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Abstract. We investigate the contour detection task in complex natural images.
We propose a novel contour detection algorithm which locally tracks small pieces
of edges called edgelets. The combination of the Bayesian modeling and the
edgelets enables the use of semi-local prior information and image-dependent
likelihoods. We use a mixed offline and online learning strategy to detect the most
relevant edgelets. The detection problem is then modeled as a sequential Bayesian
tracking task, estimated using a particle filtering technique. Experiments on the
Berkeley Segmentation Datasets show that the proposed Particle Filter Contour
Detector method performs well compared to competing state-of-the-art methods.

1 Introduction

The contour detection task is an important issue in the field of image processing. Be-
sides the resolution and the presence of noise and clutter, the intrinsic variability of
natural images makes the detection a proper challenge. In the last decade, Martin et
al. [1] have introduced the Berkeley Segmentation Dataset (BSDS300) in which 300
natural color images have been manually segmented by several contributors. For each
image of the BSDS300, a set of handmade benchmark contour detection images is avail-
able and is used to quantify the reliability of the algorithm. The dataset is divided into a
training set of 200 images and a test set of 100 images. This enables the standardization
of the evaluation of contour detection techniques. The authors of the dataset proposed
in [2] to combine local brightness, color, and texture cues in a learning logistic regres-
sion classifier procedure. Ren [3] first improved this approach by handling these local
features at different scales. Maire et al. [4] and Arbeláez et al. [5] proposed to couple
the use of these local features with global information obtained from spectral partition-
ing. This significantly improved the results such that they obtain the best ones to date.
Dollar et al. [6] used a boosted edge learning algorithm to combine a large number of
features accross different scales to learn a discriminative edge classifier. In [7], Mairal
et al. applied a multiscale framework based on learned sparse representations to the
edge detection of class-specific objects. Ren et al. [8] proposed a curvilinear continu-
ity stochastic approach by modeling piecewise linear approximations of contours and
employed a constrained Delaunay triangulation which tends to fill the gaps between the
detections. Felzenszwalb et al. [9] tracked salient smooth curves by approximating the
weighted min-cover problem. All these methods were evaluated on the BSDS300 and
the results are pictured in Fig. 1.
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[F = 0.79] Human
[F = 0.70] gPb - Maire, Arbeláez, Fowlkes, Malik (2008)

[F = 0.68] Multiscale - Ren (2008)
[F = 0.66] BEL - Dollar, Tu, Belongie (2006)
[F = 0.66] Mairal, Leordeanu, Bach, Herbert, Ponce (2008)
[F = 0.65] Min Cover - Felzenszwalb, McAllester (2006)
[F = 0.65] Pb - Martin, Fowlkes, Malik (2004)
[F = 0.64] Untangling Cycles - Zhu, Song, Shi (2007)
[F = 0.64] CRF - Ren, Fowlkes, Malik (2005)
[F = 0.58] Canny (1986)
[F = 0.56] Perona, Malik (1990)
[F = 0.50] Hildreth, Marr (1980)
[F = 0.48] Prewitt (1970)
[F = 0.48] Sobel (1968)
[F = 0.47] Roberts (1965)

[F = 0.68] Particle Filter Contour Detector (PFCD)

Fig. 1. (Left). Scores obtained by state-of-the art methods and our proposed Particle Filter Con-
tour Detector (PFCD) model (illustration adapted from [5]). The evaluation is based on the F-
Measure, which is a combination of the precision measure and the recall one: it supports a high
number of true detections while it penalizes over-segmentation and missed detections. The final
score is the optimal threshold computed among the 100 test images. (Right). Image from the
BSDS300 and ground truth boundaries. The image outlined in red is obtained by our PFCD.

In this paper, we propose the use of a particle filtering technique to detect con-
tours in natural images. The use of a particle filter to detect contours has been first
proposed by Pérez et al. [10] with their well-known JetStream algorithm. This method
aims at extracting only one curve from an image by locally tracking points at a fixed
step length. The likelihood is also pixel-wise. The authors proposed a semi-automatic
routine to extract complex contours by constraining the contour path using manually set
forbidden regions. The power of this approach in interactive segmentation applications
is undeniable. However, the method can hardly be applied to the challenging problem
of automatic contour detection in the BSDS300. Similar methods have then been pro-
posed [11–13], but are based on the JetStream framework, and hence dedicated to single
extraction tasks.

