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Abstract

Dynamic texture (DT) segmentation is the problem of

clustering into groups various characteristics and phenom-

ena that reproduce in both time and space, assigning a

unique label to each group or region. Though this prob-

lem is highly complex, it has recently become the focus of

considerable interest. This paper presents a simple and ef-

fective fusion framework for dynamic texture segmentation,

whose objective is to combine multiple and weak region-

based segmentation maps to get a final better segmenta-

tion result. The different label fields to be fused, are given

by a simple clustering technique applied to an input video

(based on three orthogonal planes xy, xt and yt). This

is using as features a set of values of the requantized lo-

cal binary patterns (LBP) histogram around the pixel to be

classified. Promising preliminary experimental results have

been achieved by our method on the challenging SynthDB

dataset. Compared to existing dynamic texture segmenta-

tion approaches that require estimation of parameters or

training classifiers, our method is easy to implement, sim-

ple and has few parameters.

1. Introduction

Combining texture and motion leads to a certain type

of motion pattern known as dynamic textures (DT) or tex-

ture movies [1]. Compared to the static case, the segmenta-

tion of the dynamic texture is a highly challenging problem.

This is because of the unknown spatial and temporal extend

of dynamic scenes in the real world, which include, for ex-

ample; smoke, sea waves, fire, foliage, etc [2].

In recent years, research on dynamic texture segmenta-

tion has become very popular. This research has produced

interesting and various methods. Doretto et al. [3] pro-

posed a technique to segment an image sequence into re-

gions based on their spatio-temporal statistics. It works

by modeling the spatio-temporal dynamics in each region

with Gauss-Markov models, followed by a variational opti-

mization framework to infer the model parameters as well

as the boundary of the regions. However, this method has

an assumption that the regions are constant in time and are

slowly changed related to the irradiance within each region.

Vidal et al.[4] addressed this problem based on an optical

flow estimation, followed by a generalized principal com-

ponent analysis (GPCA) step which segments a video by

clustering pixels with similar trajectories in time. Neverthe-

less, in this model, a perceptual decomposition into more

than two regions is not supported. Wattanachote et al. [5]

proposed a new semiautomatic dynamic texture segmen-

tation method based on the motion vectors derived from

Farnebäck’s 1 method [6]. A key limitation of this sys-

tem is that required the intervention of the user to choose

target objects and also to adjust the result in order to pro-

duce high-quality output. Nguyen et al. [7] presented a

new unsupervised feature selection dynamic mixture model

(FSDTM) for motion segmentation. The main advantage of

their method is that does not require knowledge of any class

labels. However, in this work the EM algorithm is required

to maximize the data log-likelihood and also to optimize

the parameters. In a major advance, Teney et al. [8] com-

bined a filter-based motion features with a supervised learn-

ing approach. Recently, deep learning methods have been

successfully applied to dynamic texture segmentation due

to the immense effectiveness of convnets. In particular, a

convolutional neural networks (CNNs) applied on three or-

thogonal planes xy, xt and yt, is proposed by Andrearczyk

et al. [9]. The main weakness in their study is that the

training of independent CNNs on three orthogonal planes,

and the combining of their outputs makes the process more

computationally complex.

Motivated by the aforementioned observations, we intro-

1An algorithm for estimating dense optical flow based on modeling the

neighborhoods of each pixel by quadratic polynomials.



duce a new fusion model for dynamic texture segmentation.

Our model aims to combine multiple and weak segmen-

tation results to achieve a more reliable and final refined

segmentation. These initial segmentation results are esti-

mated from different slices (i.e., frames) Also, to overcome

the drawbacks of previous techniques we propose a simple

energy-minimization model. This energy function is orig-

inated from the global consistency error (GCE). The GCE

criterion is a perceptual measure which takes into account

the inherent multiscale nature of an image segmentation by

measuring the level of refinement existing between two spa-

tial partitions. In addition, to optimize our energy model,

we propose a modified local optimization procedure derived

from the iterative conditional modes (ICM) algorithm.

