i=1 (x,y,2)€r;

where the first summation is made on the three main “anatomical” types found in the brain, i.e.,
white matter (rwwm), grey matter (rgm), and cerebro-spinal fluid (rgsp) and 7; designates the
mean, in grey level, of the i*" region and 0 is a weighting factor between this anatomical constraint
and the hard constraints of the NAS-RIF procedure. In this context, D = rwnm U 7em U Tesr
and 7; = N%Z 2wy )ers f(x,y,z) where N,. is the cardinal of the region r;.

Jy4(u) is proportional to the sum of variance of each anatomical region (for each transversal
slice) of the SPECT image. This term expresses that, within a detected and segmented anatom-
ical region, pixels in the functional image should tend to have similar grey level values. This
regularization term is edge-preserving since it allows to apply a smoothness constraint, while
preserving (anatomical) discontinuities.

Furthermore, the introduction of this regularization term J4 does not affect the convexity of
the NAS-RIF cost function, and therefore a unique solution to the problem is still guaranteed.
Fig. 2 shows the structure of this scheme. A preliminary registration step between the MR and
SPECT image as well as the result of a segmentation of the MRI image into anatomical classes
is used as the regularisation input to the error function.

The first derivative of the cost function in Eq. (3) is shown in Eq. (5). The gradient vector

of J with respect to v is:

oJ(u oJ(u oJ(u T
VJ(u) = < Wgo,)o) W(g)l) au(Nw—LNiu)—LNzu—l) ) )

where each entry is expressed as:
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Figure 2: Three-dimensional extension of the NAS-RIF deconvolution algorithm with incorporation of
anatomical constraint.
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A gradient-based iterative restoration algorithm or its conjugate version can be efficiently
applied to minimize this convex cost function. Besides, since the proposed criterion is quadratic,

many other optimization methods can be used.

The initial inverse FIR filter required by the NAS-RIF algorithm is the Kronecker delta



NAS-RIF Algorithm

Compute the filter coefficients u(x,y, z) using a conjugate gradient optimiza-
tion routine.

1. Definitions

l The iteration step

t A positive real number called the speed-gradient algorithm

ull Vector of filter of dimension Ny, x Ny, X N, at the It iteration
dll Vector of dimension N, x Ny, x N, at the [*" iteration

J A cost function to be minimized

vVJ Gradient vector of J of dimension Ny Nyy Ny X 1

(o)) Scalar product

2. Initialization

=0
ul=0---1---0)7
dl = —v.J(ul)

Set speed-gradient algorithm ¢ > 0
3. FIR filter parameters update

repeat

f($7yvz) = g(:n,y,z) * U(l’,y, Z)

Calculate the gradient vector of J as indicated in Eq. (5)

if [ =0 then
L dll = —v.J(ull)
else

gli-1) — (I VIl 1), (i)
B Z A )

d — —v.7(ull) + gli-1gi-1

W1 — 4 g 5 gl

=141

until a stopping criterion is met;

Algorithm 1: NAS-RIF Algorithm.




function [25]; the size of this inverse filter is set to 3 x 3 x 3 pixels. Furthermore, we have used
v = 0 because the background of SPECT images is not completely “black”[1].
Finally, the convergence criterion of the proposed algorithm is the stability of the cost function

to be minimized, i.e.,

[+1]y _ 7]
Tl — gl
J(ulll) -

with € is a threshold, typically set, in our application to 10~3 and the upper-script denotes the
iteration number. Fig. 3 shows the evolution of the cost function value along the iteration of the

gradient descent process for the image restoration presented in Fig. 11.
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Figure 3: Ewvolution of the cost function J along the iteration of the gradient descent process for an image
restoration.

