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Abstract— The gait movement is a complex and essential a patient’s video mapped into a color image in such manner
process of the human activity. Yet, many types of diseasesdn-  that asymmetries of the body parts related to an (temporally
rological, muscular, orthopedic, etc.) can be diagnosed ém the shift-invariant) asymmetric movement in the human gait

gait analysis. This paper introduces a novel method to quidk . - . ore
visualize the different body parts related to an (temporaly shift- cycle may be clearly visible and immediately quantifiable.

invariant) asymmetric movement in the human gait of a patiert
for daily clinical usage. The goal is to provide a cheap and ey- Il. PREVIOUS WORK

to-use method that measures the gait asymmetry and display ~ One popular method for gait analysis is motion capture
results in a perceptual and intuitive way. This method relies on [11] which consists in tracking infrared (IR) reflective rkar

an affordable consumer depth sensor, the Kinect, which is vg ith ltivle IR Thi thod is effective but
suitable for small room and fast diagnostic, since it is easyo ers V_V' mulliple cameras. IS me O_ IS efiectve u
setup and marker-less. requires a lot of space to be set up along with lots of exgertis

and time and effort to be installed and used.

|. INTRODUCTION In [6], the authors proposed to also use a treadmill and a

Scientists and medical communities have been interesténect depth sensor to quantify the gait asymmetry with a
in the analysis of gait movement for a long time, becauséQw-cost gait analysis system. More precisely, the authors
as mentioned in [1], [2], [3] symmetrical gait is expected incompute an index for quantifying possible asymmetries
the case of healthy people, whereas asymmetrical gait isbgtween the two legs by first dividing each gait cycle in
common feature of subjects with loco-motor disorders.  two sub-cycles (relative to the left and right step sub-gycl

Abnormal or atypical gait can be caused by differen@and by comparing these two sub-cycles, in term of an
factors, either orthopedic (hip injuries [4], bone malferm asymmetry index (proportional to the difference of depth,
tions, etc.), muscular, or neurological (Parkinson’s aése Over a gait cycle, between the two legs) after a rough spatial
stroke, etc.). Consequently, different parts of the body caand temporal registration procedure. Although, the sysgem
be involved or affected, which make gait analysis a comple&ble to distinguish whether the patient has a symmetric walk
procedure. Nevertheless, gait analysis remains a powerfl not, no visualization or information on the location oéth
early clinical diagnostic tool that is easy to perform and@symmetries is provided, unlike our method.
non-invasive, and has been used until now for detection In [10], the Kinect camera is placed at the back of a
and tracking of disease progression, joint deficiencies; prtreadmill and is used to record a video sequence of the
surgery planning, as well as recovery from post-operativieatient walk. The authors then simply compute the mean
surgery or accident. of the obtained depth image sequence (over a gait cycle or a

But nowadays, with the aging population, clinical diagnoslonger period) in order to compress the gait image sequence
tics have to be cheaper, faster and more convenient, while igto one image which is finally called a depth energy image
maining accurate. However, analyzing a gait video sequen@@El). Their results were conclusive since they were able
is often difficult, requires time, and subtle anomalies catp distinguish both visually and quantitatively asymmeri
be omitted. Also, videos are not easy to annotate, stof@ symmetric walk generating a DEI exhibiting a symmetric
and share. The goal of the proposed diagnostic tool is &lhouette, in terms of mean depth and conversely). Negerth
evaluate a perceptual color map of asymmetries from a videless, this latter strategy is inherently inaccurate siagént
acquired by a depth sensor (Kinect), and recorded in tttee average (mean) depth over a gait cycle does not allow to
coronal (front) plane of a patient walking on a treadmill. Adetect all asymmetric body movements; indeed, movement

perceptual color map of asymmetries is the compression w@riation of some parts of the body can clearly be different
and asymmetric while keeping the same mean (in term of
This work was supported by the Fonds Qubcois de la Recherehe smean depth).

la Nature et les Technologies (FQRNT). Ethical approbati@s obtained In our work. the debth image seauence of the qait. contain-
from the research ethics board of our university for thisiqub ) ) - p g q g g '

Antoine Moevus, Max Mignotte, and Jean Meunier are with theing a number of gait cycles (and wherein each pixel of the
Département d’Informatique et de Recherche Opérati@fBIRO), Uni-  yjideo corresponds to a depth signal, as a function of time) is

versité de Montréal, Faculté des Arts et des Sciences)tidal H3C 3J7, . . . R .
QC, Canada. o reduced to three dimensions with a Multi-Dimensional Scal-

E-mails:noevusan, ni gnot t e, meuni er @r 0. unont real . ca ing (MDS) mapping [12] using a temporally shift invariant
J.A. de Guise is with the Laboratoire de Recherche en Imageti £ \clidean distance. This allows us to quickly display thi¢ ga
Orthopédie, Centre de recherche du Centre HospitalierUteversite de . be i inf . lor i ith red
de Montréal (CRCHUM), Montréal, Canada. Image cube Into an informative color image (Wlt red, green

E-mail: j acques. degui se@t snt | . ca and blue channels) allowing to visualize the asymmetrig/bod



parts of the gait cycle of a patient with a color difference, The necessity of working in 3D space is because of the

in a perceptual color space, which is even greater than tpatial coherence of objects in the scene. For instancé) in 3

asymmetry is large in magnitude. space the treadmill is always beneath the subject whereas

in an image it overlaps the patient, as shown in Fig. 1b.

