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Abstract 
 

This paper presents a new 3D reconstruction method  
of the scoliotic vertebrae of a spine, using two 
conventional radiographic views (postero-anterior and 
lateral), and a global prior  knowledge on the 
geometrical structure of each vertebra.  This geometrical 
knowledge is efficiently captured by a statistical 
deformable template integrating a set of admissible 
deformations, expressed by the first modes of variation 
in the Karhunen-Loeve expansion of the pathological 
deformations observed on a representative scoliotic 
vertebra population. The proposed reconstruction 
method consists in fitting the projections of this 
deformable template with the segmented contours of the 
corresponding vertebra on the two radiographic views. 
The 3D reconstruction problem is stated as the 
minimization of a cost function for each vertebra and 
solved with a gradient descent technique. The 
reconstruction of the spine is then made vertebra by 
vertebra. This 3D reconstruction method has been 
successfully tested on several biplanar radiographic 
images, yielding very promising results.   
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1. Introduction 
 

The scoliosis is a three-dimensional deformation of 
the natural curve of the spinal column, including 
rotations and vertebral deformations. In order to analyze 
3D characteristics of these deformations, which can be  
useful for the design, the evaluation and the 
improvement of orthopedic or surgical correction, 
several 3D reconstruction  methods have been  

developed.  First, we can cite the class of typical 
methods of tomodensitometric imagery’s modalities  
(e.g. X-rays, magnetic resonance) allowing to obtain 
accurate 3D information of the human body anatomy. 
However, the high level of radiations received by the 
patient, the great quantity of information to be acquired 
and processed and the cost of its methods make them 
less functional [3]. We can also cite the class of methods 
using a limited number of projections and some simple a 
priori knowledge on the geometry of the object to be 
reconstructed. These last methods are interesting but are 
widely supervised; they require to manually identify (by 
an operator) a set of point of interest (landmarks) on the 
postero-anterior (PA_0) and lateral (LAT) radiographic 
images of C1 to L5 vertebrae [3][13]. Besides, these 
aforementioned methods are not very accurate, 
especially because they do not exploit all the information 
contained in the two radiographic images (e.g. the 
contours of each vertebra) or the a priori global 
geometrical knowledge of the object to be reconstructed. 
To this end, Bayesian inference or statistical modeling is 
a convenient way of taking this a priori information into 
consideration. This paradigm, in image analysis, is quite 
popular and has been successfully applied for the 
extraction of 2D objects in an image [2], an image 
sequence [10], 3D representation of vertebra [11] or non 
rigid 3D/2D registration of the knee [4][5]. 

In this way, we propose a new statistical 3D 
reconstruction model or a new 3D/2D registration model 
for the scoliotic vertebrae from bi-planar radiographic 
images. Our approach relies on the description of each 
vertebra by a deformable template which incorporates 
(statistical) knowledge about its geometrical structure 
and its pathological variability. The deformations of this 
template are expressed by the first modes of variation in 
the Karhunen-Loeve (KL) expansion of the pathological 
deformations observed on a representative scoliotic 
vertebra population. This prototype template, along with 



the set of admissible deformations, constitute our global 
prior model that will be used in order to rightly 
constraint the ill-posed nature of our 3D reconstruction 
problem. In our application, the proposed method 
consists in fitting this template with the segmented 
contours of the corresponding vertebra on the two 
calibrated radiographic views. This matching problem 
leads to an optimization problem of a cost function, 
efficiently solved in our application by a gradient 
descent algorithm initialized by a rough and rigid 3D 
reconstruction method estimated in the least square 
sense. 

This paper is organized as follows: Section 2 and 3 
present the statistical deformable model and the proposed 
3D reconstruction method. In Section 4, we show some 
3D reconstruction results. Finally, conclusion is given in 
Section 5. 
 