3. REGISTRATION AND SEGMENTATION

In order to define our anatomically based regularization term J,, we exploit the result of a 3D
registration step between the MRI and SPECT input volumes (from the same patient) and then
an unsupervised Markovian segmentation of the (registered) MRI 3D image into anatomical

classes.
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3.1. Registration

The 3D registration method used in our application is based on mutual information (MI) and is
fully described in [26, 27]. The MI registration criterion C () between the input MRI (Iyg,) and
SPECT (Isprcr) volumes is evaluated by

PIyviril, (IMRI(HS)7ISPECT(S))>
C 0 _ I H 7[ 1 MRI{SPECT 6
) = X bt ). v ) oy et P reen T )

where s is a voxel of the Isppor volume, Iyg(Hs) is the set of grey-values from the 3D image
Iyr: sampled at the rigidly transformed coordinates Hs. H is the rigid transformation that
describes a translation vector 7' = (t,,t,,t,) and a rotation vector a = (o, ay, ;) (w.r.t. the
x, y or z axis). 6 is the registration parameter corresponding to the vector (o, 7). Estimation
of the marginal and joint image intensity distributions prepper(Lsprer(S)), Prypr(Imri(H's)), and
Prurilspror (Ivri(H S), Ispror(s)) are obtained by normalization of the joint and marginal his-
tograms of the overlapping parts of both images Iyg; and Isppcr [28]. To make coincide Hs with
a grid point of Igpger, we have used trilinear interpolation to obtain samples from Igpgor. The
optimal registration parameter eoptimal is then found by maximizing C(f), where the vector
6 is simply estimated by the Powell’s method [29]. The scale is computed in advance because
the voxel sizes of SPECT and MRI images are known and the images are initially positioned
such that their centers coincide and that the corresponding scan axes of both images are aligned
and have the same orientation. The images are smoothed slightly in order to make the cost
function in Eq. (6) as smooth as possible to give faster convergence and less chance of finding
bad local minima (related to a wrong registration). The code used to register the MRI image to
the SPECT image is mainly inspired from the software package Statistical Parametric Mapping
(SPM)!.

3.2. Segmentation

To this end, we consider a couple of random fields Z = (X, G), where G = {Gs, s € S} represents
the field of observations located on the 3D lattice S consisting of K lattices Sy of N sites s (asso-
ciated to the N pixels of each transversal slice of the brain 3D image), and X = {X;,s € S} the

label field (related to the K x N class labels X of a segmented 3D image). Each aforementioned

"The software package SPM can be obtained at : http://www.filion.ucl.ac.uk/spm/
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label is associated to a specific brain “tissue” category or region on the 3D image; the “CSF” and
the area outside the brain are combined in a single class, corresponding to tissue without tracer
uptake. Although, skin and other structures outside the brain actually have a non-zero (blood
flow) tracer uptake. We assume this to be negligible here. The “CSF” area designates the regions
that are normally devoid of activity. For this distribution mixture parameter estimation and
segmentation problems, this region designates the brain regions filled with cerebro-spinal fluid
(without blood flow and thus without radiation) and also the area outside the brain region. The
“white matter” and “grey matter” (brightest region) are associated to lower and higher levels of
blood flow respectively [30]. Each G takes its value in {0,...,255} (256 grey levels), and each

X in {e1 =“CSF”, eo =“white matter”, e3 =“grey matter”}.

In the following, the parameters in upper case letter designate the random variables whereas
the lower case letters represent the realizations of those concerned random variables. The distri-
bution of (X, G) is defined, firstly, by a prior distribution Px(x), hypothesized to be Markovian
and secondly, by the site-wise conditional data likelihoods Pg, /x, (g9s/xs) whose shape and pa-
rameter vector @, ) depends on the concerned class label z (gs designates the grey level intensity
associated to the site s). We assume independence between each random variable G given Xj.

The observable G is called the “incomplete data” whereas Z constitutes the “complete data”.

Estimation Step

In order to determine ® = (@), P(c,), P(ey)), We use the Iterative Conditional Estimation

es
(ICE) algorithm [31] and the shape of the conditional likelihoods proposed in [23]. For the
estimation and segmentation step of the MRI volume, we use Gaussian laws for the considered

data likelihoods.

