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Abstract

This paper presents a novel region-based approach for detecting occlusion
between two consecutive frames. Based on a generalization of Marr and
Poggio’s uniqueness assumption, the explicit goal of our method is to reduce
the number of false positives while optimizing the hit rate. To do so, our
method relies on a fusion procedure that blends together two segmentation
maps: one pre-estimated occlusion binary map and one color segmentation
map. While the occlusion map is obtained after a simple thresholding proce-
dure, the color segmentation map is obtained with an unsupervised Marko-
vian approach. Assuming that the color segmentation regions exhibit more
precise edges, the occlusion areas are iteratively modified to fit the color-
region shapes. Since our method has been entirely implemented on a parallel
architecture (a Graphics Processor Unit), its processing times are remarkably
low. Our method is compared with other occlusion approaches both quanti-
tatively and qualitatively on scenes that represent different challenges.

1 Introduction
The goal of most optical flow and stereovision algorithms is to estimate a matching func-
tion (be it a disparity map [7] or an optical flow field [10]) between the pixels of two (or
more) images. Due to motion or to a parallax effect between a left and a right image,
most scenes contains areas that are visible in only one frame. Generally speaking, these
half-occluded areas are either newly exposed or newly occluded [18, 19]. Since these ar-
eas have no direct correspondence in the second image, they are a classical source of error
for most motion or depth estimation algorithm.

While many authors have considered occlusion as a source of noise that is to be fought
with spatial smoothing [7], others have explicitly included an occlusion criterion to the
energy function to be minimized [2, 4, 6, 8, 12, 13]. During the past few years, a variety
of occlusion metrics have been proposed among which the one Egnal and Wildes [9] call
the left-right-check (LRC) has drew a lot of attention. This approach stipulates that the
matching function between the left and the right image shall differ only by a sign with the
right-left matching function. In this context, every pixel for which the difference between
the left-right match and the righ-left match is above a given threshold are considered
as being occluded. Although the LRC can be useful within a global energy function
[5, 13, 14], many have pinpointed that the LRC is error-prone in noisy areas [19] and in
areas having little or no texture [8, 9]. Others have also argued that estimating the forward
and the backward matching functions can be prohibitive time wise.



Another idea that enjoys a great deal of popularity is Marr-Poggio’s [16] uniqueness
assumption. This assumption stipulates that there shall always be a one-to-one correspon-
dence between the pixels of the two frames. Kolmogorov and Zabih [20] incorporated
that assumption to their graph-cut algorithm and stipulated that each pixel in one image
shall correspond to at most one pixel in the other image. A pixel with no match would
then be considered as being occluded. A variation of that approach has been proposed by
Sun et al. [12] for which a non-occluded pixel must have at least one match. Although the
difference between the two approaches is conceptually thin, Sun et al. [12] demonstrated
that their method performs better in scenes containing slanted surfaces. The uniqueness
assumption has also been used by Zitnick and Kanade [15] who proposed a cooperative
algorithm that iteratively enforce the uniqueness constraint within a local 3D array. In
their method, occlusion is identified by thresholding the left-right correspondence error
map obtained after their optimizer has converged. More recently, Ince and Konrad [19]
proposed a generalization of the uniqueness constraint : instead of counting the number
of matches for each pixel independently, they count the number of matches within a given
local neighborhood. As mentioned by the authors, this simple but decisive modification
makes the metric significantly more robust to noise. The reader shall notice that Ince-
Konrad’s idea can be seen as a generalization of Egnal-Wildes’ [9] Occlusion Constraint
(OCC).

Let us also mention that some authors use the so-called Ordering constraint [6, 9, 12]
which stipulates that a point P laying to the right of a point Q in one image shall also
lay to the right of Q in the other image. Although this assumption is often true, it can be
easily violated by narrow front-ground objects (what Sun et al. [12] call the “double nail
illusion”).

In this contribution, we propose a novel occlusion detection framework based on
Marr-Poggio’s [16] uniqueness assumption. Given a matching function between two
frames, we propose a simple occlusion-detection method that works without having to
iteratively reestimate the matching function. The main objective being to provide a sim-
ple, fast and accurate algorithm. Our method is built over a fusion procedure that blends
together two label fields. The first label field is a rough occlusion map estimate obtained
after a simple thresholding procedure. Although this occlusion map is typically noisy, it
gives a good estimate of where the main occlusion areas are located. The second label
field is a region map obtained after segmenting the two input frames. Since the occlusions
are assumed to lie along objects’ silhouette, the fusion procedure encourages occlusion
areas to fit the color regions. In this way, isolated false positives are eliminated and blobby
occlusion areas are warped to fit the objects’ silhouette.