At this point, a fair question would be: why should we use a particle filter to detect
contours? To answer this question, we need to consider the motivations of the present
work. The basic idea of our work is to adopt a semi-local strategy to detect small sets of
connected edgels which we call edgelets. Their shapes are learned as a prior distribution
using the BSDS300 learning dataset. The distribution automatically embeds every con-
tour variation, without imposing any mathematical model. For example, with an edgelet
length of 7, vertical and horizontal segments represent 18% of the shape database. In the
detection algorithm, we need to evaluate the saliency of each possible edgelet contained
in the image. In a probabilistic modeling, this may be done by considering a likelihood
distribution. We propose to combine three features: the local gradient, its profile, and a
texture gradient. These features are semi-local since they are computed on edgelets. We
could stop our detection algorithm here, by estimating a Bayesian posterior distribution.
However, this would generate detection artefacts due to a lack of consistency between
detected edgelets. Thus we propose to define an artificial temporal bound between the
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Fig. 2. The learning procedure is divided in two steps. The offline step estimates the prior and the
transition distributions, which are used to generate samples in the contour tracking procedure. The
online step is performed on the image to be tracked, and aims at learning: the feature distributions,
in order to recognize the meaningful contours in the image; and the initialization distribution, in
order to (re-)initialize the tracking process in the contour detection procedure.

edgelets, similar to what is done in a classical Markovian relaxation modeling. Once
again, we use the BSDS300 to learn the dynamics between two consecutive edgelets.
Hence, due to its random and evolutive nature, we define an edgelet as a stochastic
process. It turns out that estimating this sequential Bayesian model may be efficiently
done using a particle filtering technique, leading to our Particle Filter Contour Detector
(PFCD) method.

This paper is organized as follows. In Sect. 2, we propose to learn the distributions
that define our sequential Bayesian model. The tracking algorithm for contour detection
based on a particle filtering technique is then described in Sect. 3. We show experimen-
tal results on the BSDS300 and BSDS500 [5] in Sect. 4, before concluding in Sect. 5.

2 Learning the Bayesian Model

Let e = (e1, . . . , eM ) ∈ ΩM be a set ofM 4-connected points. Each point ei is defined
in the image domain Ω. The number M is fixed and is a parameter of the method. For
exemple, in our experiments we set M = 7 to balance the computational cost and the
detection robustness. The vector e is henceforth refered to an edgelet. The proposed
contour detector is a tracking based on approach. This means that we want to define
an edgelet at a certain step, or time, of the tracking procedure. Then e is indexed by
time, t, and can be defined as a stochastic process, {et}t∈N. We also need to introduce
yt ∈ Y , the measurement state. Our Bayesian tracking procedure requires the definition
of four distributions: the prior p(e), the transition p(et|et−1), the observation p(yt|et),
and the initialization p(e0|y0). They are illustrated on Fig. 2 and are the subject of the
following sections.
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Algorithm 1: Approximation of the prior distribution of an edgelet
Input: A shape database
Output: Approximation of the prior distribution p(e2:M |e1)
begin

for s = 1, . . . , Sp do
Select an image I and a segmentation H at random
Extract an edgelet e(s) from (I,H) at random
Center it with respect to e1(s)

return 1
Sp

∑Sp

s=1 δ
e
e(s)