Segmentation Step

Based on the estimates given by the ICE procedure, we can compute an unsupervised 3D Marko-
vian segmentation of the SPECT and MR volumes. In this framework, the Markovian segmen-
tation can be viewed as a statistical labeling problem according to a global Bayesian formulation

in which the posterior distribution Px/q(z/g) o exp —U(z,g) has to be maximized [32]. The

12



corresponding posterior energy is:

Ule,g) = Y —WPox.(o|2)+ Y Bu (1-d(as )

ses <s,t>

Ul(‘:;vg) UZ(I)

where U; expresses the adequacy between observations and labels, and U, represents the energy
of the a priori model. (1, 82, B3, such that 81 = By = B3 = Bst, are called “the clique parameters”
[32], and are associated to the horizontal, vertical, and transverse binary cliques' of our prior Pott
model (which tends to favor homogeneous regions with no privileged orientation). We use the
deterministic Iterated Conditional Modes (ICM) algorithm [32] to minimize this global energy
function. For the initialization of this algorithm, we exploit the segmentation map obtained by
a Maximum likelihood (ML) segmentation. In this segmentation, the “CSF”, the “white matter”
and the “grey matter” are represented by dark, grey, and white regions respectively, in order to
visually express the activity levels of their blood flows. The support D is then determined simply
by the set of pixels belonging to CSF, white and grey matter classes.

In order to take into account the Poisson noise phenomenon inherent to the SPECT imaging
process in the “CSF” area, we use for the segmentation procedure and its estimation step an
exponential law model [33]. We model the “white matter” and the “grey matter” regions, by
two different Gaussian laws. For the MRI images, we model the “cerebrospinal fluid”, the “white

matter” and the “grey matter” regions, using again three different Gaussian laws.

4. VALIDATION

4.1. SPECT data acquisition and reconstruction

Cerebral blood flow studies were performed in this patient using **"Tc-ECD (Ethylene Cys-

teinate Dimer; Neurolite, DuPont; average dose: 34.2 MBq) and SPECT imaging. Acquisition

was initiated approximately 45 minutes post intravenous injection of the radiopharmaceutical.
The SPECT images were acquired with a triple-head 7-camera (Picker Prism, Marconi Irix,

Cleveland, OH) equipped with low-energy, high-resolution parallel-holes collimators. 90 projec-

!Cliques are subsets of sites which are mutual neighbors [32].
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tions of 50 seconds each were obtained on 128 x 128 x IV voxels with 1.85 mm isotropic voxels
and N € [69,103].

Two simultaneous acquisition windows were used, centered on 120 KeV and 140 KeV, both
with a 15% width; the first one is used for Compton scattering correction (i.e., the Jaszczak
method [34]), subtracting 40% of the activity in that window from that in the second, peak
window, on a pixel by pixel basis. After this first correction, the resulting projections were
filtered using a standard Butterworth filter (order of 8, cut off frequency of 0.39 cm~!). This
was followed by attenuation correction using a modified Chang algorithm (non-iterative). The
maximum likelihood expectation maximization (ML-EM) reconstruction algorithm is then used

to reconstruct projection data. It converges in approximately 16 iterations.

4.2. MRI data acquisition

The MRI images were acquired on a Siemens Magnetom Avanto 1.5T scanner using a 3D-FISP
with a radial trajectory in k-space. It uses of a non-selective excitation. The scanning parameters
are TR=9.2 ms, TE=22 ms with IV slices of 512x 512 voxels with voxel dimensions of 0.5x0.5x 1.0
mm3, and N € [130,150]. These 3D MRI images were further processed to isolate the brain from
other tissues, using the brain extraction tool (BET) [35] of MRIcro® by adjusting BET’s fractional

intensity threshold.

4.3. Validation protocol on phantoms

Two phantoms were considered in order to validate the accuracy of our SPECT images restoration

method:

e The Hoffman 3D Brain Phantom was scanned on both systems containing 148 MBq of
activity. The phantom was positioned so that the slices within the phantom would match
as well as possible by using the MR scout image to set the SPECT field of view to start at
the top of the phantom for the studies on both systems. Phantom SPECT data included
a set of 61 slices of 128 x 128 voxels with voxel dimension of 1.85 x 1.85 x 1.85 mm3. The
Phantom MR data contained 209 slices of 256 x 256 voxels with 1 mm isotropic voxels.

Fig. 4 shows a transversal slice of the Hoffman phantom.