The rest of the paper is organized as follows. In Section 2, our method is presented.
The Section includes details on how the two label fields are estimated and blended to-
gether. Several experimental results are presented in Section 3 to illustrate how good
qualitatively and quantitatively our method is as compared to similar approaches. Section
4 then briefly concludes.

2 Proposed Method
The proposed method is initially fed with two frames (that we call I ref and Imat, the ref-
erence and the matching frames) and a matching function � linking the pixels of I ref to
those of Imat. The frames can be either a stereo pair or two consecutive images taken from
a video sequence. Based on � , an occlusion label field � is first estimated with a sim-



ple thresholding procedure. Although the occlusion map � is typically noisy involving
numerous false positives and false negatives (see Figure 1), it nevertheless gives a good
indication of where the major occlusion areas are located (see Section 2.1 for more details
on how � is estimated).

Tsukuba left frame

Occlusion label field (LRC) Occlusion label field (Ince−Konrad)

Color segmentation label field

Figure 1: Tsukuba left image with the color segmentation field rc and two occlusion maps
(obtained with LRC and Ince-Konrad). Red circles identifies false positives and greens
circles false negatives.

Once a rough occlusion map has been estimated, a second label field is computed.
This second field (that we call rc) is obtained after segmenting the two input frames based
on their color distribution. The two resulting fields (called rref and rmat) can be seen as
a series of regions made of pixels whose color follows a uniform distribution. The two
label fields are then merged together (rc = rref merged with rmat) in such a way that each
region of rc is uniform in the sense of I ref and Imat. As shown in Figure 1, rc fit the main
silhouettes of the scene and gives a good indication of where occlusion is likely to occur.

Once � and rc have been estimated, they are fused together in order to reduce the
number of false positive/negative and make the regions of � better fit the regions of rc.

2.1 Occlusion Detection

After thorough evaluations of many occlusion detection approaches, we came to the con-
clusion that the ones based on Marr-Poggio’s uniqueness assumption are the most ac-
curate, at least in the context of our method (in their review paper, Egnal and Wildes
[9] came to a similar conclusion). More specifically, since our implementation of Ince-
Konrad’s [19] metric outperformed every other ones we have implemented, their method
was retained to compute � , the “rough” occlusion map estimate.

The way Ince-Konrad’s approach works is simple. Lets consider Λ � �
s � s � S � the set

of pixels in the reference image I ref and ∆ � �
u � u � s � � s � , the set of matching pixels in



Imat. Based on ∆, an accumulation function M is computed

Mt � ∑
i � ∆

ζi � t (1)

where ζi � t � 1 if the euclidean distance between pixels t � S and i � ∆ is lower of equal to
D, and zero otherwise. The occlusion map � is obtained by thresholding Ms :

� s �
�

1 if Ms � τ
0 otherwise

(2)

As suggested by the authors [19], D is set to 2.

2.2 Color Segmentation

Although the color label field r can be estimated by any valid segmentation approach, we
resorted to an unsupervised statistical Markovian segmentation which classifies the color
pixels into a predetermined number of classes. The reason for this choice is twofold.
First, the segmentation method we have implemented is unsupervised since it requires no
parameter adjustment during runtime. To our opinion, this property appears as a major
advantage. Second, this segmentation method can be parallelized and implemented on
a parallel architecture such as a graphics processor unit (GPU) [17]. In this way, the
segmentation map rc can be computed in interactive time.

Let Z � �
R � I � be a pair of random fields where R � �

rs � s � S � is the label field to
be estimated and Y � ���

Ys � s � S � is an input color image (I ref or Imat). Here, R and Y are
defined on a 2D finite lattice S � �

s ��� i � j 	 � i ��
 0 � N 
�� j ��
 0 � M 
 � and can be seen as
random variables for which r and y are specific realizations. Notice that each pixel of R
are called labels and takes a value in Γ � �

1 ������ m � , where m is the number of classes.
Here, the goal is to associate the best label rs � Γ to each pixel given the observed color

image y. According to the Maximum a posteriori criteria, the optimal label field r can be
formulated as : r � argmaxr P � r � y 	 or, with the Bayes rule [3], r � argmaxr P � y � r 	 P � r 	 .
With the assumption that P � y � r 	 and P � r 	 follow a Gibbs distribution of the form P � Y � R 	 ∝
exp � U1 � Y � R 	 and P � R 	 ∝ exp � U2 � R 	 and that each random variable

�
Ys given Rs are

independent, the actual posterior PDF may be maximized by minimizing the following
functional