, where δba = 1 if a = b, and 0 otherwise

Algorithm 2: Approximation of the transition distribution of an edgelet
Input: Distribution p(e), a shape database
Output: Approximation of the transition distribution p(et|et−1)
begin

foreach distinct element e′(u) ∈ {e′(1), . . . , e′(S
′
p)} ⊂ {e(1), . . . , e(Sp)} do

repeat
Select an image I and a segmentation H at random
Extract two consecutives edgelets from (I,H) such that et = e′(u) and

et−1 = e′(v) ∈ {e′(1), . . . , e′(S
′
p)} its predecessor

Increment by 1/St the probability p(et = e′(u)|et−1 = e′(v))
until St times

2.1 Offline Learning: Prior Model

The vector e is a small piece of a contour, integrating more information than a classi-
cal pixel-wise formulation. Nevertheless, it remains semi-local, in order to be applied
generally to most of the contours. By learning its prior distribution, we avoid impos-
ing mathematical constraints that may decrease the power of detection of an algorithm,
since it is impractical to define a mathematical model that captures every possible con-
tour singularity. Algorithm 1 presents the offline approximation procedure of the prior
distribution p(e). The parameter Sp denotes the number of samples and e(s) is the s-th
realization of the approximation set. Each sample e(s) is centered with respect to its first
point e1(s). Using the BSDS300 training dataset, we learn the distribution p(e2:M |e1)
to capture only the shapes of the edgelets.

2.2 Offline Learning: Transition Model

We defined in the previous section a way to initialize edgelets. Next, to randomly extract
full contours with our tracking algorithm, we need to generate a possible edgelet shape
at a certain time t given the previous one at t−1. This is what the transition distribution
p(et|et−1) is designed to. It can be approximated using Algorithm 2. We use the same
shape dataset as in Sect. 2.1.
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2.3 Online Learning: Observation Model

In this section, we define a density p(yt|et) which measures the adequation between
data known at a time t, yt, and an edgelet et. To make our detector robust, we first
consider several observations, i.e. yt = (y1

t , . . . ,y
J
t ), with yj

t ∈ Yj , each of these
being related to a special feature. The joint likelihood p(yt|et) is defined considering a
conditional independence hypothesis of the yj

t , 1 ≤ j ≤ J , given et:

p(yt|et) =
J∏

j=1

p(yj
t |et) . (1)

This simplifies the estimation since we just need to define the marginal likelihoods
p(yj

t |et). The observation yj
t is related to a feature fj : ΩM × Yj → R. The features

{fj}Jj=1 are computed along an edgelet et and integrate color and gradient information
to precisely localize contours.

Before defining these features, we propose a general formulation of the densities
p(yj

t |et). It is clear that the quantity of information of each feature depends on the
image itself. For example, a classical gradient feature typically overdetects in textured
images whereas its sensitivity drops in blurry ones. The interpretation of the feature
responses should be different in these two cases, meaning that a candidate should be
more relevant when it obtains a singular high feature response value in the image. This
idea has been used in an a contrario framework [14], and is related to the notion of
meaningfulness of an event. Here, an event is an edgelet et and we want to compute
how meaningful the feature response on et is on the image. This implies to learn a
distribution P

(
µj > fj(et,y

j
t )
)
, with µj a random variable associated to the feature

fj , in order to consider the shape of the feature response distribution into the likelihood.
This distribution can be assimilated as a distribution of false alarms. Hence, the lower
the probability P

(
µj > fj(et,y

j
t )
)
, the more meaningful this event, i.e., the less likely

the event et corresponds to a false alarm. The approximation of the feature distribution
is given in Algorithm 3. Finally, we define the likelihood in a way to support low values
of P

(
µj > fj(et,y

j
t )
)
:

p(yj
t |et) ∝ exp

(
− λj P

(
µj > fj(et,y

j
t )
))

, (2)

with λj ∈ R+ a learned multiplicative constant value which both aims at providing a
good localization of high likelihood and impacts the relevance of the feature j on the
tracking procedure.

We now describe our three features: f1 the local gradient, f2 the textural gradi-
ent, and f3 the profile gradient. The main novelty about the proposed features comes
from the edgelet modeling. In particular, we are expecting to provide robust feature
responses, since they are semi-local and less dependent on noise.

