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Abstract— This paper introduces a new quantification
method for gait symmetry based on depth information acquired
from a structured light system. First, the new concept of Depth
Energy Image is introduced to better visualize gait asymmetry
problems. Then a simple index is computed from this map
to quantify motion symmetry. Results are presented for six
subjects with and without gait problems. Since the method is
markerless and cheap, it could be a very promising solution in
the future for gait clinics.

I. INTRODUCTION

Gait analysis systems are important for helping diagnostic
of abnormal gait patterns. For simplicity, gait symmetry has
been often used to characterize gait problems [5]. Indeed,
the lower limbs are supposed to evolve symmetrically for
a normal walker. This statement is controversial for some
researchers as the gait can be influenced for example by
limb dominance [6]. However, a quantification tool for gait
symmetry could be useful for clinicians to evaluate walking
dysfunctions, for example for stroke and amputee patients,
or to analyze the recovery after a knee surgery.

One commonly used method for gait analysis is motion
capture (MOCAP) [8], [10] which consists in tracking in-
frared (IR) reflective markers using multiple IR cameras.
Such systems have been used to analyze gait symmetry [8],
[10], as well as acceleration signals [9], with walkway
systems [3] or laterally placed cameras [5]. In this paper,
a new gait analysis system is proposed based on a treadmill
associated with a cheap depth sensor placed at the back of
the treadmill. The advantages of our system compared with
MOCAP systems are that no markers are needed and its low
cost price, which makes the system well adapted for clinical
use.

For our experiments, six young male adults were asked
to walk on a treadmill (Life Fitness F3). After a period
of habituation of 5min, their normal walk speeds were
determined and used for further testing. Three tests were
done:

• Normal walk which served as a reference.
• Right leg problem which was simulated with a heel

cup (height of 2.5cm) placed inside the right shoe.
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• Left leg problem which was simulated with a heel cup
(height of 2.5cm) placed inside the left shoe.

The heel cup is used here to generate a limping walk which
will produce an unbalanced gait with asymmetric character-
istics. For each test, after another period of habituation on
the treadmill (2-3 min), a three-minute video was recorded
with the depth camera (see Section II) placed at the back of
the treadmill (back view of the person). Ethical approbation
was obtained from the research ethics board (REB) of our
university for this project.

II. DEPTH SENSORS
Depth maps, which show the different depths of a scene,

can be obtained in several ways:
• Stereo vision [13] The 3D view of a scene can be

reconstructed with a calibrated binocular system. How-
ever, to obtain precise depth maps, such systems require
to be well calibrated and to have a textured scene.
Moreover, stereo reconstruction algorithms are often
computationally expensive.

• Time-of-Flight (TOF) camera [14] Accurate depth
images can be obtained with a TOF camera, but this
technology is very expensive and currently limited to
low image resolution (e.g. image size of 176x144 pixels
in [7], [14]).

• Structured light With a known artificial texture pro-
jected on the scene, a depth map can be obtain from a
monocular system. The Kinect sensor [11] is based on
this method with an infrared structured light (IR dots)
projected in the scene and observed with an infrared
camera. Such systems can acquire bigger images than
a TOF camera at a lower price (e.g. image size of
640x480 pixels at 30 fps for the Kinect sensor which is
currently fifty times cheaper than a TOF camera).

For clinical gait analysis, a low-cost and easy-to-install
system is more suitable, which encouraged us to choose the
Kinect sensor [11] to acquire depth images. The resulting
images are disparity maps where far objects are represented
with higher Kinect disparity values (within the depth range
used in our study). The disparity values can be converted
in depth values after a calibration step, which consists in
moving a plane along a rail at known depths and acquiring
corresponding disparity values. Then, a set of disparity-depth
pairs is obtained and used to compute the relation between
disparity and depth:

Depth = 1/(−0.0032936 Disparity + 3.5463) (1)

An attempt to use depth images for gait analysis has
previously been done using a TOF camera [7]. However,
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Fig. 1. The disparity human silhouette (c) is obtained from (a) the
background disparity image B and (b) the current disparity image I. The
color-bars represent the disparity values.

the TOF camera was placed sideways to use depth to
discriminate the two legs. In this work, the depth sensor is
placed at the back of the treadmill to clearly have the two legs
entirely visible in the image (no occlusion). Moreover, with
this configuration, the depth of each leg is directly readable
with the depth image.