3The software MRIcro can be obtained at : http://www.sph.sc.edu/comd/rorden /linux.html.
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e The cylindrical phantom contains 6 different sphere sizes (whose diameters are respectively
£1: 9.5 mm, £2: 12.7 mm, #3: 15.9 mm, §4: 19.1 mm, #5: 25.4 mm, #6: 31.0 mm). In one
situation, the cylinder is filled with water and the spheres were filled with a Tc-99m solution
with an activity concentration ratio of 2.7 : 1; in another situation, the cylinder is filled
with a low activity Tc-99m solution and the spheres were filled with non radioactive water.
Phantom SPECT data included a set of 93 slices of 128 x 128 voxels with voxel dimension
of 1.85 x 1.85 x 1.85 mm?. The Phantom MR data contained 224 slices of 256 x 256 voxels

with 1 mm isotropic voxels. Fig. 5 shows a transverse slice of the phantom (Deluxe ECT)*.

(a) (b)

Figure 4: Transverse slices of the Hoffman phantom. (a) MRI. (b) SPECT.

(a) (b) (c)

Figure 5: Transverse slices of the cylindrical phantom. (a) MRI. (b) SPECT with hot spheres. (c)
SPECT with cold spheres.

Simple visual examination is an easy method for evaluation of the restorative power of a
technique, but it is obviously an insufficient approach. A better evaluation approach consists

in computing a performance measure based on the improvement in signal-to-noise ratio (ISNR),

“http://guillemet.org/irene/equipe4/fantomes.html.
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expressed in decibels (dB), using both the degraded phantom, the ground truth (or the original
undegraded image given by the MRI image), and the restored phantom images. The ISNR is
defined by,

Iom' -1 e 2
ISNR = 10log <M> (7)

||Iom' - Ires||2

where 1.4 is a given degraded phantom image, I,,; is the corresponding original (ground truth)
phantom image and I,.s is the restored phantom image. Obviously, this metric can only be
used when the knowledge of the original image; in our case this will be given from the MRI
phantom and the knowledge of the radioactivity concentration within each sub-compartment of
the considered phantom.

In addition, restored images are also evaluated by the specific evaluation criteria proposed in
[36] [37], based on the estimation of the four following measures:

(i) The global contrast [36] of the image, defined by C = (1 —mwm/Mam ), where myn and
mem are the means of the pixel value in the “white matter” and “grey matter” areas respectively.

(ii) The local contrast of the image [37], defined by Cr, = (R; — B;)/Bj, where R; represents
the mean grey level value inside the i*" sphere and Bj represents the mean grey level value
outside the i*" sphere (in a circle centered around the sphere and whose radius D is half the
distance from one sphere center to the next in the image.)

(iii) The image mottle My in the “white matter” region [36], defined by Mwm = owm/Mwm,
where owy 1S the standard deviation of pixel values in this area.

(iv) The image mottle Mgy in the “grey matter” region [36], defined by Mam = 0am/Mam,
where ogy is the standard deviation of pixel values in this area.

These two parameters My and Mgy allow to measure the amplification of the noise and/or
measure the presence of undesirable artifacts that can be created by the restoration procedure in
a uniform region of the SPECT volume. Due to the difference of proportion of pixels belonging
to each brain anatomical tissue, we consider the total mottle measure given by M = pwm Mwwm +
pPemMeam, with pwwn and pewm designating the proportion of pixel belonging to the “white matter”
and “gray matter” area respectively. A reliable SPECT image method restoration enhances then
the image contrast with little increase in the mottle. Inversely, for a given maximal mottle

measure, we can measure if the contrast enhancement is significantly increased [36].
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4.4. Comparison with a supervised Metz restoration filter

We have compared our blind and unsupervised deconvolution approach with a classical decon-
volution technique using the Metz filter [38]. The Metz filter is a supervised deconvolution
(restoration) procedure which assumes the knowledge of the point spread function (PSF) of the
imaging system. The filter is made up of the product of an inverse filter and a low pass filter.
This filter allows to deconvolve the SPECT image while attenuating very high frequencies (i.e.,

artifacts which could be induced by the inverse filtering) [38].