Local Gradient. This classical feature uses the 2×2 gradient norm |∇I| of the image I .
The gradient feature f1 is computed along an edgelet et:

f1(et,y
1
t ) = Φ

(( ∣∣∇I
(
eit
)∣∣
)
1≤i≤M

)
. (3)
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Algorithm 3: Approximation of the feature distribution
Input: Distribution p(e), an image I : Ω → R
Output: Approximation of the feature distribution P

(
µj > fj(e0,y

j
0)
)

begin
for s = 1, . . . , Sf do

Select a starting point e1(s)
0 at random: e1(s)

0 ∼ U [Ω]

Generate the edgelet shape e
2:M(s)
0 according to the prior distribution:

e
2:M(s)
0 |e1(s)

0 ∼ p(e2:M |e1)

Compute and store fj(e
(s)
0 ,yj

0)

return 1
Sf

∑Sf
s=1 1

[
−∞,fj(e

(s)
0 ,y

j
0)
](fj(e0,y

j
0)
)

The flexibility comes from the fusion operator Φ. One can set Φ = min, Φ = max,
or a weighted mean Φ(v1, . . . , vM ) =

∑M
j=1W (j) vj , with W : {1, . . . ,M} → [0, 1]

a weighting function. In our experiments, we set W (j) = 1/M,∀j. Note that when
the image I is multidimensionnal, we take on each point the maximum gradient value
among the different channels.

Textural Gradient. The textural gradient feature aims at getting low response values
on texture locations, while getting high ones on object contours. For a point ejt of an
edgelet et, we consider its normal segment. The two sides of the normal segment of
three consecutive points (ej−1t , ejt , e

j+1
t ) are noted←−n (ejt ) and −→n (ejt ). In a texture, the

intuition is that color pixel values along the first segment should not really differ from
the ones of the second segment. Let h[a] = {hr[a]}Rr=1 be the histogram of a set of
pixels a, where r is the bin index of an histogram of length R. Distances between pairs
of histograms along normals of the curve are combined to form the texture feature:

f2(et,y
2
t ) = Ψ

((
dB
(
h[←−n (eit)], h[

−→n (eit)]
))

2≤i≤M−1

)
, (4)

with Ψ the fusion operator, and dB the Bhattacharyya distance between two histograms,
i.e., dB(h[a], h[b]) is the square root of 1−∑R

r=1

√
hr[a]hr[b].

Profile Gradient. The last feature comes from a recent idea from Sun et al. [15]. They
propose to analyse the gradient profile for image enhancement and super-resolution.
This profile is learned and represented by a parametric gradient profile model. This
model does not use the gradient value of a contour, but the symmetry and the mono-
tonicity of its profile. Thus, in our application, we expect that this feature detects sharp
contours as well as smooth ones. It can also be useful when there are instabilities in the
gradient norm, due to noise, while the symmetry and the monotony of its profile should
remain. With n(ejt ) the normal segment of three consecutive points (ej−1t , ejt , e

j+1
t ),

the profile gradient feature is defined as:

f3(et,y
3
t ) = Ξ

((
− dKL

( ∣∣∇I
[
n(eit)

]∣∣ , gp(n(eit)|eit, σp, λp)
))

2≤i≤M−1

)
, (5)
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Algorithm 4: Approximation of the initialization distribution

Input: Distributions P
(
µj > fj(e0,y

j
0)
)
, p(e0), an image I

Output: Approximation of the initialization distribution p(e0|y0)
begin

for s = 1, . . . , Si do
Select a starting point e1(s)

0 at random: e1(s)
0 ∼ U [Ω]

Generate the edgelet shape e
2:M(s)
0 according to the prior distribution:

e
2:M(s)
0 |e1(s)

0 ∼ p(e2:M
0 |e1

0)

Compute the joint likelihood w(e(s)
0 ):

w(e
(s)
0 ) ∝

∏J
j=1 exp(λj P

(
µj > fj(e

(s)
0 ,yj

0)
)
) s.t.

