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Abstract—In this paper, we present an original and efficient
method of human action recognition in a video sequence.
The proposed model is based on the generation and fusion
of a set of prototypes generated from different view-points
of the data cube of the video sequence. More precisely, each
prototype is generated by using a multidimensional scaling
(MDS) based nonlinear dimensionality reduction technique
both along the temporal axis but also along the spatial axis (row
and column) of the binary video sequence of 2D silhouettes.
This strategy aims at modeling each human action in a low
dimensional space, as a trajectory of points or a specific curve,
for each viewpoint of the video cube in a complementary
way. A simple K-NN classifier is then used to classify the
prototype, for a given viewpoint, associated with each action to
be recognized and then the fusion of the classification results for
each viewpoint allow us to significantly improve the recognition
rate performance. The experiments of our approach have been
conducted on the publicly available Weizmann data-set and
show the sensitivity of the proposed recognition system to each
individual viewpoint and the efficiency of our multi-viewpoint
based fusion approach compared to the best existing state-of-
the- art human action recognition methods recently proposed
in the literature.

Keywords-Human action recognition; Multi-axial reduction
of dimensionality; Gesture recognition; Multidimensional scal-
ing; FastMap; Weizmann data-set; K-Nearest Neighbor.

I. INTRODUCTION

The proliferation of video content on the web or in

everyday life makes human action recognition, one of the

key prerequisites for video analysis and understanding with

many important computer vision applications, such as video

surveillance, indexing and browsing, human-computer inter-

facing, recognition of gesture and analysis of sport events,

etc. [1], [2], [3], [4], [5], [6].

The goal of any unsupervised human recognition system

is to be able to automatically recognize low-level actions

such as running, walking, hand clapping, etc. from an input

video sequence and the main difficulty of this human motion

categorization [7] lies in representing the different types

of human motion with effective models both taking into

account the intra-class variations in appearance and size of

different individuals, and between-class variations, i.e., in

different action types with similar body shapes.

Various approaches for human action recognition have

been already proposed in the literature, and a way to classify

them into several categories may be considered depending

on the type of (e.g., static, dynamic or spatial-temporal)

features extracted from the spatial temporal information of

the video sequence and intended to model the human action

via the local or global description of the (spatial) human

body information and its (temporal) motion information [1].

Some approaches rely on local features to represent the

motion patterns and to capture local events in video. In

this way, Schuldt et al. [3] have used the spatial Harris 3D

detector. Building on the success of the histogram of gradient

(HOG) based descriptor for static images, an extension of

the SIFT descriptor to 3D was proposed in [9] as a new

local spatial-temporal descriptor for video sequences, which

was also further generalized in [7] for a quantization without

singularities based on regular polyhedrons. Jhuang et al. [4]

model each action class with a multilayer model based on the

set of spatial-temporal features extracted by the Gabor filters.

Niebles et al. [8] have proposed a hierarchical model that

can be characterized as a constellation of bags-of-features

and that is able to combine both spatial and spatial-temporal

features.

Mid-level motion features constructed from low-level op-

tical flow features can be also used as in [10].

Global temporal approaches rely on global features com-

puted on the whole time span of the action. In this context,

some authors have proposed to regard each human action

as 3D shape induced by the set of spatial silhouettes and

propose to extract a set of local and global spatial-temporal

features from this space-time shape with the generalization

of the Poisson equation [2], [11] or with a (3D) distance

transform [12]. Tseng et al. [5] have suggested to construct,

in a reduced dimensional space, a spatial and temporal

action graph which connects the different (dynamic) shape

variation of human silhouettes of a same human action. Saad

et al. [1] have proposed to use a set of spatial-temporal

kinematic features that intend to capture the representative

dynamics of the optical flow of the video sequence in the

form of its dominant kinematic modes. Each video is then

embedded into a kinematic-mode-based feature space and
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the coordinates of the video in that space are then used

for classification. Bobik and Davis [6] have exploited a

temporal image template for stored instances of views of

known actions where the value at each point is a function

of the motion properties at the corresponding spatial location

in an image sequence.

The proposed method first relies on the exploitation of

a reliable, compact and discriminative representation of the

data cube containing the sequence of binarized silhouettes.

To this end, a set of (at most three) prototypes is thus

generated by using an MDS-based dimensionality reduction

technique with respect first to the time axis but also through

the spatial (row and column) axis of the binary video

sequence of 2D silhouettes. This strategy aims at modeling

each human action in a low dimensional space, as an ordered

set (or trajectory) of a few points (or a specific curve), for

each viewpoint of the video cube in a very complementary

way and thus with a minimal loss of reliable information.