2. Statistical Deformable Model 
 

The shape x of each vertebra is defined by a set of n 
control points or “landmarks”,  which approximate the 
geometrical shape of each vertebra in IR3 [2]. Each 
vertebra, in the training set, is thus represented by the 
following 3n dimensional vector, 
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where T)(
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coordinates of each surface point. In the following, we 
will assume that x is a realization of a random vector that 
follows a normal law of mean vector x  and covariance 
matrix C as suggested in [2]. 
After aligning of the training shapes, the mean shape and 
the covariance matrix are defined as, 
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The variabilities within the training set are 
characterized by the displacement vector xxx −=~  of 
the different surface points with respect to the mean 
model. A statistical analysis of this random vector makes 
it possible to deduce the deformation modes relative to 
the mean shape. The eigenvectors of the covariance 
matrix C of this random vector describe the variation 
modes in the deformation parameters space  (or the 
information on the variability of the scoliotic 
deformations in the vertebra base) and the associated 
eigenvalues are the amplitudes of these variation modes. 

An accurate description of the main variation modes 
may be obtained by retaining only the m eigenvectors 
associated to the m largest eigenvalue [2]. The model 
allows the generation of new instance of the shape by 
adding linear combinations of the m most significant 
variation vectors to the mean shape: 

                                   bxx φ+= ,                            (1) 

where φ represents an orthogonal base of variation 
modes of the models of the training base, and b is the 
global deformation parameter vector setting the 
amplitudes of each deformation mode bi. By ensuring  
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only the important deformations are extracted, discarding 
training data noise [2]. This low parametric 
representation of a vertebra  constitutes our global prior 
model that will be used in our 3D reconstruction method 
(cf. Figure 1). 
 

In theory, the ratio of an eigenvalue to the total sum 
of the other eigenvalues expresses the percentage of 
error introduced if the eigenvector associated to the 
corresponding eigenvalue is not selected [2]. One must 
thus specify a threshold fv for the eigenvalues above 
which the error is considered to be sufficiently small to 
generate a good approximation of the initial vector.  
Hence, if VT is the sum of the eigenvalues, then the 
number t of eigenvalues to be selected is such that: 
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b1= 13−                         b1=0                               b1= 13+  

 

b2= 23−                       b2=0                      b2= 23+  

 
Figure 1.  Visualization of the mean shape (middle row) for the 
sagittal (top row) and coronal views (bottom row) and two 
deformed shapes obtained by applying ± 3 standard deviations 
of the first and second deformation modes to the mean shape 
for L2 vertebra. 



 
b1= 13−                       b1=0                      b1= 13+  

 
b2= 23−                       b2=0                   b2= 23+  

 
Figure 2.  Visualization of the mean shape (middle row) for the 
sagittal (top row) and coronal views (bottom row) and two 
deformed shapes obtained by applying ± 3 standard deviations 
of the first and second deformation modes to the mean shape for 
T06 vertebra. 

 
3. 3D Reconstruction 
 

Besides the above mentioned global deformation 
parameters, we also consider 3D global transformations 
from the similarity group which finally lead to the 
following model for global deformations: 
                    TbxkMx ++= ])[,( φθ ,                  (2) 

with k and θ being respectively the scale and the rotation 
vector (in the x, y or z axis) and  T is a global translation 
vector. 
 
3.1. Crude and Rigid Initial Reconstruction 
 

In order to ensure a first crude and rigid reconstruction 
of each vertebra, we use the technique proposed by  
KAUFFMANN in [9] and VAITON in [15]. This technique 
requires to identify, in a preliminary step, a sequence of 8 
points along the centerline of the spine from C1 cervical 
vertebra to L5 lumbar vertebra on the two radiographic 
views of the spine. These points are then exploited in 
order to statistically determine the position of six 
anatomical points (namely, the center of the superior and 
inferior end-plates, the upper and lower extremities of 

both pedicles) for each vertebra of the spine. The 
corresponding points on the shape of the mean vertebra 
being known, we can estimate, in the least square sense 
[7], an initial estimate of the parameter vector (k, θ, T). 
This leads us to a crude and rigid reconstruction for each 
vertebra that will be then refined by our 3D 
reconstruction model (cf. Figure 3). 
 