∑Si
u=1 w(e

(u)
0 ) = 1

return 1
Si

∑Si
s=1 w(e

(s)
0 ) δe0

e
(s)
0

with
∣∣∇I

[
n(eit)

]∣∣ a vector of gradient values computed along the normal n(eit), and
gp(n(e

i
t)|eit, σp, λp) a vector of generalized exponential distribution values computed

along the normal n(eit) with respect to the center point eit. The parameters σp and λp
control the shape of the distribution gp. We use the Kullback-Leibler divergence dKL to
measure the difference between two discrete distributions of L elements, dKL(p, q) =∑L

i=1 p
i log pi/qi, with pi and qi the probabilities at point i.

2.4 Online Learning: Initialization Model

We finally estimate an initialization distribution p(e0|y0). This distribution finds its use
in (1) the generation of samples in the tracking initialization step and (2) the reinitializa-
tion of samples in the tracking procedure. This latter action occurs, for example, when
the tracking of a contour is over, in which case the initialization distribution starts a
tracking process on a novel contour.

Although it is possible to carry out these operations using the prior distribution
p(e0), the observations y0 are more likely to provide samples located on true contours.
The approximation procedure is described in Algorithm 4.

3 Contour Detection by Tracking Based on Particle Filter

We defined in Sect. 2 several distributions that manipulate a piece of contour, namely
an edgelet et, of length M . In this section, we define the framework that handle these
distributions by integrating them in a sequential Monte Carlo approach. Our goal is to
estimate the distribution of the edgelets e0:t conditioned by a set of observations y0:t.
Hence, at a time t, e0:t defines a contour map of t+1 edgelet elements. The estimation of
this posterior distribution is recursively done by approximating the filtering distribution,
p(et|y0:t). This is the subject of the following section.
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3.1 Estimating the Filtering Distribution

Let xt ∈ X be the hidden state of a stochastic process at time t and yt ∈ Y be the
measurement state. Under the Markovian hypothesis of the hidden states and the con-
ditional independence hypothesis of the observations given the states, the classical fil-
tering problem aims at estimating the posterior distribution p(xt|y0:t):

p(xt|y0:t−1) =
∫

X
p(xt|xt−1) p(xt−1|y0:t−1) dxt−1 , (6)

p(xt|y0:t) =
p(yt|xt) p(xt|y0:t−1)∫

X p(yt|x′t) p(x′t|y0:t−1) dx′t
. (7)

The distribution p(xt|y0:t−1) corresponds to the prediction step, and p(xt|y0:t) to the
update step. If the system relating the hidden and observable variables were linear and
Gaussian, the computation of the filtering distribution would be a straightforward use of
the Kalman filter. Unfortunately, this is not the case here since we learned the transition
and the likelihood in Sect. 2 in a non-parametrical way. On the other hand, as the hidden
state xt is discrete and finite, an exact numerical solution can be computed using a
grid state-space method. However, except for very small edgelet lengths, the cardinality
of the state space is too big to make this computation reliable in practice. Hence, we
propose to use a sequential simulation-based method, the particle filter, to approximate
the filtering distribution [16]. The method consists in computing the empiric density

PN (dxt|y0:t) =

N∑

n=1

w
(n)
t δ

x
(n)
t

(dxt) , (8)

where δ
x
(n)
t

(·) is a Dirac mass centered on a hypothetic state realization x
(n)
t of the

state xt, also called particle, w(n)
t its weight, and dxt an event of infinitesimal support.

Particles are generated using an importance function q(xt|x(n)
0:t−1,y0:t) and are then

weighted proportionately to (7).