U � r� y 	 � ∑
s � S

U1 � rs � �ys 	 � βU2 � rs � ηs 	 (3)

where U1 is the likelihood energy function, U2 the prior energy function, β a constant, and
ηs a neighborhood centered on pixel s. In this paper, U1 is modeled with a log-Gaussian
law of the form

U1 � rs � �ys 	 ��� ln ��� 2π 	 d � 2 � Σrs � 1 � 2 	 � � �ys � �µrs 	 Σ � 1
rs
� �ys � �µrs 	

2
(4)

where
�µrs and Σrs are the mean and the variance-covariance matrix of class rs � Γ. In this

way, each class is modeled with a Normal law defined by two parameters � �µrs � Σrs 	 , which
means a grand total of 2m parameters Φ ��
�� µ1 � σ1 	��������� µm � σm 	�� for the entire model.
Since none of these parameters are known a priori, they need to be estimated. To this end,



we resort to an iterative method called Iterated Conditional Estimation (ICE) [21] which
is a stochastic and Markovian version of the well known EM algorithm.

As for U2, we use the isotropic Potts model : U2 � rs � ηs 	 � ∑t � ηs � 1 � δrs � rt ) where δrs � rt

is the Kronecker function (returns 1 if rs � xt and 0 otherwise) and ηs a second-order
neighborhood. Notice that the Potts model is a n-class generalization of the well known
two-classes Ising model.

As mentioned before, the segmentation is preformed by computing r � argmaxr P � r � y 	
or, equivalently, r � argminr U � r� y 	 . Since there is no analytical solution to those equa-
tions, we implemented the deterministic downhill-search ICM algorithm [11].

For the sake of our method, the input frames I ref and Imat are respectively segmented
into two label fields, namely rref and rmat that are then linearly combined together : rc �
rref � m � rmat. This last operation results in a label field rc whose regions are uniform
in the sense of both input images. For more details on how ICE and ICM have been
implemented, please refer to [17].

2.3 Fusion Procedure

Once � and rc have been estimated, they are fed to an iterative fusion procedure. This
procedure aims for an occlusion map ˆ� that would be locally uniform both in the sense
of color (rc) and occlusion ( � ). To this end, the fusion procedure works as an optimizer,
looking for a solution ˆ� whose corresponding energy E is minimum :

ˆ� � argmin� E � rc � � 	 (5)

� argmin� ∑
s � S

Vψs � rc
s � � s 	� (6)

where Vψs � rc
s � � s 	 is a local energy function. This energy term returns a low value

when the neighborhood (here ψs) surrounding s is uniform both in the sense of rc and
� and a large value otherwise. To measure this degree of uniformity inside the given
neighborhood ψs, two potential δ -functions are being used

Vψs � rc
s � � s 	 ��� ∑

t � ψs

δrc
t � rc

s
δ � t � � s  (7)

where ψs is a L � L window centered on pixel s and δ is the Kronecker delta function.
Thus, for a given pixel s, Vψs � rc

s � � s 	 counts the number of pixels t � ψs that are simultane-
ously in spatial region rc

s and part of occlusion class � s � 
 0 � 1 � . In this way, the occlusion
label � s � 
 0 � 1 � that occurs the most frequently within the neighborhood belonging to
the color class rc

s in ψs has the smallest energy. This procedure is illustrated in Figure 2.
As can be seen in the middle image, both pixels a and b are initially classified as being
occluded. However, when looking at every pixel t within ψa that are part of the deep-blue
uniform background in rc, we see that there is a majority of non-occluded pixels in � . In
other words, among the neighbors around pixel a that are part of class rc

s , there is a major-
ity of non-occluded pixels and thus Vψa � rc

a � occluded 	�� Vψa � rc
a � non-occluded	 . For this

reason, pixel a is assigned the non-occluded label in the resulting occlusion map ˆ� . As
for pixel b, since most of its neighbors t � ψb part of the black region in rc are occluded
pixels, b is kept occluded in ˆ� .

Since there are no analytical solutions to ˆ� � argmin � E � rc � � 	 , we again resort to
the ICM [11] algorithm whose mode (the minimum local energy for each site at each
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Figure 2: Zoom on the Tsukuba reference image. Left is label field rc obtained after
combining rref and rmat. Middle is the initial occlusion map � obtained with Ince-konrad’s
[19] method. Right is the occlusion map obtained after merging rc and � .

Proposed Algorithm

rc Color segmentation label field
Iref � Imat Two input frames�

Matching function between Iref and Imat

k The iteration step�
[k] Occlusion map after the kth iteration.