3.2. 3D Reconstruction Model 
 

Our reconstruction model from two radiographic 
views is stated as the minimization of the following cost 
function

)(*),,(),,( LATPA_0LATPA_0 xEIIxEIIxE β+= ,    (3) 

where ),,( LATPA_0 IIxE  is the likelihood energy term and 

)(xE is the prior energy term (or the regularization term), 

used to constrain the ill-posed nature of this optimization 
problem.  β is a factor that provides a relative weighting 
between the two penalty term and allows to control the 
rigidity of the statistical template [8]. Let us note that 
this optimization problem can also be formulated as the 
search of the  Maximum A posteriori (MAP) of Θ, the 
deformation parameters of the deformed template x: 
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where P(IPA_0,ILAT|x)=c1exp(-E(x,IPA_0,ILAT)) is the 
likelihood of the observations (i.e. the segmented 
contours on the two radiographic views) given a 
deformed template and P(x)=c2exp(-E(x)) is the prior 
probability of the deformed template (or the prior 
probability of a scoliotic deformation for a given 
vertebra). c1 and c2 are two constants of normalization 
and Θ=(M(k,θ), T, b) is the deformation parameter vector 
of the model to be estimated. 
 
3.3. Likelihood Energy Term 
 

In our application, our likelihood model is expressed 
by a measure of similarity between the external contour 
of the lateral and the postero-anterior perspective 
projections of the deformed template and the spatial 
edges detected in the two radiographic views               
(cf. Figure 3): 
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where the summation of the first and second term of 
E(x,IPA_0,ILAT) is over all the NbPA_0 and NbLAT points of 
the external (respectively lateral and postero-anterior) 
contour of the deformed template projected on the two 
smoothed Canny edge radiographic images. This energy 
function attains its minimum value when there is an 
exact correspondence between the projected contours (of 



the deformed template) and the preliminary segmented 
contours of the two radiographic views. 
 

 
 

 
 
Figure 3. Initial estimate of the mean shape of the vertebra on 
the two radiographic views by the proposed crude and rigid 
initial reconstruction method. 
 
3.4. Prior Energy Term 
 

Due to the Karhunen-Loeve transform,  the random 
variables bi are independent and follow a normal law of 
a null mean and variance λi [2]. Thus, the law of 
probability of x, the deformed template can be written as 
[10]: 
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This probability expresses the fact that the shape to be 
reconstructed is likely close to the mean shape. By 
letting  E(x), the prior energy term can be written as: 
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This energy function penalizes the deviation of the 
deformed template from the mean shape. This function 
does not penalize affine transformations. Equation (6) 
closely resembles the Mahalanobis distance. It defines a 
ellipsoid centered in IRm whose principal axes are 

identified by i  when E(x) is a constant. 

 
3.5. Optimization of the Energy Function 
 

The energy function to be minimized in Equation (3) is 
a complex function with several local minima over the 
deformation parameter space. A global search is 
impossible due to the size of the configuration space. In 
our application, experiments have shown that the initial 
crude and rigid reconstruction technique described in 
Section 3.1 (i.e., the estimation of the rigid deformation 
parameters) can efficiently be exploited in order to 
initialize a gradient descent technique. This gradient 
descent technique is used to simultaneously refine the 
estimation of the rigid parameters and to estimate the non-
rigid parameters. 
 
4. Experimental Results 
 

In our application, we use the training base described 
in [14].   
 

 
(a) 

                     

 
                     (b)                                                    (c) 
Figure 4. Preprocessing:  
(a) Postero-anterior image (256x256 pixels), 
(b) Edge map using a Canny edge detector, 
(c) Smoothed edge map. 



 
The mean vertebra shape of each vertebral level is 

calculated on sample of 30 normal vertebrae. The 
deformation modes of each vertebral level is calculated 
on a sample of 30 scoliotic vertebrae. 

We have used the Canny edge detector to calculate 
the edge maps of the two radiographic views that will be 
used in the likelihood energy term (cf. Figure 4). In our 
application sigma=1, mask size is 5x5, and the lower and 
upper thresholds are given by the unsupervised 
estimation technique proposed in [1]. 