3.2 Particle Filter Contour Detection Algorithm

In this section, we describe our particle filter method dedicated to the contour detection
task. We introduce ct ∈ {0, 1} a random variable of jump: if ct = 0, the tracking
of contour at time t goes on, otherwise, i.e. if ct = 1, the edgelet is initialized to a
new contour. This is useful when the tracking of the current contour is lost or finished.
The hidden state xt is then composed of an edgelet et and a jump variable ct, i.e.
xt = (et, ct). A particle filter requires to define four distributions: a prior p(x0), to
initialize particles; an importance function q(xt|x0:t−1,y0:t), to predict a particle at
time t given the past states and observations; a trajectory prediction p(xt|xt−1), to
define the prior evolution of a particle at time t given the past states; and a likelihood
p(yt|xt), to weight the particles using the last known measure yt. While the prior and
the likelihood are respectively learned in Sect. 2.1 and 2.3, the importance function and
the transition need to be defined. As we will see in the present section, they are closely
related to those learned in Sect. 2. The tracking procedure is summarized on Fig. 3 and
detailed in Algorithm 5.
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Fig. 3. The particle filter method approximates the filtering distribution by a finite discrete set of
samples called particles. In a contour tracking application, we propose to model the state of a
particle with two components: et an edgelet and ct a jump variable, the latter being useful when
the tracking of the current contour is finished. The tracking procedure is divided into two steps.
The proposition step propagates the particles from time t − 1 to time t, using the transition, the
initialization, and the feature distributions defined in Sect. 2. The second step weights the prop-
agated particles proportionately to their likelihood, giving more importance to relevant edgelets.
These two steps approximate the filtering distribution.

Transition. First, we define the trajectory transition p(xt|xt−1) such that the edgelet
distribution depends on the jump variable. For simplicity, we consider that the jump
variable ct is independent from ct−1. Hence,

p(xt|xt−1) = p(et|et−1, ct) p(ct) , (9)

with p(ct = 1) = β the probability of jump. The edgelet transition p(et|et−1, ct) =
ct p(e

2:M
t |e1t ) p(e1t ) + (1 − ct) p(et|et−1) includes the prior p(e2:Mt |e1t ) learned in

Sect. 2.1, the starting point p(e1t ) = U [Ω], and the transition p(et|et−1) learned in
Sect. 2.2.

Importance function. It is possible to set q(xt|x0:t−1,y0:t) = p(xt|xt−1) in order
to propagate the particles using the trajectory transition. However, a more sophisticated
design can drastically improve the estimation efficiency by reducing the variance of the
particle weights [16, 17]. Thus, a good importance function should integrate both the
transition and the likelihood, in order to get a support that includes the one of the poste-
rior distribution. Furthermore, edgelets are very likely to visit already visited contours,
slowing down the algorithm. Here, we propose to define an importance function that
uses the past observation to make a particle jump when it was not meaningful at t− 1.
It also uses the edgelet trajectory to constrain the particle to move on unvisited pixels:

q(xt|x0:t−1,y0:t) = q(et|e0:t−1, ct,y0) q(ct|et−1, ct−1,yt−1) . (10)
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The distribution q(ct|et−1, ct−1,yt−1) is set to (1− ct)(1− α) + ct α. The value α is
the probability to jump to an unexplored contour, and depends on how much meaningful
the past edgelet et−1 was according to the J feature distributions:

α =

J∑

j=1

λ̃j P (µj > fj(et−1,y
j
t−1)) , (11)

with λ̃j the normalized value of λj of (2). The edgelet importance function includes
a trajectory constraint fcheck as well as the transition and initialization distributions
respectively learned in Sect. 2.2 and 2.4:

q(et|e0:t−1, ct,y0) = nq fcheck(et, et−1, e0:t−2)
[
ct p(et|y0) + (1− ct) p(et|et−1)

]
.

(12)

The trajectory constraint fcheck(·) is set to 0 if any point in the edgelet et go through
any point of et−1 or is closer than a Manhattan distance of 2 with any point of the
past trajectory e0:t−2. This is done to prevent an echo detection effect. Otherwise we
set fcheck(·) = 1. Generating particles according to (12) can be done using a rejection
sampling: a sample e(n)t is generated according to c

(n)
t p(et|y0)+(1−c

(n)
t ) p(et|et−1)

and accepted with a probability of fcheck(e
(n)
t , e

(n)
t−1, e

(n)
0:t−2). Finally, the normaliz-

ing constant nq is approximated using an importance sampling method, i.e. nq ≈
1
Nq

∑Nq

i=1 fcheck(e
(i)
t , et−1, e0:t−2), with e

(i)
t ∼ p(et|et−1, ct).