III. DEPTH ENERGY IMAGE (DEI)

Gait Energy Image (GEI) [1], which has been widely used
for gait recognition, consists in computing the mean body
silhouette over gait cycles in the sagittal plane, the body
silhouette being extracted with a background subtraction
method. Based on this idea, we introduce a new spatio-
temporal gait representation, called Depth Energy Image
(DEI), which uses depth silhouette images in the coronal
plane instead of binary silhouette images in the saggital
plane.

A. Depth silhouette image

The human silhouette image is extracted with a classical
background subtraction method [2] applied to disparity val-
ues instead of gray level values. From Ntrain background
images (Ntrain = 200 in our experiments), the mean
disparity background image B is computed and used for
segmentation. For each pixel (i, j) of the current image I ,
if |I(i, j)−B(i, j)| ≥ T (i, j) then the pixel is considered
as foreground, with the threshold T (i, j) equals to 10 times
the pixel standard deviation (computed during the training
phase). The binary silhouette is then cleaned with morpho-
logical filtering. An example of disparity silhouette, obtained
by combining the binary silhouette with the current image,
is shown in Fig. 1.

The disparity silhouette is then converted to depth values
using (1) and centered with the mean silhouette depth at
each instant t (to avoid depth differences due to different
localizations of the person on the treadmill). An example of
the final depth silhouette which will be used thereafter is
shown in Fig. 2.
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Fig. 2. On the left, the centered depth silhouette with depth values from
−10cm to 15cm. On the right, the vertical projection of the silhouette with
the detected localization of the neck in magenta.

As some of our subjects did not keep their heads always
straight, the silhouette are recomputed from the neck to the
feet using the vertical projection of the silhouette (number
of silhouette pixels for each line). We assumed that the neck
localization corresponds to the local minimum of the vertical
projection which is the closest to one eighth of the human
height from the top of the head as shown in Fig. 2.

B. Depth Energy Image

The Depth Energy Image (DEI) is simply the mean
depth silhouette over a gait cycle. A symmetric walk should
generate equal mean depth legs over a gait cycle, which can
be used later to compute a symmetry index.

To compute the DEI over a gait cycle, each depth silhou-
ette is vertically normalized and reshaped to 300x200 pixels
to be summed:

IDEI =
1
N

N∑
t=1

I
(t)
HD (2)

where N is the number of images for one gait cycle and
I
(t)
HD is the centered human depth silhouette at time t.

For better precision, the DEI is computed on 1800 images
which correspond to a one minute walk at 30 fps. An
example of DEI obtained for a symmetric normal walk is
shown in Fig. 3. This figure shows also the absolute value
of DEI which will be used for gait analysis.

IV. GAIT ANALYSIS

A symmetry leg motion index is computed with the abso-
lute value of DEI, separated in two sub-images corresponding
to the left and the right legs. For each sub-image, the
maximum value for each row is computed to obtain two
curves, one for each side of the body, as shown in Fig. 4. For
symmetric walk, the left side curve in red must be similar to
the right side curve in blue for the lower limbs. Therefore, we
used as a symmetry index, the mean absolute distance value
Dleg between these two curves for the leg section (between
1
2Himage and 3

4Himage with Himage the image height). For
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Fig. 3. On the left, an example of DEI obtained for a symmetrical normal
walker, and the corresponding absolute value of DEI on the right.

example in Fig. 4(a), this distance Dleg is smaller than 0.6cm
for a symmetric walk.

V. EXPERIMENTAL RESULTS

The data acquisition from the Kinect was done with
libfreenect [12]. The video sequences were acquired with
a frame rate of 30 Hz for an image size of 640x480 pixels.
The image processing analysis was done with Matlab R©.