A K-nearest neighbor classifier will be used to classify an

action on each view point and a simple and intuitive fusion

technique which allows us to achieve a recognition rate

performance close to the best state-of-the-art methods.

II. METHOD

A. Description

Our method is based on three stages:

• Preprocessing

• Prototype extraction

• Classification and Fusion

B. Preprocessing

The first step of this preprocessing consists in obtaining

the binary video sequence of 2D silhouettes (indicating only

the body position) for each human action. To this end, we

have subtracted the median background from each image

of the sequence and have then used a simple thresholding

technique. Once the body silhouette extraction is achieved,

an additional step of filtering by a classical 3 × 3 median

filter is then used to remove some misclassified pixels inside

and outside the binarized body silhouettes. The last step

consists in centering the gravity center of each silhouette

inside a rectangular fixed size bounding box (Nl × Nw)

with a translation vector (cf. Fig. 1). Finally we consider

only the first Ni = 13 frames of each sequence (with a

step size variable according the class), which corresponds

approximately, for the Weizmann data-set, to the number of

frames typically occurring during a periodic cycle of human

action.

C. Prototype Extraction

This stage consists in building a set of (at most three)

prototypes or, more precisely, a set of reliable, compact and

Figure 1: Example of video sequence from the Weizmann

data-set after the preprocessing step to extract and center the

body silhouettes.

discriminative representations of the data cube containing

the sequence of binarized silhouettes. To attain this goal,

this set of prototypes are herein generated by an MDS1-

based non linear dimensionality reduction technique [14]

from different view-points of the video cube containing the

sequence of binarized silhouettes, namely

• The first viewpoint aims at reducing the dimensionality

of the image cube along the temporal axis of the video

sequence. To this end, every Ni silhouette image frames

in the Nl × Nw dimensions is converted into a N -

dimensional (N = Nl × Nw) vector in a raster scan

manner and reduced to 3 dimensions2 by the FastMap

technique [15] (which is a fast alternative to the MDS

algorithm with a linear complexity). This strategy aims

at modeling each human action in a low 3D dimensional

space, as an ordered set of Ni points or a specific curve

(possibly periodic if Ni is greater, in terms of number

of images that the considered human action cycle, cf.

Fig. 3).

• The second viewpoint aims at reducing the dimension-

ality of the image cube through the spatial (line or

column) axis of the set of 2D binarized silhouettes (cf.

Fig. 2). For example, if we consider the axis of lines,

1MDS is a dimensionality reduction technique that maps objects lying
in an original high N dimensional space to a lower dimensional space, but
does so in an attempt that the between-object distances are preserved as
well as possible. The original MDS algorithm is not appropriate for large
scale applications because it requires an entire N ×N distance matrix to
be stored in memory (with a O(N3) complexity). The FastMap [15] is a
fast alternative to the MDS algorithm with a linear complexity (O(pN))
with p, the dimensionality of the target space) and an algebraic procedure
that determines one coordinate at a time by examining a constant number
of rows of the distance matrix. In FastMap, the axis of target space are then
constructed dimension by dimension. More precisely, it implicitly assumes
that the objects are points in a p-dimensional Euclidean space and selects
a sequence of p ≤ N orthogonal axes defined by distant pairs of points
(called pivots) and computes the projection of the points onto the orthogonal
axes.
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this amounts to considering the set of Nl images which

are laterally created in this data cube. These images

are then converted into a Ni ×Nw-dimensional vector

in a raster scan manner and reduced to 3 dimensions

by the FastMap, thus generating, for this viewpoint, a

trajectory of Nl ordered points in a 3D dimensional

space2.

Figure 2: Set of two prototypes or 3D curves generated

by a MDS-based dimensionality reduction according two

viewpoints or through two axis (namely; the temporal axis

and the line axis) on a sequence of binarized silhouettes.

This multi-axial non-linear dimensionality reduction strat-

egy has several advantages. It allows us to obtain a set

of compact representations, retaining the most significant

information in each human action (by removing redundancy

in the data) in two different and complementary ways (with

a minimal loss of reliable information) while preventing, to

some extend, the classification model from over-fitting in

the training phase. In our application, this will allows us to

generate a compact and discriminative (set of) prototype(s)

which will be similar and consistent between the same action

of two different persons and is also somewhat invariant with

2In our application, experiments have shown that the use of a higher
dimensional space (greater than 3) does not allow us to provide a better
representation and generalization (without over-fitting) of the human action.

respect to variations in the speed of the actions.