Stopping Criterion. We discussed how to init and iterate the tracking algorithm, but
the question of its stopping remains. The easiest way is based on the fact that the al-
gorithm first tracks the most meaningful contours. This is due to the resampling tech-
nique used in the particle filters, which duplicates the good particles and discards the
bad ones. Then, according to the feature distributions, detected contours become less
and less meaningful, and one may stop the algorithm when the meaningfulness reaches
a given threshold. In particular, we defined in (11) the probability of jump using the
meaningfulness of an edgelet, and this probability grows with time. Then, we stop a
particle filter when the proportion of jumps reaches a fixed threshold:

1

K + 1

K∑

k=0

N∑

n=1

w
(n)
t c

(n)
t−k ≥ γ . (13)

Diversity. A resampling technique is used to avoid a degeneracy problem (all the par-
ticles but one converge to zero after a few steps), inherent to the particle filtering tech-
nique [16, 17]. This does not alter the posterior distribution but impacts on the diversity
of the particles, especially for the past states. In practice, this means that most of the
particles share the same trajectory, which may degrade the quality of the estimator. To
alleviate this effect, we propose to divide the NL particles into L independent particle
filters, leading to the following final posterior distribution:

p(x0:t|y0:t) =
1

L

L∑

l=1

p(xl
0:t|y0:t) . (14)
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Algorithm 5: PFCD Algorithm
Output: Particle filter contour detector map O
begin

for l = 1, . . . , L do Initialization: t = 0
for n = 1, . . . , N do

Generate e
l,(n)
0 ∼ p(et|y0)

Set cl,(n)
0 = 0

Set wl,(n)
0 = 1/N

for l = 1, . . . , L do Tracking: increment t
for n = 1, . . . , N do

Generate c
l,(n)
t ∼ q(ct|el,(n)

t−1 , c
l,(n)
t−1 ,yt−1)

Generate e
l,(n)
t ∼ q(et|el,(n)

0:t−1, c
l,(n)
t ,y0)

Compute the particle weights:

w
l,(n)
t ∝ wl,(n)

t−1

p(yt|el,(n)
t )p(e

l,(n)
t , c

l,(n)
t |el,(n)

t−1 )

q(e
l,(n)
t , c

l,(n)
t |el,(n)

0:t−1, c
l,(n)
t−1 ,y0:t−1)

s.t.
∑

m w
l,(m)
t = 1

Resample the particle set {(el,(n)
0:t , c

l,(n)
0:t ), w

l,(n)
t }Nn=1 if necessary [16]

If 1
K+1

∑K
k=0

∑N
n=1 w

l,(n)
t c

l,(n)
t−k ≥ γ, stop the filter l

If all the particle filters have reached γ, stop the contour detection algorithm
Otherwise, go to step 2 for the unfinished filters

return ∀z ∈ Ω,O(z) = 1
L

∑L
l=1 maxn w

l,(n)
tl

1
x
l,(n)
0:tl

(z)

Each particle filter approximates the filtering distribution using N = NL/L particles.

Contour Detector. The soft contour detector is an image O : Ω → [0, 1], with O(z)
the confidence value that the pixel z belongs to a contour. This is computed by a mean
of the estimations given by the L particle filters:

∀z ∈ Ω,O(z) =
1

L

L∑

l=1

max
n

w
l,(n)
tl

1
x
l,(n)
0:tl

(z) , (15)

with tl the last step performed by the l-th particle filter. An optional non-maximum
suppression step may then be employed to produce thin contours [5]. The final tracking
procedure is given in Algorithm 5.

4 Experiments

To evaluate our algorithm, we replicate the scenario used in the evaluation of state-of-
the-art contour detection methods [2–9], using the BSDS300 and the BSDS500. ost of
the parameters discussed in this following section are set with sense and according to the
literature. The model is consistent with these parameters, hence reasonable parameter
settings will give the expected results.