Once this step is done, it is no more necessary to project the
The dataset consists of multiple sequences of people waltepth maps in the 3D space as long as the camera and the

ing on a treadmill, facing a cheap depth sensor (Kinect). Theeadmill stay at the same relative position. In our caseeso

Kinect sensor output80 depth maps per second(( fps), small adjustments on the enclosing parameters,,, wmaz,

with a resolution of640 per 480 pixels. The dataset con- v,in, Vmazs Zmin aNd Z,,4., Were needed to encompass all

tains51 sequences acquired from subjects walking with sequences.

or without simulated length leg discrepancy (LLD). Every

patient had to walk normally (group A), then withsacm .

sole under the left foot (group B), then with the sole undel?' Silhouette Segmentation

the right foot (group C). Sequences are approximately Now, with, the required information, the patient can be

minutes long and contains around0 gait cycles. For all segmented in each frame of the original gait depth sequence

sequences, the same relative position between the trdadndf N frames).

and the sensor is kept in order for the subject to be within 1) Background removal: Background removal is trivial

the same area of images. since the subject is in the middle of the image in a non-

cluttered room. Therefore, every pixel outside the range of

. o the enclosing parameters around the subject are clipped to a
In addition to a prerequisite setup step, the method can Bgsauit value.

divided into three steps: pre-processing, MDS-based dimen
sionality reduction and color space conversion.

IIl. DATA DESCRIPTION

IV. METHOD

2) Treadmill removal: After background removal, the
only objects remaining in the image are the treadmill and
A. Setup Phase the patient. Because the treadmill is below the patiengiit ¢

. . be removed by selecting pixel with coordinates superior to
Since the scene took place in a non-cluttered room where y 9p P

the treadmill is in the same position relatively to the camnera threshold (¥ axis is going from top to bottom) and clip

a 3D bounding box around the subjects can be set. Hen them. An equation in the 2D-space can be derived from Eq.

by retrieving 3D information, such as the position of th:ai%) in order to work directly on the image:

treadmill or the patient, we can convert this informatiocloa

in the 2D image space and segment the patient’s silhouette Y <1, )

directly from a depth map. é(v —¢,) < T, (4)
Therefore, the setup step is to, first, determine the 3D !

position of the treadmill and the patient by converting a v < /Ty te, sinced>0andf>0 (5)

depth map in a 3D point cloud. To do so, the depth sensor d ’

is reasonably considered as a pinhole camera model wit . .
intrinsic parametersi, (see [5, p. 30]) defined as: wmereTy is the threshold value measured during the setup

phase and! is the depth.

fo0 e 575.82 0 240
K=10 f c|=| 0 57582 320 (1)
00 1 0 0 1

wheref is the focal length in pixels an@.,, ¢, ) is the image
center in pixels (values given by the manufacturer). From &
depth map, a pixel at positiofu, v)” with depth valued is
projected in 3D spacd,X,Y, Z)T, using:

X u 1/f* (u—cu)
Y| =dK ' |v] =d|1/fx{v—c) @)
Z 1 1 (b) ©

First, the positions of the points around the patient, ad;;?érlcz”igmg a(r(l;iApfrtee- rptr?ecaedsriiirlllgr::ﬁg\?él(a) Original depth map. (b)

proximated by a 3D bounding box, is first estimated. Second,
the minimal and maximal deptt?,,.;, and Z,,,., of the

8 points (of the bounding box) are then retrieved. Third, Fig. 1 visually shows the different steps of the setup and
the 8 points were projected back in the 2D image spackre-processing stage.

(see [5, p. 30]) where the minimal and maximal vertical and 3) Filtering: Finally, the whole sequence is filtered with
horizontal 2D position valueu(,,;,, Umaz, Vmin, aNdv,q,) @ 3D ¢ x 5) median filter to remove some aberrations on
are finally estimated. the contours or on top of the treadmill.



C. Dimensionality Reduction TABLE I: Average and SD«) of the ASI for the 17 patients

The MDS dimensionality reduction-based mapping tech- Normal gait | Left LLD | Right LLD

nique [12] aims at visualizing the (temporally shift-inizart) ?"erage g'gégggé 0'00‘3356’;22 Obogggig’{

asymmetric body parts of the gait cycle of a patient with —pared aifference  test is statistically signiicapt €< 0.01)
a perceptual color difference which is even greater than

the asymmetry is large in magnitude. This mapping is

achieved by considering each pair of pixels (i.e., pail\of . o
dimensional depth signals) in the original gait video semae stochastic search-based) optimization procedure [8]ttksr

and by quantifying their (temporally shift-invariant) deg reason, we decide to refine _the esti_mg_ted asy_mmetry map
of asymmetry with a temporally shift-invariant pairwiseg'ven by the FastMap as being the initial starting solution

