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Abstract— The gait movement is a complex and essential
process of the human activity. Yet, many types of diseases (neu-
rological, muscular, orthopedic, etc.) can be diagnosed from the
gait analysis. This paper introduces a novel method to quickly
visualize the different body parts related to an (temporally shift-
invariant) asymmetric movement in the human gait of a patient
for daily clinical usage. The goal is to provide a cheap and easy-
to-use method that measures the gait asymmetry and display
results in a perceptual and intuitive way. This method relies on
an affordable consumer depth sensor, the Kinect, which is very
suitable for small room and fast diagnostic, since it is easyto
setup and marker-less.

I. I NTRODUCTION

Scientists and medical communities have been interested
in the analysis of gait movement for a long time, because,
as mentioned in [1], [2], [3] symmetrical gait is expected in
the case of healthy people, whereas asymmetrical gait is a
common feature of subjects with loco-motor disorders.

Abnormal or atypical gait can be caused by different
factors, either orthopedic (hip injuries [4], bone malforma-
tions, etc.), muscular, or neurological (Parkinson’s disease,
stroke, etc.). Consequently, different parts of the body can
be involved or affected, which make gait analysis a complex
procedure. Nevertheless, gait analysis remains a powerful
early clinical diagnostic tool that is easy to perform and
non-invasive, and has been used until now for detection
and tracking of disease progression, joint deficiencies, pre-
surgery planning, as well as recovery from post-operative
surgery or accident.

But nowadays, with the aging population, clinical diagnos-
tics have to be cheaper, faster and more convenient, while re-
maining accurate. However, analyzing a gait video sequence
is often difficult, requires time, and subtle anomalies can
be omitted. Also, videos are not easy to annotate, store
and share. The goal of the proposed diagnostic tool is to
evaluate a perceptual color map of asymmetries from a video,
acquired by a depth sensor (Kinect), and recorded in the
coronal (front) plane of a patient walking on a treadmill. A
perceptual color map of asymmetries is the compression of
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a patient’s video mapped into a color image in such manner
that asymmetries of the body parts related to an (temporally
shift-invariant) asymmetric movement in the human gait
cycle may be clearly visible and immediately quantifiable.

II. PREVIOUS WORK

One popular method for gait analysis is motion capture
[11] which consists in tracking infrared (IR) reflective mark-
ers with multiple IR cameras. This method is effective but
requires a lot of space to be set up along with lots of expertise
and time and effort to be installed and used.

In [6], the authors proposed to also use a treadmill and a
Kinect depth sensor to quantify the gait asymmetry with a
low-cost gait analysis system. More precisely, the authors
compute an index for quantifying possible asymmetries
between the two legs by first dividing each gait cycle in
two sub-cycles (relative to the left and right step sub-cycle),
and by comparing these two sub-cycles, in term of an
asymmetry index (proportional to the difference of depth,
over a gait cycle, between the two legs) after a rough spatial
and temporal registration procedure. Although, the systemis
able to distinguish whether the patient has a symmetric walk
or not, no visualization or information on the location of the
asymmetries is provided, unlike our method.

In [10], the Kinect camera is placed at the back of a
treadmill and is used to record a video sequence of the
patient walk. The authors then simply compute the mean
of the obtained depth image sequence (over a gait cycle or a
longer period) in order to compress the gait image sequence
into one image which is finally called a depth energy image
(DEI). Their results were conclusive since they were able
to distinguish both visually and quantitatively asymmetries
(a symmetric walk generating a DEI exhibiting a symmetric
silhouette, in terms of mean depth and conversely). Neverthe-
less, this latter strategy is inherently inaccurate since taking
the average (mean) depth over a gait cycle does not allow to
detect all asymmetric body movements; indeed, movement
variation of some parts of the body can clearly be different
and asymmetric while keeping the same mean (in term of
mean depth).

In our work, the depth image sequence of the gait, contain-
ing a number of gait cycles (and wherein each pixel of the
video corresponds to a depth signal, as a function of time) is
reduced to three dimensions with a Multi-Dimensional Scal-
ing (MDS) mapping [12] using a temporally shift invariant
Euclidean distance. This allows us to quickly display the gait
image cube into an informative color image (with red, green
and blue channels) allowing to visualize the asymmetric body



parts of the gait cycle of a patient with a color difference,
in a perceptual color space, which is even greater than the
asymmetry is large in magnitude.

III. D ATA DESCRIPTION

The dataset consists of multiple sequences of people walk-
ing on a treadmill, facing a cheap depth sensor (Kinect). The
Kinect sensor outputs30 depth maps per second (30 fps),
with a resolution of640 per 480 pixels. The dataset con-
tains51 sequences acquired from17 subjects walking with
or without simulated length leg discrepancy (LLD). Every
patient had to walk normally (group A), then with a5 cm
sole under the left foot (group B), then with the sole under
the right foot (group C). Sequences are approximately5
minutes long and contains around180 gait cycles. For all
sequences, the same relative position between the treadmill
and the sensor is kept in order for the subject to be within
the same area of images.