12 Nicolas Widynski, Max Mignotte

4.1 Parameter Discussion

In our experiments, we set the length of an edgelet M = 7, with a 4-connexity neigh-
borhood. The number of samples in the learning procedures must be large enough to
obtain a good approximation of the respective distributions, depending on the length
of an edgelet. We set Sp = 2 × 106 for the prior, St = 105 for the transition, and
Sf = Si = 106 for the feature and the initialization distributions. The prior probability
of jump β is set to 0.005.

For the textural gradient feature, we use an histogram of R = R3
h = 125 bins. The

image is defined on the CIE Lab colorspace. The widths of the channel bins are defined
by the Rh-quantiles, hence each channel bin contains 1/Rth

h of the channel distribution.
In order to consider enough points to create relevant histograms, the length of each side
of the normal segment is set to 11 pixels, with a line width of 5. For the profile gradient,
the parameters σp and λp are respectively set to 0.7 and 1.6 [15]. We use a mean for
the fusion operators Ψ and Ξ and a min for the operator Φ. The values of the feature
multiplicative constants are learned using a trial and error procedure on the training
dataset. We found λ1 = 4, λ2 = 6, and λ3 = 15.

We fix the total number of particles NL to 1500, to provide a good compromise
between detection performance and computational cost. We set the number of particle
filters L to 50 in order to smooth the results. Then the number of particles by filter N is
1500/50 = 30, which is enough to obtain a satisfying accuracy of each particle filter.
Note that N may impact on the stopping criteria: using a larger number of particles
allows reducing slightly γ, although it does not compensate for the additionnal compu-
tational cost. We approximate nq using a small number of samples Nq = 50. Finally,
the parameter K = 200 ensures the monotonical increase of the stopping criterion. The
threshold γ = 0.13 is learned using a trial and error procedure.

4.2 BSDS Experiments

As we can see in Fig. 1, our PFCD method performs well, with a F-Measure score at
0.68 (recall: 0.71, precision: 0.65) on the 100 test images of the BSDS300. Due to the
stochastic nature of the algorithm, we performed the experiment 15 times and obtained
a variance of 4.8 × 10−7. We also completed the experiment on the BSDS500 [5] and
obtained a F-Measure score of 0.70 (recall: 0.72, precision: 0.68). On average, our
non-optimized code runs in 4 minutes and 30 seconds, which is comparable to the gPb
detector [5, 18]. Also, the algorithm can easily be parallelized since both the samples in
the online learning step and the particle filters during the tracking one are independent.

Fig. 4 illustrates a few contour detection results obtained by the proposed algorithm.
The soft detection map is obtained using (15). By integrating the feature distribution
into the likelihood, the extracted information is adaptative to the image and enables to
highlight the most meaningful contours. Consequently, this removes noisy responses
and offers cleaner results. In particular, the skin texture is not detected in the image
of a leopard, since this information is not meaningful in the image. This behavior may
also explain bad results observable in the first image (moray eel): the point of view is
too close, and the low amount of real contours are not salient enough to be relevant,
this is why the data found in the texture is deemed meaningful. We can also observe
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Fig. 4. Examples of contour detections obtained by the proposed PFCD algorithm. Images are
from the BSDS300. The top two images outlined in red get two of the worses F-Measure scores.

that the rendering is smooth: this is firstly caused by the prior and transition models,
that capture local contour information well, and then by the mixture of particle filters,
which circumvents discontinuity effects. This makes the rough contours softer as it
is especially visible in images depicting trees (see for example the bison image). We
finally notice that the contours are well located and around a three pixel width, which is
very close to the truth. This is partly due to the profile gradient feature, which precisely
detects contours, even if they are not very salient.
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5 Conclusion

We demonstrated throughout this paper the ability of the particle filter to track contours
in complex natural images. Its flexibility and genericity enable to embed semi-local
prior and transition distributions learned on a shape database as well as adaptive like-
lihoods that detect contextual relevant pieces of edge. Our contribution covers both
the learning stage and the tracking modeling. We tested our algorithm on the compet-
ing BSDS300 [1] and BSDS500 [5] datasets, and obtained very promising results with
F-Measure scores of 0.68 and 0.70, respectively. This might further be improved by
integrating multiscale features and global information.
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