Our method has been tested on six subjects:
• 3 subjects had a symmetric normal walk as the one

shown in Fig. 4. For these normal walks, the curves
were similar for the two legs. With the right leg problem
generated with a heel cup, the right leg curve (blue
curve) was higher than the left one (red curve), which
means that the right leg was on average in front of the
left. As expected, the inverse occurred with the left leg
problem where the left leg is on average in front of
the right. The distance Dleg was higher than 1cm for
symmetric problems.

• 3 subjects had a little asymmetric normal walk as the
one shown in Fig. 5. Similar results were observed with
these subjects for left and right leg problems with a
distance Dleg higher than 1cm.

The heel cup used here to simulate a leg problem generates
a leg length discrepancy (LLD). Research works on LLD [4]
have shown that stance time and step length decrease for the
shorter leg. This can explain the fact that the leg without the
heel cup (shorter leg) was on average behind the other leg.

Table I summarizes the distances obtained for the different
subjects. For symmetric normal walkers, the distance Dleg

for normal walk was smaller than 0.6cm, and increased in
case of leg problems. The distance Dleg was higher for
normal walk of asymmetric normal walkers, but the heel cup
effect was still visible increasing the asymmetry as shown in
Fig. 5.

DEI has proven its efficiency in detecting an asymmetric
gait. This image is even more informative as the upper limbs
can also be analyzed. All of our subjects had an asymmetry
of arm swing for normal walk, which has been previously
described by [10] with a MOCAP system. This arm swing
asymmetry can be clearly seen with the DEI (see Fig. 4-
5) and confirmed with a measure index Darm computed
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Fig. 4. Example of subject S2 with symmetric normal walk (a) and gait
problems generated with a heel cup (b-c). The left leg is shown in red and
the right leg in blue.

for the arm portion (between 1
4Himage and 1

2Himage with
Himage the image height). The distance Darm is also shown
in Table I.

VI. CONCLUSIONS AND FUTURE WORKS

A new gait analysis system, based on depth informa-
tion acquired from a structured light system, is proposed
in this paper and tested with this preliminary study on
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Fig. 5. Example of subject S6 with an asymmetric normal walk. The left
leg is shown in red and the right leg in blue.

gait symmetry. Our results show that gait asymmetry can
be efficiently detected from back-viewed depth images. A
new type of image, the Depth Energy Image (DEI) which
corresponds to the mean silhouette depth over a long period,
offers a directly readable tool for clinician to analyze gait
characteristics. A measure has been proposed to quantify
leg (and arm) motion asymmetry. This gait analysis system
is much less expensive than a MOCAP system and does
not require wearable markers. Therefore it offers a new

- Subjects with normal walk -

Subject S1 S2 S3
Normal walk Dleg (cm) 0.549 0.586 0.566

Right leg problem Dleg (cm) 1.72 1.73 1.56
Left leg problem Dleg (cm) 1.21 1.19 1.81

Normal walk Darm (cm) 1.16 2.14 3.3
Right leg problem Darm (cm) 1.06 1.36 3.48
Left leg problem Darm (cm) 0.697 1.53 3.27

- Subjects with slightly asymmetric normal walk -

Subject S4 S5 S6
Normal walk Dleg (cm) 1.52 0.744 1.16

Right leg problem Dleg (cm) 1.17 0.707 1.16
Left leg problem Dleg (cm) 2.31 2.18 1.48

Normal walk Darm (cm) 1.79 2.74 1.64
Right leg problem Darm (cm) 1.4 2.42 2.4
Left leg problem Darm (cm) 1.48 2.15 0.829

TABLE I
DISTANCES OBTAINED FOR THE DIFFERENT SUBJECTS.

promising solution for clinical diagnostic. For future works,
this method will be further evaluated and improved with
more subjects, different gait measurements or indexes, and
other depth camera positioning (e.g. side view).
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