5. EXPERIMENTAL RESULTS

5.1. Clinical data

Restoration with clinical data were performed on thirty pairs of MR and SPECT images from
different epileptic patients. Each SPECT data set contained N slices of 128 x 128 voxels with
voxel dimension of 1.85 x 1.85 x 1.85 mm?, and N € [69,103]. MRI data sets contained M slices
of 512 x 512 voxels with voxel dimension of 0.5 x 0.5 x 1.0 mm? and M € [130,150]. In this
section, a few examples taken from that group will be presented.

Isolation of the brain (in MRI) from other tissues have been made off-line and not during
the registration and restoration steps. BET’s fractional intensity threshold is fixed to 0.50 in our

application. This value has been chosen empirically after a set of tests.

(b) () @

(a)

Figure 6: Examples of brain extraction for different BET’s fractional intensity threshold. (a): Cross-
section of a human brain MRI. (b), (c), (d): Cross-section of the human brain isolated for different
values for the BET’s fractional intensity thresholds 0.55, 0.50, 0.45 respectively.

Fig. 6 shows examples of brain extraction for different BET’s fractional intensity thresholds.

An experimentation was then conducted in order to estimate the PSF of our SPECT imaging
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FWHM,(mm) | FWHM,(mm) | FWHM,(mm) | o, | oy | 0.
vialy 9.50 9.05 11.00 4.03 | 3.84 | 4.67
vialy 9.40 8.90 10.00 3.99 | 3.77 | 4.24

Table 1: FWHM and o along the direction z, y, z for the two vials

system. To this end, a cylindrical phantom, filled with water and containing two very thin vials,
filled with a Tc-99m solution (with an activity concentration of 173.9 and 148.0 MBq respectively)
was constructed. Two PSFs, at two distances of the center of the cylindrical phantom, are
generated from these radioactive source points from our SPECT imaging system. The most
active vial is at the exact center of the cylindric phantom, and the other is 8 cm "off-axis".

Table 1 lists the full width at half maximum (FWHM) and the o of the (assumed to be)
Gaussian PSF along the direction z,y,2z. The values of Table 1 are obtained by averaging over
profiles along different directions. This table allows to observe that these two FWHM are nearly
equals and thus that the blurring function is nearly invariant over a volume corresponding to a
human brain volume. Consequently, our NAS-RIF model, which assumes a spatially-invariant
blurring function is also justified.

We recall that the Metz filter has two parameter to be adjusted, FWHM and p (which is the
order of the filter). In order to take into account the uncertainty of the measure of the FWHM
of the PSF, we have simulated values around the ones estimated in Table 1 (namely 6.90, 7.88,
8.87, 10.84, 11.82, 12.81, 13.79 and 14.78 mm for FWHM) and several values for p (namely, 10,
20, 30, 40, 50, 70 and 80) for a total of 56 combinations of both parameters and we have taken
the best ISNR value amongst these couples of parameters.

Fig. 7 shows the variation in ISNR of the processed phantom images w.r.t. the observations
for a range of FWHM parameter and for the best value of p. By examining the ISNR for different
values of FWHM, we notice that the optimal restoration value is for FWHM=9.85 mm, p = 40
corresponding to ISNR= 0.42 dB.

5.2. Registration and segmentation

Figure 8 shows original and segmented MRI cross-sections of human brain. Figure 9 shows

example of registration of the MR volume with the SPECT volume (using MI registration method
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Evolution of ISNR for several values of parameter FWHM

0.45 -

0.35 -

0.25 -

Improvement of the Signal-to-Noise Ratio (dBs)

0.15 -

L L L L L L )
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
full width at half maximum (FWHM)

Figure 7: ISNR as a function of the parameter FW HM for the SPECT Hoffman phantom.