Figure 3: Periodic prototype or 3D curve Modeling two

human action cycles of the SIDE class (normalized between

[0, 1] for the visualization).

We can evaluate the efficiency of the FastMap technique

in its ability to reduce the dimensionality reduction of

a sequence of binarized silhouettes in two different and

complementary ways when this is achieved according to

different axis. To this end, we can easily compute the

correlation metric [13] which is simply the correlation of

the Euclidean distance between each pairwise vectors in

the high dimensional space (let X be this vector) and

their corresponding (pairwise) Euclidean distances in the

low (3D) dimensional space (let Y be this vector). The

correlation ρ can be estimated by the following equation:

ρX,Y = corr(X,Y ) =
cov(X,Y )

σX σY
=

XtY/|X| − X̄Ȳ

σX σY
(1)

where Xt, |X|, X̄ and σX respectively represent the trans-

pose, cardinality, mean, and standard deviation of X . This

correlation factor (Pearson) will specifically quantify the

degree of linear dependence between the variables X and

Y and quantify how the FastMap technique is able to give

a low dimensional mapping in which each object is placed

such that the between-object distances (in the original high

dimensional space) are preserved as well as possible [14].

A perfect correlation ρ = 1 indicates a perfect relationship

between original data and reduced data and a correlation of

ρ = 0 indicates a total loss of information. The following

table shows the mean correlation coefficient obtained on the

Weizmann data-set for each viewpoint:

Table I shows us first that the MDS procedure is able

to preserve a large quantity of structural information of the

original data set and that the main efficient way to reduce

the dimensionality of the information contained in the video

cube consists in doing this for each image of the video
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Class Viewpoint 1 (%) Viewpoint 2 (%)

walk 83 69
run 79 68
skip 83 66
side 79 68
jack 80 68

wave1 88 64
wave2 91 63
jump 81 67

pjump 89 70
bend 80 68

Table I: Mean correlation rate in percentage for the MDS-

based dimensionality reduction with the FastMap technique

according to two viewpoints; namely the temporal axis

(viewpoint 1) and the line axis (viewpoint 2) for each human

action class.

cube commonly generated along the temporal axis direction

(viewpoint 1) compared to the line-axis direction (viewpoint

2). Nevertheless, we will see, in the following section, that

the second viewpoint generates a second prototype which is

very complementary to the first one, in terms of classification

accuracy.

D. Classification and Fusion

Let us recall that, in our application, the first and second

prototype is respectively a set of Ni and Nl ordered points

in a (reduced) 3D dimensional space.

For the first prototype, each i-th point (1≤ i≤Ni) of a test

prototype (to be classified) is used to feed a non-parametric

K-Nearest Neighbor (KNN) classifier using a 3D Euclidean

distance between each i-th point (and thus trained with the

set of i-th points of each prototype belonging to the training

set). For the first prototype, the result of these Ni KNN

classification results allows us to generate a score vector

both indicating the class and the sum (over the K-nearest

neighbors) of the number of nearest points of the prototype

(of the training set) with the most nearest points.

Our fusion procedure then consists simply in adding

the two score vectors generated by the first and second

viewpoint and to classify a test prototype by the majority

class. If there is no majority class, our recognition system

will produce a classification error.

III. EXPERIMENTAL RESULTS

To evaluate the efficiency of our human action recognition

system we validate our approach on the famous Weiz-

mann data-set [11]. This data-set contains 10 action classes

performed by 9 different human subjects. The actions in-

clude bending (bend), jumping jack (jack), jumping-forward-

on-two-legs (jump), jumping-in-place-on-two-legs (pjump),

running (run), galloping-sideways (side), skipping (skip),

walking (walk), waving-one-hand (wave1) and waving-two-

hands (wave2). There are totally 93 video sequence (180×
144, 25 fps) since some types of actions are performed twice

by some individuals. In order to validate our procedure, we

replicate the scenario proposed in [8], [9], [7], [5], [10], [12],

[11]. More precisely, for every video sequence, we perform a

leave-one-out procedure, i.e., we remove the entire sequence

from the database while other actions of the same individual

remain. Each video cube of the removed sequence is then

compared to all the remaining video cube examples in the

database and is classified, in our application, with our KNN-

based fusion procedure.