IV. M ETHOD

In addition to a prerequisite setup step, the method can be
divided into three steps: pre-processing, MDS-based dimen-
sionality reduction and color space conversion.

A. Setup Phase

Since the scene took place in a non-cluttered room where
the treadmill is in the same position relatively to the camera,
a 3D bounding box around the subjects can be set. Hence,
by retrieving 3D information, such as the position of the
treadmill or the patient, we can convert this information back
in the 2D image space and segment the patient’s silhouette
directly from a depth map.

Therefore, the setup step is to, first, determine the 3D
position of the treadmill and the patient by converting a
depth map in a 3D point cloud. To do so, the depth sensor
is reasonably considered as a pinhole camera model with
intrinsic parameters,K, (see [5, p. 30]) defined as:
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wheref is the focal length in pixels and(cu, cv) is the image
center in pixels (values given by the manufacturer). From a
depth map, a pixel at position(u, v)T with depth value,d is
projected in 3D space,(X, Y, Z)T , using:
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First, the positions of the points around the patient, ap-
proximated by a 3D bounding box, is first estimated. Second,
the minimal and maximal depth,Zmin and Zmax, of the
8 points (of the bounding box) are then retrieved. Third,
the 8 points were projected back in the 2D image space
(see [5, p. 30]) where the minimal and maximal vertical and
horizontal 2D position value (umin, umax, vmin, andvmax)
are finally estimated.

The necessity of working in 3D space is because of the
spatial coherence of objects in the scene. For instance, in 3D
space the treadmill is always beneath the subject whereas
in an image it overlaps the patient, as shown in Fig. 1b.
Once this step is done, it is no more necessary to project the
depth maps in the 3D space as long as the camera and the
treadmill stay at the same relative position. In our case, some
small adjustments on the enclosing parameters,umin, umax,
vmin, vmax, Zmin andZmax, were needed to encompass all
sequences.

B. Silhouette Segmentation

Now, with, the required information, the patient can be
segmented in each frame of the original gait depth sequence
(of N frames).

1) Background removal: Background removal is trivial
since the subject is in the middle of the image in a non-
cluttered room. Therefore, every pixel outside the range of
the enclosing parameters around the subject are clipped to a
default value.

2) Treadmill removal: After background removal, the
only objects remaining in the image are the treadmill and
the patient. Because the treadmill is below the patient, it can
be removed by selecting pixel with coordinates superior to
a threshold (Y axis is going from top to bottom) and clip
them. An equation in the 2D-space can be derived from Eq.
(2) in order to work directly on the image:

Y < Ty (3)
d

f
(v − cv) < Ty (4)

v <
fTy

d
+ cv, sinced > 0 andf > 0 (5)

whereTy is the threshold value measured during the setup
phase andd is the depth.

(a) (b) (c)

Fig. 1: Setup and pre-processing steps. (a) Original depth map. (b)
After clipping. (c) After treadmill removal.

Fig. 1 visually shows the different steps of the setup and
pre-processing stage.

3) Filtering: Finally, the whole sequence is filtered with
a 3D (5 × 5) median filter to remove some aberrations on
the contours or on top of the treadmill.



C. Dimensionality Reduction

The MDS dimensionality reduction-based mapping tech-
nique [12] aims at visualizing the (temporally shift-invariant)
asymmetric body parts of the gait cycle of a patient with
a perceptual color difference which is even greater than
the asymmetry is large in magnitude. This mapping is
achieved by considering each pair of pixels (i.e., pair ofN -
dimensional depth signals) in the original gait video sequence
and by quantifying their (temporally shift-invariant) degree
of asymmetry with a temporally shift-invariant pairwise
Euclidean distancedtsi between each pair (s1(t), s2(t)) of
depth signals:

dtsi(s1, s2) = min
∀τ

{

N
∑

t=0

(s1(t + τ) − s2(t))
2

}

(6)

where the maximal value ofτ corresponds approximately to
the number of frames in a gait cycle.

In addition, four points are important to consider in this
step:

• First, it is important to understand that the use of the
shift-invariant pairwise Euclidean distance is crucial inthis
MDS-based mapping step. Indeed, two pixels in the gait
video cube, i.e., two depth signals (as a function of the time)
with a perfect similar movement but in phase opposition
(phase difference of half a gait cycle) like the legs and
arms will have to be considered as symmetric with the same
(perceptual) color in the final asymmetry map.
• Second, in order to finally provide a final perceptual

color asymmetry visualization map, the MDS mapping is
achieved in a perceptual color space, namely the classical
CIE 1976 L∗, a∗, b∗ (LAB) color space which is approx-
imately perceptually uniform. In this color space, a color
difference shall (perceptually) appear twice as large for
a measured (temporally shift-invariant) asymmetry value
which is twice bigger.
• Third, as already said, MDS is a dimensionality reduc-

tion technique that maps objects lying in an original highN
dimensional space to a lower dimensional space (3 in our
application), but does so in an attempt that the between-
object distances are preserved as well as possible. The
original MDS algorithm is not appropriate in our application
and more generally for all large scale applications because
it requires an entireN × N distance matrix to be stored in
memory (with aO(N3) complexity). Instead, the FastMap
[7] is a fast alternative to the MDS that we have adopted
herein with a linear complexityO(pN) (with p = 3, the
dimensionality of the target space)1.
• The above-mentioned FastMap-based mapping method,

which exploits an algebraic procedure1, has the main ad-
vantage of being very fast (for large scale applications)
but slightly less accurate than a (gradient descent or local