(d) (e) (f)

Figure 8: FEzamples of segmentation of human brain MR wvolume. (a)(b)(c): Original MRI cross-
sections. (d)(e)(f): Unsupervised 3D Markovian segmentations.
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(d) (e) (f)

Figure 9: Ezamples of registration of the MR volume to the SPECT volume (using registration method
described in Section 3.1). (a)(b)(c): Azial, sagittal, and coronal view of a SPECT volume. (d)(e)(f):
Axial, sagittal, and coronal view of a registered MR volume.
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Restored images Degraded images
with Jy(u) | Metz filter | without Jy(u)
Contrast C¢ 37.3 30.4 24.3 20.0

Mottle M 14.1 13.0 12.1 12.1

Table 2: The global contrast and total mottle (expressed in %) obtained from respectively the
restored image with and without Jy(u), the Metz filter, and the degraded images, that are the
original real SPECT images.

Phantoms Restored images Degraded
with Jy(u) Metz filter without Jy(u) images

Coc | M |ISNR| Cqg | M |ISNR| Cg | M |ISNR| Cg | M

Hoffman 30.4 | 25.2 0.7 23.0 | 20.1 0.4 19.2 | 17.8 0.3 18.2 | 17,4

Cold spheres | 28.2 | 36.4 0.7 20.7 | 32.3 0.4 19.5 | 26.5 0.2 17.0 | 26.0

Hot spheres | 27.8 | 38.7 0.7 20.1 | 33.1 0.4 19.0 | 274 0.2 16.3 | 26.4

Table 3: The global contrast C and the mottle M (expressed in %) and the improvement signal-
to-noise ratio ISNR (expressed in dB) obtained from respectively the restored image with and
without Jy(u), the Metz filter, and the degraded images that are the original phantom SPECT.

described in Section 3.1).

5.3. Quantitative results

Average contrast and total mottle were first quantified on a set of (human brain) SPECT degraded
and restored images (with and without our anatomical-based regularization term J4(u)) and
compared to the Metz filter. The results are shown in Table 2. Our proposed algorithm with
Jy(u) allows to increase the global contrast by 1.87 and the mottle by a factor of 1.17. The Metz
filter allows to increase the global contrast by 1.52 and the mottle by a (somewhat similar) factor
of 1.08.

On SPECT phantom, the results are now shown in Table 3 and give similar results. When
compared with a classical restoration approach using a Metz filter, our method thus performs
better, in terms of signal-to-noise ratio. The increase of the mottle with J4 is a little price

to pay given the gain in global contrast, ISNR, and local contrast measures, which from a
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Cold Sphere; 1 2 3 4 5 6

Cr (with partially incorrect anatomic information) || 22.7 | 20.0 | 17.3 | 14.6 | 10.6 | 5.6
Cpr, (with correct anatomic information) 233|195 (159|148 | 94 | 6.9

Table 4: Local contrast Cy, (expressed in %) with and without correct anatomic information
obtained from the restored image with Jy(u)

Restored images Degraded
Cold Sphere;

with Jy(u) | Metz filter | without Jy(u) | image

Cr Cr Cr Cr

1 23.3 17.2 16.1 14.4

2 19.5 16.7 14.9 12.1

3 15.9 12.3 11.2 9.3

4 14.8 10.4 9.0 7.8

) 9.4 7.1 6.0 4.1

6 6.9 4.6 3.1 2.1

Table 5: The local contrast Cr, (expressed in %) with correct anatomic side information obtained
from respectively the restored image with and without Jy(u), the Metz filter, and the degraded
image that are the original phantom SPECT.

clinical perspective ensures better detection of focal anomalies, a task at which SPECT is usually
notoriously poor.

SPECT image with cold spheres were also restored using partially incorrect anatomic infor-
mation (i.e., cylindrical phantom MRI with 5 different sphere sizes instead of 6; one segmented
sphere was removed in the MRI segmented image). Table 4 shows that the local contrast mea-
sured on this restored SPECT image (with our anatomical-based regularization term Jy(u))
remains similar with local contrast obtained with correct anatomic information. This test shows
that the restored image is constrained (or guided) by our prior knowledge but not wrongly biased
by this information.

In this experiment, the "the support constraint” energy term, acting as a likelihood energy

term, allows to counterbalance the locally wrong information given by the prior energy term

J4(u)
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Local contrast was quantified on individual spheres of SPECT degraded and restored images
(with and without our anatomical-based regularization term Jy(u)) and compared to the Metz
filter. Table 5 shows that our proposed algorithm with J(u) allows to increase in average the

local contrast by 2.10. The Metz filter allows to increase in average the local contrast by 1.53.