The confusion matrix for each viewpoint is shown in

Tables II and III and illustrate the different classification

results obtained with K = 1 for each class. The confusion

matrix given by our fusion procedure combining these

two viewpoints is shown in Table IV (in our application,

K = 1 allows us to obtain the best classification accuracy).

Finally, the Table V shows us the recognition rate obtained

respectively for each viewpoint and for the fusion procedure

combining these two viewpoints. In our application, the third

viewpoint according to the column axis does not allow us

to improve the recognition rate.

walk run skip jack jump pjump side wave1 wave2 bend

walk 0.89 0.11

run 0.11 0.67 0.22

skip 0.11 0.22 0.45 0.11 0.11

jack 0.67 0.33

jmup 0.78 0.11 0.11

pjump 0.11 0.78 0.11

side 0.89 0.11

wave1 0.89 0.11

wave2 0.33 0.67

bend 0.11 0.89

Table II: Confusion matrix associated to viewpoint 1.

walk run skip jack jump pjump side wave1 wave2 bend

walk 0.78 0.11 0.11

run 0.89 0.11

skip 0.22 0.67 0.11

jack 0.11 0.45 0.11 0.11 0.22

jump 0.33 0.34 0.22 0.11

pjump 0.11 0.11 0.78

side 0.11 0.89

wave1 0.22 0.66 0.22

wave2 0.11 0.11 0.78

bend 0.11 0.89

Table III: Confusion matrix associated to viewpoint 2.

walk run skip jack jump pjump side wave1 wave2 bend

walk 1.0

run 1.0

skip 0.11 0.89

jack 0.78 0.22

jump 0.78 0.11 0.11

pjump 0.11 0.89

side 1.0

wave1 1.0

wave2 0.11 0.89

bend 1.0

Table IV: Confusion matrix associated to the fusion of the

two viewpoints.
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View point 1 View point 2 Fusion
Number of K-NN K=1 K=1 K=1
Recognition rate 75.8 71.3 92.3

Table V: Table show the recognition rate of each view point

and the fusion.

IV. DISCUSSION

It can be observed (see V) that we can recognize all

types of actions existing in the data-set with very good

performance results on most of the actions except some

of them (e.g., JACK and JUMP). We can also notice that

some misclassified action classes, given by our system, are

generally and very logically in the action classes which are

physically the closest to the test class; this is the case for in-

stance of the class WAVE1 or WAVE2 which are mechanically

and visually similar to the action class JUMP or class SKIP

and RUN. These action classes are very similar between them

in the way the subjects move and bounce across the video

sequence. We can also note that the classification results

obtained by each individual viewpoint seem complementary.

We have compared the accuracy of our approach with other

state-of-the-art (recently published) methods using the leave-
one-out procedure and the Weizmann data-set [8], [9], [7],

[5], [10], [12], [11] in the Table VI.

Method Accuracy

Our method 92.3%
Fathi et al. 99.9%

Gorelick et al. 97.8%
Grundmann et al. 94.6%

Jia et al. 90.9%
Klaser et al. 84.3%

Scovanner et al. 82.6%
Niebles et al. 72.8%

Table VI: Comparison with other state-of-the-art methods

[8], [9], [7], [5], [10], [12], [11].

V. CONCLUSION

In this paper, we have presented an original and simple

human action recognition system based on a set of (two)

compact and discriminative prototype models which is sim-

ilar and consistent between the same action of two different

persons. In our application, these two prototype models are

generated from an MDS-based multi-axial non-linear dimen-

sionality reduction strategy which has several advantages. It

allows us to retain the most significant information in each

human action in two different and complementary ways and

also give a better representation of the action in low dimen-

sion, while preventing, to some extend, the prototype model-

based classification scheme from over-fitting in the training

phase. In addition of its simplicity (and speed), our method

method does not exploit a representation or spatio-temporal

characteristics of action, and is also somewhat invariant with

respect to variations in the speed of the actions. This set

of two prototypes contains rich and descriptive information

about the action performed and this is clearly demonstrated

by the success of the relatively simple classification scheme

used in our application (KNN classification and Euclidean

distance). Experimental results demonstrate that our method

can accurately recognize human actions and outperforms

some, more complex, state-of-the-art recognition methods on

a publicly available action data-set. Finally, it is also worth

mentioning that our recognition performance can also be

easily improved by using a more sophisticated and powerful

classification strategy such as the SVM classifier or a deep

neural network.
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