1. Occlusion Estimation�
[0] � Occlusion estimation with Ince-Konrad’s [19] method.

2. Color Segmentation
Learning the 2m Gaussian parameters with ICE
rref � rmat � segmentation of Iref and Imat with ICM
rc � rref � m � rmat

3. Fusion
k � 1

while !Convergence do
for each pixel s 	 S do

V � 0
for each pixel t 	 ψs do

V 
 0 � -= δrs � rt δ0 �  t

V 
 1 � -= δrs � rt δ1 �  t�
[k]
s
� argmini ��� 0 � 1 � V 
 i �

k � k � 1

Algorithm 1: Proposed algorithm. Here δ is the Kronecker delta and m the number of
classes (that we set to 4).

iteration) is defined by the local energy function Vψs � rs � � s 	 . Notice that when minimizing
E � rc � � 	 , each ICM iteration works in a similar way the well known K-nearest neighbor
algorithm does [3]. In our case, though, the variable K is defined as : K � Card � �

t � rc
t �

rc
s and t � ψs � 	 . The complete algorithm of our method is presented in Algo. 1.

3 Experimental Results
To validate our method, we detected occlusion on various data sets representing different
challenges. The goal of these tests is to demonstrate how stable and robust our framework
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Figure 3: Hit rate versus false positive rates obtained with four different data sets.

is with respect to other frequently-used approaches. Among the methods we have com-
pared our method with, is the left-right check (LRC) [9], the ordering constraint (ORD)
[9] and Ince-Konrad’s [19] uniqueness-based approach.

For each example presented in this section, we used a 5 � 5 neighborhood ψs, a num-
ber of m � 4 segmentation classes, and a smoothing constant β=2. Four sequences with
ground truth taken from Middlebury web page [1] have been used to test the methods. The
disparity map of each data set has been computed with a pixel-based matching strategy
implemented together with a 3 � 3 shiftable aggregation filter [7]. The data energy func-
tion [7] was minimized with the deterministic winner-take-all optimization algorithm.

Following Egnal and Wildes’ [9] methodology, we have plotted the hit rate / false
positive rate curve of every method by varying their threshold (see Figure 3). On every
graphics of Figure 3, our method appears to be more precise than the other ones we have
implemented. This is especially true for those sequences containing large textureless areas
such as Venus and Tsukuba. This can be explained by the fact that, as mentioned by Egnal
and Wildes [9], most common occlusion detection methods are error-prone in textureless
areas. In this context, using a region-based approach to eliminate isolated false positives
brings a clear advantage.

A qualitative comparison have also been made in Figure 5. To make the results ob-
jectively comparable, each method have been tuned to return an occlusion map with a
specific hit rate. In this way, every results in the second and third column of Figure 5 have
respectively a hit rate of 60%, 90%, 45%, and 90%. Although the hit rate is the same for
both approaches, the false positive rate is clearly to our method’s advantage.

As for the flowergarden sequence of Figure 6, our method produced again a signifi-
cantly lower amount of false positives. Notice that for this sequence, the matching func-
tion was computed with a pixel-based window-matching strategy [10].

Since our method depends mostly on one variable, namely ψs (the 2D neighborhood),
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Figure 4: This figure illustrates the influence the neighborhood size ψs.

we have illustrated its influence in Figure 4. As can be seen, a modification of this vari-
ables brings a smooth and predictive variation in the resulting image. As for the other vari-
ables on which our methods depends (such as the number of classes m and the smoothing
parameter β ) we noticed that a variation of their value has little or no influence on the
resulting occlusion map.

As for the implementation, since every pixel of the scene are independently processed,
we have implemented our method on a parallel architecture, namely a Graphics Processor
Unit (GPU) [17]. A GPU is a processor embedded on most graphics card nowadays avail-
able on the market which, among other things, can load, compile and execute programs
implemented with a C-like language. The key feature of GPUs is their fundamental ability
to process in parallel each pixel of the scene, making all kinds of applications much more
efficient than on traditional sequential CPUs. For example, the fusion procedure (with
ψs � 5 � 5) can process at a rate of 25 fps a scene of size 384 � 288 such as Tsukuba 1.
Also, the same color scene can be segmented in approximately 1 second or, if the Gaus-
sian parameters are reused from a previous calculation, in 0  05 second. These processing
rates outperformed by a factor of almost 100 what we obtained with a traditional CPU
implementation.