5.4. Example of restoration

Figure 11 present example of brain SPECT volumes restoration obtained with our restoration
method. The restoration of a whole brain converges to a very good estimate of the solution
without a priori information about the PSF and allows to noticeably improve the resolution of
the original SPECT volume. This restoration could allow efficient detection of small, localized
singularities associated with different types of lesion (tumors, epileptogenic foci, etc.) that often

are not clearly visible in the original blurred image.

(a) (b) (c) (d)

Figure 10: Ezamples of different restoration results using different support. (a): Axzial view of brain
SPECT wvolume. (b)(c)(d): different restoration results given by our anatomical constraint version of
the NAS-RIF algorithm using different support given in Fig.6

One can easily notice that this SPECT volume is less noisy and less blurred than the clinical
human brain SPECT volumes previously presented and processed. This is due to several factors,
such as different radioactivity concentrations within the different, uniform regions of this SPECT
phantom, a longer acquisition time, the complete absence of motion of this simulated brain during
SPECT acquisition (which is only rarely achieved with patients), reduced attenuation, etc. This
actually suggests that improvements in the signal-to-noise ratio obtained with our method on

real brain images should be greater than 0.72 dB.
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(b)

(d) (f)

(2) (h) (i)

Figure 11: Ezamples of deconvolutions obtained by our method and Metz filter on cross-sectional slices
from SPECT images. (a)(b) and (c): Original SPECT cross-sectional phantom images. (d)(e) and (f):
deconvolution result with Metz filter.(g)(h) and (i): deconvolution result with our method.
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5.5. Discussion

Fig.10 shows examples of different restoration results of our method using different value of the
BET’s fractional intensity threshold (giving different isolation of the brain from other tissues
(see Fig.6)). Our restoration procedure is not very sensitive to this threshold value when it is
visually set by an experimented user (for instance the value of contrast is stationary when the
threshold goes from 0.45 to 0.55). Nevertheless, this parameter was easily set to 0.50 once and
for all the thirty pairs of MR images and seems to be optimal in all tested cases. This threshold
is easy to set visually.

The PSF estimated by our method (in fact, the Fourier inverse of our NAS-RIF inverse filter)
along the direction z,y and z can be approximated by a Gaussian distribution with standard
deviations equal to 3.58, 3.10 and 3.31 along the x, y and z axes (this corresponds to 8.45, 7.31,
and 7.78 mm FWHM respectively). When we compare this PSF with the one experimentally
used with the Metz filter, we can note the similarity between these two results.

Our method will work best with agents showing a widespread brain distribution and well
delineated grey and white matters such as observed with blood flow tracers (99mTc labeled
HMPAO or ECD).

The computational time of our technique takes approximatively 6.33 minutes against 0.24
minutes for the Metz filter on a 2.0 GHz PC workstation running Linux. Our method is compu-
tationally demanding but recall that our method is blind and does not require any parameters
of the PSF function.

Among the disadvantages of our method, we can cite its computational cost due to its iterative
nature and the need of an additional MRI scan. Also, the accuracy of the registration procedure

is crucial for the final restoration result.

6. CONCLUSION

In this paper, we have presented a robust, post-reconstruction restoration method of 3D SPECT
images. This method improves the resolution of human brain 3D SPECT images and should
thus be helpful to physicians interpreting such studies. Our approach takes advantage of the

anatomical and geometrical information contained in the MRI study of each subject. The pro-
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posed constraint term allows both stabilization of the inverse solution of the NAS-RIF procedure

by prevention of noise amplification and the generation of a better constraint on the solution of

our restoration problem. In the regularization framework, this term allows smooth regions to be

reconstructed in the SPECT image, where such homogeneous anatomical regions are found in

the high resolution MRI images of the patient, after those have been registered to the subject’s

SPECT volume. This method has been tested on a number of SPECT /MR pairs, demonstrating

its efficiency and robustness. This 3D blind restoration technique is completely data driven, and

could be implemented to automatically process massive numbers of 3D SPECT studies.
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