Euclidean distances; between each pairs((t), () of of a stochastic chal search (using a Ipcal _exploratlon rRadou
depth signals: the current solution and the Metropolis criteria) as pr@gos

N in [8].
disi(s1, = min t+7) —so(t))? 6
tsi(S1,82) = 1 {;(Sl( ) = #a(8) } © D. Color Space Conversion

where the maximal value af corresponds approximately to It is important to mention that, at this stage, we are not
the number of frames in a gait cycle. assured that the LAB color values of the 3D asymmetry
In addition, four points are important to consider in thig"aP aré not saturated in the RGB space. In order to fix this
step: problem, we use a simple linear stretching of tb,eA,_B
_ o color values such ak € [0 : 100], and A4, B have a maximal
e First, it is important to understand that the use of thgmpiitude of100 with a zero mean in order to ensure that a

shift-invariant pairwise Euclidean distance is crucialthiis  yery small number of pixels are outside the RGB color space
MDS-based mapping step. Indeed, two pixels in the 9ajg).

video cube, i.e., two depth signals (as a function of the Xime

with a perfect similar movement but in phase opposition V. EXPERIMENTAL RESULTS

(phase difference of half a gait cycle) like the legs and

arms will have to be considered as symmetric with the same This section presents the asymmetry maps obtained for
(perceptual) color in the final asymmetry map. patients with or without (simulated) pathologies. Seqlegnc

e Second, in order to finally provide a final perceptuaPf 300 frames have been used (longer sequences did not
color asymmetry visualization map, the MDS mapping isy|eld. better results). Thls correspor)ds approximately to .
achieved in a perceptual color space, namely the classichfait cycles depending on the subject's speed and step size.
CIE 1976 L*,a*,b* (LAB) color space which is approx- On average for all images, the correlatlor_1 score [8] for the
imately perceptually uniform. In this color space, a colofompression o800 frames to3 channels is93.5% + 2%
difference shall (perceptually) appear twice as large fohich shows us that the EastMap-.base.d MDS procedure is
a measured (temporally shift-invariant) asymmetry valu@ble to preserve, due to its non-linearity property, a large
which is twice bigger. qguantity of information of the original image sequence.

e Third, as already said, MDS is a dimensionality reduc- Asymmetries can be easily detected visually, as shown by
tion technique that maps objects lying in an original high Fig- 2, 3, and 4, but also quantitatively. To do so, the mean
dimensional space to a lower dimensional spaén(our of biggest mirrored differencéss computed for each line of
application), but does so in an attempt that the betweeH1e map, which yields a vertical cufieThen, by taking the
object distances are preserved as well as possible. THan value of the curve, a a global asymmetry index (ASI)
original MDS algorithm is not appropriate in our applicatio IS computed.
and more generally for all large scale applications becauseTable | shows the average and standard deviation of the
it requires an entiréV x N distance matrix to be stored in ASI for the three groups of patient. The statistical diffeve
memory (with aO(N3) complexity). Instead, the FastMap for the paired t test were highly significant for both left and
[7] is a fast alternative to the MDS that we have adoptefight legs LLD group f << 0.01). This demonstrates that
herein with a linear complexity)(pN) (with p = 3, the this method can efficiently detect gait symmetry. In pragtic
dimensionality of the target spaée) three patients had a higher ASI for their normal gait than

e The above-mentioned FastMap-based mapping methogith the sole (Fig. 4). By looking at their videos, the author
which exploits an algebraic proceddrénas the main ad- have noticed that those patients already had a visible gait
vantage of being very fast (for large scale applicationg}Symmetry (one arm swinging more than the other, tilted
but slightly less accurate than a (gradient descent or locgfoulders, etc.).

Lin FastMap, the axis of target space are then constructeengiion %For a linek of width w, the set of mirrored differences i$i|p; x —
by dimension. More precisely, it implicity assumes thae tbbjects are  Pw—ik |3, Vic[o,w/2]} Wherep; ; is a pixel at position(s, 7).
points in ap-dimensional Euclidean space and selects a sequenpe<of 3To estimate this curve, images are centered a first time basetthe
N orthogonal axes defined by distant pairs of points (calladtg) and position of the neck, then more accurately by seeking thenmim area of
computes the projection of the points onto the orthogonakax the curve around the axis of symmetry.



VI. CONCLUSION

Patient A Patient B Patient C

In this paper, we have presented a new gait analysis sy
tem, based on a depth sensor, which estimates a percept
color map providing a quick overview of existing asymmetry
existing in the gait cycle of a patient and an index (ASl)ftha o
was proved statistically significant €< 0.01). While being
cheap, markerless, non-invasive, easy to set up and suita
for small room and fast diagnostic, this new gait analysit
system offers a readable and flexible tool for clinicians tc
analyze gait characteristics which can be easily exploite
for disease progression, recovery cues from post-operati  50°
surgery or might be used for other pathologies where ga
asymmetry might be a symptom. sad

Line number
w
o
o

&
=]
=]

75 125175 225 75 125175 225 75 125175 225 0.00 0.65 D.iO 0.‘:1.5
VIlI. ACKNOWLEDGMENTS

. . Fig. 4: Asymmetry map for subject #09, the worst result of
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