4 Conclusion
In this paper, an occlusion detection method based on the uniqueness assumption has
been proposed. The core of our method is a fusion procedure that blends together two
label fields: a pre-estimated occlusion map � and a color segmentation map rc. With
the assumption that the color regions’ silhouette are more precise than the pre-estimated

1Since there are no efficient way to access the framebuffer content to verify if the ICM algorithm has con-
verged (see part 3 of Algo 1), a predefined number of 5 ICM iterations has been used to produce the results here
presented.



Proposed methodInce−KonradGround truth

Figure 5: From top to bottom, ground truth and results obtained for Tsukuba, Sawtooth,
Venus, and Map data set. Hit rate for every results is respectively 60%, 90%, 45%, and
90%.

Flowergarden Ince−Konrad Proposed method

Figure 6: Flowergarder sequence.

occlusion areas, the occlusion map is iteratively modified to fit the color regions. In this



way, isolated false positives/negatives are filtered out resulting in better hit rate versus
false positive rate ratios. The fusion procedure is an ICM-based optimization method that
minimizes a local energy function Vψs . Since our method processes every pixel indepen-
dently, it can be implemented on a parallel architecture. A direct implementation on a
mid-end GPU have shown that our method can work in interactive time.

In the future, we intend to adapt our method to other applications that could benefit
from the blending of two label fields whose content is complementary. Among the ap-
plications that appears to us as promising is motion detection, stereovision and optical
flow.

References
[1] www.middlebury.edu/stereo.

[2] Luo A. and Burkhardt H. An intensity-based cooperative bidirectional stereo matching with simultaneous detection of
discontinuities and occlusions. Int. J. Comput. Vision, 15(3):171–188, 1995.

[3] Bishop C. Neural Networks for Pattern Recognition. Oxford University Press, 1996.

[4] Strecha C., Fransens R., and Van Gool L. A probabilistic approach to large displacement optical flow and occlusion
detection. In proc of ECCV Workshop SMVP, pages 71–82, 2004.

[5] C. Chang, S. Chatterjee, and P.R. Kube. On an analysis of static occlusion in stereo vision. In Proc. of CVPR, pages
722–723, 1991.

[6] Geiger D., Ladendorf B., and Yuille A. Occlusions and binocular stereo. Int. J. Comput. Vision, 14(3):211–226, 1995.

[7] Scharstein D., Szeliski R., and Zabih R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
In Proc. of the IEEE Workshop on Stereo and Multi-Baseline Vision, 2001.

[8] P. Fua. A parallel stereo algorithm that produces dense depth maps and preserves image features. Machine Vision and
Applications, 6:35–49, 1993.

[9] Egnal G and Wildes R.P. Detecting binocular half-occlusions: Empirical comparisons of five approaches. IEEE Trans.
Pattern Anal. Mach. Intell., 24(8):1127–1133, 2002.

[10] Barron J., Fleet D., and Beauchemin S. Performance of optical flow techniques. Int. J. Comput. Vision, 12(1):43–77,
1994.

[11] Besag J. On the statistical analysis of dirty pictures. J. Roy. Stat. Soc., 48(3):259–302, 1986.

[12] Sun J., Li Y., and Kang S.B. Symmetric stereo matching for occlusion handling. In proc. of CVPR (2), pages 399–406,
2005.

[13] Lim K., Das A., and Chong M. Estimation of occlusion and dense motion fields in a bidirectional bayesian framework.
IEEE Trans. Pattern Anal. Mach. Intell., 24(5):712–718, 2002.

[14] Alvarez L., Deriche R., Papadopoulo R., and S&#225;nchez J. Symmetrical dense optical flow estimation with occlusions
detection. In proc of ECCV, pages 721–735, 2002.

[15] Zitnick L. and Kanade T. A cooperative algorithm for stereo matching and occlusion detection. IEEE Trans. Pattern Anal.
Mach. Intell., 22(7):675–684, 2000.

[16] D. Marr and T.A. Poggio. Cooperative computation of stereo disparity. 194(4262):283–287, 1976.

[17] Jodoin P-M, St-Amour J-F, and Mignotte M. Unsupervised markovian segmentation on graphics hardware. In proc of
ICAPR (2), pages 444–454, 2005.

[18] Depommier R. and Dubois E. Motion estimation with detection of occlusion areas. In Proc. of ICASSP, pages 269–272,
1992.

[19] Ince S. and Konrad J. Geometry-based estimation of occlusions from video frame pairs. In Proc. of ICASSP, volume 2,
pages 933–936, 2005.

[20] Kolmogorov V. and Zabih R. Computing visual correspondence with occlusions via graph cuts. In Proc. of ICCV, pages
508–515, 1999.

[21] Pieczynski W. Statistical image segmentation. Machine Graphics and Vision, 1(1):261–268, 1992.