2. Proposed Method

The method described here is unsupervised, simple, and

performed through five steps. In the initial stage of the pro-

cess, a set of frames is generated by slicing the dynamic

texture data (i.e. video). During the second step, a feature

extraction process is realized and built for each frame. In the

third step, a different dimensionality reduction based on dif-

ferent seeds, is applied over the extracted histogram related

to each pixel. Then, a set of initial segmentations is gener-

ated by a clustering technique. As soon as these steps have

been carried out, in the fourth step, a fusion scheme is done

through the set of segmentations and iteratively optimized

by a deterministic algorithm. The high-level overview of

our method is shown in Fig. 1.

2.1. Slicing the Dynamic Texture Data

To take advantage of the complementarity of the three or-

thogonal planes on the input video sequence V , we perform

a simple slicing task. Firstly, in the temporal xt plane, we

generate h slices (i.e., frames), equally spaced on the y axis.

In particular, a slice of the xt plane represents the evolution

of a row of pixels over time along the video. Secondly, in

the spatial xy plane, we simply generate w slices equally

spaced in the temporal axis t from V . And thirdly, in the

temporal yt plane, we generate m slices, equally spaced on

the x axis. Explicitly, a slice of the yt plane represents the

evolution of a column of pixels over time along the video se-

quence. Finally, after this slicing step, we obtain h×w×m

frames separated into three sets.

2.2. LBP Representation

To describe texture more effectively, we apply the local

binary pattern (LBP) operator over each generated frame.

The LBP operator aims to represent statistics of micro pat-

terns contained in an image (i.e., frame in our case) by en-

coding the difference between the pixel value of the center

point and those of its neighbors [10]. Denote as F a gray

frame and let qc be the value of the center pixel c of a local

neighborhood. Let qp (p = 0, ..., P − 1) be the values of

P equally spaced pixels on a circle of radius R that form

a circularly symmetric set of neighbors. If the coordinates

of qc are (0, 0), then the coordinates of qp are defined by

(R sin(2πp
P

), R cos(2πp
P

)). In particular, a bilinear interpo-

lation is used to estimate the values of neighbors which do

not fall exactly in the center of a pixel. The LBP operator

on this pixel (c) is then given by:

LBPP,R =

P−1
∑

p=0

s(qs − qc)2
p, s(x) =

{

1 , x ≥ 0

0 , x < 0
(1)

2.3. Generation of the Segmentation Ensemble

Once the LBP representation step is performed, we

project all pixels of each LBP-frame onto the xy plane.

Then, at each frame, we compute around each pixel to be

estimated a local requantized LBP histogram (on an over-

lapping squared fixed-size Nw = 7 neighborhood). More-

over, for each pixel pi(x,y) we estimate a high-dimensional

histogram by concatenating all local histograms related to

the same pixel at each time t. In addition, we execute a di-

mensionality reduction algorithm on the high-dimensional

histogram with different seeds. We adopt this choice to re-

duce the noise or irrelevant information of the data, and also

to achieve more variability. Then, we pass the various low-

dimensional histograms2(related to the different seeds) to

the clustering algorithm to generate groups. At this point,

we resort to the useful k-means-based clustering technique

[11]. We have adopted this choice to ensure a reduced com-

putational time and cost for this important step.

2.4. Fusion Based on The Global Consistency Error
Criterion

After the generation of the segmentation set has been

done, we can then combine all these weak segmentations

based on a new criterion called the global consistency error

(GCE).

2.4.1 Global Consistency Error Criterion

This criterion is derived from the so-called local refinement

error (LRE) which measures the degree of refinement be-

tween two segmentations [12]. In this sense, segmenta-

tions are considered to be consistent, since they could repre-

sent the same segmented image at different scales (or level

of details) [13] [14]. Denote as n the number of pixels

within the frame F and let Φµ = {s1µ, s
2
µ, . . . , s

nbµ
µ } &

Φν = {s1ν , s
2
ν , . . . , s

nbν
ν } be, two segmentation results of

the same frame to be compared, nbµ being the number of

2The size of the final feature vector is 20 times smaller than the size of

the original high-dimensional vector.
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Figure 1. Proposed system overview. (a) Input video. (b) Slicing step . (c) LBP representation. (d) Projection of LBP frames on the xy

plan. (e) Feature extraction and dimensionality reduction. (f) Clustering with k-means. (f) Final combined result.

segments in Φµ and nbν the number of segments in Φν . Let

now pi be a particular pixel and the couple (s<pi>
µ

,s<pi>
ν

)

be the two segments including this pixel, respectively in Φµ

and Φν . The LRE on this pixel pi is the defined as follows:

LRE(sµ, sν, pi) =
|s<pi>

µ
\s<pi>

ν
|

|s<pi>
µ
|

(2)

where |X | denotes the cardinality of the set of pixels X and

\ represents the algebraic operator of difference. Particu-

larly, a value of 1 means that the two regions overlap, in an

inconsistent manner, on the contrary, an error of 0 expresses

that the pixel is practically included in the refinement area

[15]. A great way of forcing all local refinement to be in the

same direction is to combine the LRE. By doing so, every

pixel pi must be computed twice, once in each sense, and

in fact gives as result the so-called global consistency error

(GCE):

GCE⋆(Φµ,Φν) =

1

2n

{

n
∑

i=1

LRE(sµ, sν, pi) +

n
∑

i=1

LRE(sν , sµ, pi)

}

(3)

The GCE⋆ value belongs in the interval of [0, 1]. On the one

hand, a value of 0 expresses a maximum similarity between

the two segmentationsΦµ. Φν . On the other hand, the value

of 1 represents a bad match or correspondence between the

two segmentations to be compared.

Algorithm 1 Fusion algorithm

Mathematical notation:
GCE

⋆
Mean GCE⋆

{Φk}k≤J Set of J segmentations to be fused

{bj} Set of superpixels ∈ {Φk}k≤J

E Set of region labels in {Φk}k≤J

Tmax Maximal number of iterations

Φbest Fusion segmentation result

Input: {Φk}k≤J

Output: Φbest

A. Initialization:

1: Φ
[0]
I = argminΦ∈{Φk}k≤J

GCE⋆(Φ, {Φk}k≤J )
B. Steepest Local Energy Descent:

2: while p < Tmax do

3: for each bj superpixel ∈ {Φk}k≤J do

4: • Draw a new label x according to the uniform

distribution in the set E
5: • Let Φ

[p],new

I the new segmentation map including

bj with the region label x

6: • GCE⋆
new =GCE⋆ (Φ

[p],new

I , {Φk}k≤J)

7: if GCE⋆
new < GCE⋆ (Φ

[p]
I , {Φk}k≤J) then

8: • GCE⋆ = GCE⋆
new

9: • Φ
[p]
I = Φ

[p],new

I

10: • Φbest = Φ
[p]
I

11: end if

12: end for

13: p←p+ 1
14: end while
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Figure 2. Examples of segmentation results obtained by our proposed method of three videos (with 3 labels) from the SynthDB dataset

[22] compared to other algorithms.

2.4.2 Fusion

Let us assume now that {Φk}k≤J = {Φ1,Φ2, . . . ,ΦJ} de-

notes the ensemble of J different segmentations to be com-

bined. Note that J is equals to 3K , where K represents the

number of segmentations generated from each set of frames

(see step (f) in Fig. 1). As stated in the section 1, our

goal aim is to obtain a final improved segmentation result

Φ̂ for the video sequence V . To find this refined segmen-

tation result which represents a compromise or a consensus

between the segmentations, an energy-based model is then

built. Starting from an initial segmentation, this model aims

to generate iteratively a segmentation solution which is as

close as possible (with the GCE⋆ considered distance) to all

the other segmentations {Φk}k≤J . In this framework, if Θn

designates the set of all possible segmentations using n pix-

els, the consensus segmentation Φ̂GCE
⋆ (optimal in the GCE⋆

sense) is then straightforwardly defined as the minimizer of

the GCE
⋆

function:

Φ̂GCE
⋆ = arg min

Φ∈Θn

GCE
⋆(

Φ, {Φk}k≤J

)

(4)

where Φ represents a segmentation that belongs the ensem-

ble of all possible segmentations using n pixels. Our con-

sensus model is formulated as a global optimization prob-

lem incorporating a nonlinear objective function. To min-

imize this energy function [see Eq.(4)], approximation ap-

proaches based on different optimization algorithms such

as the exploration/selection/estimation (ESE) [16], the ge-

netic algorithm or the simulated annealing [17] can be used.

These algorithms are guaranteed to find the optimal solu-

tion, but with the drawback of a huge computational time.

Another alternative adopted in this work is a semi-local op-

timization strategy based on the iterated conditional modes

(ICM) method proposed by Besag [18] (i.e.; a Gauss-Seidel

relaxation), where label of each region are updated one at

a time [19]. In our case, this algorithm turned out to be

both easy to implement, fast and efficient in terms of con-

vergence properties. The different steps of the optimization

process are summarized in Algorithm 1.