In order to constraint the deformable model to be 
efficiently attracted to the segmented boundaries of the 
vertebra by the gradient-based local optimization 
procedure, we need to spread the region of influence of 
each detected contours to a larger area. To do this, we 
convolve each probability map by a 2D Gaussian mask 
(cf. Figure 4). 

In our application, we have chosen to take the number 
of deformation modes that allows to represent at least 
90% of the admissible deformations. Table 1 shows that, 
for the L2 vertebra, the first 10 deformation modes 
integrate 91.88% of the deformations considered to be 
statistically admissible. For the T06 vertebra, the first 8 
deformation modes represent 92.49% of the 
deformations. 
 

L2 Vertebra T06 Vertebra 
λi/VT λi/VT 

cumulated 
 λi/VT λi/VT 

cumulated 
23.48 % 23.48 %  27.62 % 27.62 % 
19.49 % 42.97 %  24.06 % 51.68 % 
13.16 % 56.13 %  12.37 % 64.04 % 
10.94 % 67.07 %    9.55 % 73.59 % 
  7.46 % 74.53 %    6.49 % 80.09 % 
  5.20 % 79.74 %   5.42 % 85.50 % 
  3.67 % 83.41 %   4.19 % 89.69 % 
  3.28 % 86.69 %   2.80 % 92.49 % 
  2.82 % 89.51 %    
  2.37 % 91.88 %    

 
Table 1.  Normalized eigenvalues computed on a training set of 
178 point models of 30 Vertebrae obtained from the covariance 
matrix. 
 

Besides, experiments have shown that the crude and        
rigid reconstruction procedure is not always a good 
initialization for the gradient-based optimization 
technique. In order to overcome this problem,  our  
solution consists in placing the template at evenly spaced 
positions and in deforming it according a discretized set 
of translation orientation or scale (corresponding to the 
rigid parameters) within a range of value around the 
initial estimate obtained by the rigid reconstruction 
procedure. These deformed template configurations can 
then be used to initialize a deterministic gradient descent 

algorithm. However, the spacing between the template 
positions and the sampling of the transformations must 
be chosen judiciously: not too spaced out to cover all the 
significant local minima of the energy surface and not 
too small to avoid high computational requirements. 

We have validated our 3D reconstruction method on  
several pair of radiographic images of normal and 
scoliotic spines (postero-anterior and lateral views). For 
the experiments, we have  chosen β=1 for the weighting 
factor penalizing the prior energy term with respect to 
the external energy. The reconstruction and optimization 
procedure takes about 82 seconds on a standard Pentium 
II 633 workstation. The proposed method allows a good 
reconstruction of the L2 vertebra. Figure 5 and Figure 6 
present projections of the shape of a L2 and T06 vertebra 
on postero-anterior and lateral radiographic images for a 
scoliotic patient. Let us note that the estimated global 
deformation parameters after reconstruction (i.e. the 
parameter vector b, setting the amplitude of each 
deformation mode of the scoliotic deformations) can 
then be used to quantify the scoliosis, its nature or to 
analyze the improvement of orthopedic or surgical 
corrections. 
 

 
 
Figure 5. Projection of L2 on the two radiographic views (i.e. 
postero-anterior and lateral views). 
 

 
 
Figure 6. Projection of T06 on the two radiographic views (i.e. 
postero-anterior and lateral views). 

 



5. Conclusion 
 

We have presented an original statistical method of 3D 
reconstruction of scoliotic vertebrae using both the 
contours extracted from biplanar radiographic images and 
on a prior knowledge on the geometrical structure of each 
vertebra. This technique can also be viewed as an original 
3D/2D registration or segmentation model. The 3D 
reconstruction problem is stated as the minimization of a 
cost function for each vertebra and solved with a gradient 
descent technique combined with a sampling strategy. 
This method has been validated on a number of pair of 
radiographic images demonstrating its efficiency and 
robustness. Besides, the proposed method remains 
sufficiently general to be applied to other medical 
reconstruction problems (with two or several radiographic 
views). We now intent to improve the energy function by 
integrating a region homogeneity term, to refine the 
statistical model by local deformations and to use global 
optimization technique. 
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