1In FastMap, the axis of target space are then constructed dimension
by dimension. More precisely, it implicitly assumes that the objects are
points in ap-dimensional Euclidean space and selects a sequence ofp ≤
N orthogonal axes defined by distant pairs of points (called pivots) and
computes the projection of the points onto the orthogonal axes.

TABLE I: Average and SD (σ) of the ASI for the 17 patients
Normal gait Left LLD Right LLD

Average 0.045374 0.053549∗ 0.055936∗
σ 0.008080 0.006274 0.009451
*Paired difference t test is statistically significant (p << 0.01)

stochastic search-based) optimization procedure [8]. Forthis
reason, we decide to refine the estimated asymmetry map
given by the FastMap as being the initial starting solution
of a stochastic local search (using a local exploration around
the current solution and the Metropolis criteria) as proposed
in [8].

D. Color Space Conversion

It is important to mention that, at this stage, we are not
assured that the LAB color values of the 3D asymmetry
map are not saturated in the RGB space. In order to fix this
problem, we use a simple linear stretching of theL, A, B
color values such asL ∈ [0 : 100], andA, B have a maximal
amplitude of100 with a zero mean in order to ensure that a
very small number of pixels are outside the RGB color space
[8].

V. EXPERIMENTAL RESULTS

This section presents the asymmetry maps obtained for
patients with or without (simulated) pathologies. Sequences
of 300 frames have been used (longer sequences did not
yield better results). This corresponds approximately to5 or
8 gait cycles depending on the subject’s speed and step size.
On average for all images, the correlation score [8] for the
compression of300 frames to3 channels is93.5% ± 2%
which shows us that the FastMap-based MDS procedure is
able to preserve, due to its non-linearity property, a large
quantity of information of the original image sequence.

Asymmetries can be easily detected visually, as shown by
Fig. 2, 3, and 4, but also quantitatively. To do so, the mean
of biggest mirrored differences2 is computed for each line of
the map, which yields a vertical curve3. Then, by taking the
mean value of the curve, a a global asymmetry index (ASI)
is computed.

Table I shows the average and standard deviation of the
ASI for the three groups of patient. The statistical difference
for the paired t test were highly significant for both left and
right legs LLD group (p << 0.01). This demonstrates that
this method can efficiently detect gait symmetry. In practice,
three patients had a higher ASI for their normal gait than
with the sole (Fig. 4). By looking at their videos, the authors
have noticed that those patients already had a visible gait
asymmetry (one arm swinging more than the other, tilted
shoulders, etc.).

2For a linek of width w, the set of mirrored differences is:{‖pi,k −
pw−i,k‖

2
2,∀i∈[0,w/2]} wherepi,j is a pixel at position(i, j).

3To estimate this curve, images are centered a first time basedon the
position of the neck, then more accurately by seeking the minimum area of
the curve around the axis of symmetry.



VI. CONCLUSION

In this paper, we have presented a new gait analysis sys-
tem, based on a depth sensor, which estimates a perceptual
color map providing a quick overview of existing asymmetry
existing in the gait cycle of a patient and an index (ASI), that
was proved statistically significant (p << 0.01). While being
cheap, markerless, non-invasive, easy to set up and suitable
for small room and fast diagnostic, this new gait analysis
system offers a readable and flexible tool for clinicians to
analyze gait characteristics which can be easily exploited
for disease progression, recovery cues from post-operative
surgery or might be used for other pathologies where gait
asymmetry might be a symptom.
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Fig. 2: Asymmetry map for subject #15, one of the best result
of the dataset. ASI is0.03082 for normal gait,0.04740 for left
asymmetry, and0.05266 for right asymmetry.

Fig. 3: Asymmetry map for subject #05, one of the best result
of the dataset. ASI is0.04164 for normal gait,0.05858 for left
LLD, and0.06824 for right LLD. With the right LLD (case C), the
asymmetry of arm swing is clearly noticeable.

Fig. 4: Asymmetry map for subject #09, the worst result of
the dataset. The corresponding ASI are0.05672 for normal gait,
0.05166 for left LLD, and 0.04625 for right LLD. The patient had
naturally a strong arm swing but a sole on the left foot seems to
help rectifying it.
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