3. Experiments

We evaluate our method quantitatively on the synthetic

video texture database (SynthDB) [22]. The SynthDB

dataset 3 contains 299 8-bit grayscale video with the dimen-

sion of 160 × 110 × 60. Video sequences are split into

three groups (99 videos with 2 labels, 100 videos with 3 la-

bels, and 100 videos with 4 labels), and a common ground

truth template is associated with each group. This dataset

is very challenging, first because videos are grayscale, and

also by the fact that textures exhibit very similar static ap-



Table 1. Comparison of the proposed method with other methods on the SynthDB dataset (PR index, higher is better).

ALGORITHMS

PERFORMANCE (Avg. PR)

99 videos 100 videos 100 videos

2 labels 3 labels 4 labels

GPCA [4] in [21] 0.515 0.477 0.526

DTM [22] 0.907 0.847 0.859

Color (Unsupervised) [8] N/A 0.599 N/A

Color + motion (Unsupervised) [8] N/A 0.727 N/A

Color + motion (Learned, logistic regression) [8] N/A 0.771 N/A

Color+mouvment (Unsupervised) [8] 0.7113 0.608 0.612

Color+HoME+mouvment (Unsupervised) [8] 0.863 0.795 0.744

Baseline Init. (in [2]) 0.600 0.684 0.704

Chen et al. [2] 0.924 0.884 0.855

-Proposed method- 0.953 0.855 0.796

Input video

Ground truth

Segmentation result

Contour

Figure 3. Example of segmentation result of a video with 4 labels

from the SynthDB dataset [22].

pearance. Video segmentation performance is measured by

the probabilistic rand (PR) index [20], which is widely used

for evaluating the performances of related tasks. A score

of one indicates a good result, otherwise, a score of zero

indicates a bad segmentation. Table 1 shows that the re-

sult achieved by our unsupervised method outperforms to

the state-of-the-art methods although it is not required any

specific initialization step. For example, over the set of 99

videos (two labels) we obtain a good performance with an

average PR equals to 0.953. Additionally, in Fig. 2, we

present a qualitative comparison with other methods; lay-

ered dynamic textures (LDT)[23], dynamic texture model

(DTM) [22], unsupervised and supervised (based learning

metric) approaches proposed in [8]. The result of the pro-

posed method, as shown in the sixth column, is clearly bet-

ter than that of other methods. Also, in Fig. 3 we show a

segmentation result of a video with 4 labels (or regions). To

sum up, our method is simple, efficient and clearly has an

advantage over complex, computationally demanding video

segmentation models existing in the literature. Finally, it

is worth mentioning that improvements can be made effi-

ciently in our model by combining different features or us-

ing another fusion criteria better than the GCE.

4. Conclusion

A new approach for video segmentation with dynamic

textures is proposed in this paper. Our method combine

(based on a new geometric criterion) multiple and weak

3The synthetic video texture database is publicly accessible via this

link: http://www.svcl.ucsd.edu/projects/motiondytex/



region-based segmentation maps to get a final better seg-

mentation result. Experiments show that our results are

comparable and even improve on state of the art methods

using unsupervised and supervised strategy. Further stud-

ies, which take color video into account, will need to be un-

dertaken. By doing so, future work will concentrate on the

idea of combining different types of features with the local

binary pattern (LBP) to more represent the color dynamic

texture.
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[6] G. Farnebäk. Two-frame motion estimation based on poly-

nomial expansion. In Proceedings of the Scandinavian Con-

ference on Image Analysis, pages 363–370, 2003.

[7] T. M. Nguyen, and Q. J. Wu. An unsupervised feature se-

lection dynamic mixture model for motion segmentation.

IEEE Transactions on Image Processing, 23 (3):1210–

1225, 2014.

[8] D. Teney, M. Brown, D. Kit, and P. Hall. Learning similarity

metrics for dynamic scene segmentation. In Proceedings of

the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2084–2093, 2015.

[9] V. Andrearczyk, and P. F. Whelan. Convolutional Neural

Network on Three Orthogonal Planes for Dynamic Texture

Classification.Pattern Recognition, 76:36–49, 2018.
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