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Abstract. This work deals with unsupervised sonar image segmenta-
tion. We present a new estimation segmentation procedure using the
recent iterative method of estimation called Iterative Conditional Esti-
mation (ICE) [1]. This method takes into account the variety of the
laws in the distribution mixture of a sonar image and the estimation of
the parameters of the label field (modeled by a Markov Random Field
(MRF)). For the estimation step, we use a maximum likelihood tech-
nique to estimate the noise model parameters, and the least squares
method proposed by Derin et al. [2] to estimate the MRF prior model.
Then, in order to obtain an accurate segmentation map and to speed up
the convergence rate, we use a multigrid strategy exploiting the previ-
ously estimated parameters. This technique has been successfully applied
to real sonar images !, and is compatible with an automatic processing
of massive amounts of data.

1 Introduction

Due to its high-resolution performance a high frequency sonar allows to visualize
all kinds of objects located on the sea-bottom. The detection of these objects
and their classification (as wrecks, rocks, man-made objects, and so on...) are
based on the extraction and the identification of their associated cast shadows
in sonar pictures [3]. Before any classification step, one must segment the sonar
image between shadow areas and sea-bottom reverberation areas. Nevertheless,
segmenting an image into different classes without a prior: information is not
an easy task in computer vision: the main difficulty is that the estimation of
the model parameters introduced is required for the segmentation, while the
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segmentation is needed for the parameter estimation. For example a supervised
Markovian segmentation [4] [5] gives good results; nevertheless, a substantial
number of estimated parameters is usually required in order to solve the difficult
problem of unsupervised sonar images segmentation.

To circumvent this difficulty, a scheme was proposed in [6] in which the estima-
tion and the segmentation are implemented recursively. Although the method
proved to converge in the case of independent Gaussian model, it is not clear
that it can be extended to MRF model. Also, the method requires very com-
plicated computations. An alternate approach to solve the unsupervised MRF
segmentation problem consists in having a two steps process. First, a parameter
estimation step in which we have to estimate the noise model parameters and
the MRF model parameters. Then, a second step in which we apply the seg-
mentation algorithm with the estimated parameters.

First, let us consider the estimation of the noise model parameters. There are
a number of methods that use the image histogram. Most of them (Fourier,
polynomials and cumulate histogram methods) are inefficient in the case of an
important distribution mixture and without mathematical justification to esti-
mate a mixture of different laws [7]. Several techniques have been proposed to
determine a Maximum Likelihood estimate of the noise model parameters from
a given image. EM (FEzpectation Mazimization) or SEM algorithms (Stochas-
tic Ezpectation Mazimization) can be used in the case of Gaussian distribution
mixtures [8] [9]. In a specific application to sonar imagery, we have taken into
account the variety of laws in the distribution mixture [3]. Nevertheless, these
algorithms do not account for the properties of the label field defined in a MRF
segmentation as a Gibbs distribution. As we will show in this paper, another
way to estimate these parameters consists in using the ICE procedure [1].

Let us consider now the estimation of the MRF model parameters. The MRF
model provides a powerful tool for incorporating the knowledge about the spa-
tial dependence of the labels of the segmented image. The knowledge about the
scene is incorporated into an energy function that consists of appropriate clique
functions. In most of the previous work using MRF models, the parameters of
the prior model are assumed to be known and determined in an ad hoc fashion.
Howewer, the values of these parameters determine the distribution over the
configuration space to which the system converges. Besides, in our application,
it is difficult to find appropriate values for the clique parameters since the real
scenes are different for each picture (sea floor with pebbles, dunes, ridges, sand,
...). Thus, estimating these parameters is very crucial in practice for successful
labelling. One way to estimate them from a given image is to use a gradient
descent algorithm [10] but this method is slow and very sensitive to the initial
value given to initialize the procedure. In [11], the EM algorithm is used but
this iterative scheme also requires a lot of computing time [12]. Besides these two
iterative methods may run into a local maximum without reaching the proper
solution. In [13], the authors propose to implement the estimation of the pa-
rameters associated with clique functions as a neural network whose weights are
learned from examples by the error backpropagation algorithm. This method



is interesting but requires a learning step from a sample training data. Let us
mention also the use of Metropolis algorithm in [14].

In this paper, we adopt for the Estimation Step the ICE procedure [1] to es-
timate simultaneously the MRF prior model parameters (with the Least Square
estimator LSQR. described by Derin et al [2]) and the noise model parameters
(with a Maximum Likelihood estimator). For the Segmentation Step, we use a
multigrid segmentation with the previously estimated parameters. This paper is
organized as follows : In sections 2 and 3, we define the notation and we give
a brief description of the ICE procedure and the used estimators. Sections 4
and 5 detail the Estimation Step and the initialization of the procedure. The
experimental results on real scenes are presented in section 6.

2 Iterative Conditional Estimation

We consider a couple of random fields 7 = (X,Y), with Y = {V;,s € S} the
field of observations located on a lattice S of N sites s, and X = {X;,s € S}
the associated label field. Each of the Y; takes its value in A,s = {0,...,255}
and each X in {eg = shadow, e; = sea bottom reverberation}. The distribution
of (X,Y) is defined by, firstly, Px (z), the distribution of X which is supposed
stationary and Markovian and, secondly, the site-wise likelihoods Py, ; x_ (ys /xs).
In this work, these likelihoods depend on the class label z;. The observable Y is
called the incomplete data and Z the complete data.

In the unsupervised segmentation case, we have to estimate in a first step (Es-
timation Step), parameter vectors @, and @, which define Px (x) and Py, x(y/x)
respectively. We estimate them using the iterative method of estimation called
Iterated Conditional Estimation (ICE) [1]. This method requires to find two es-

timators, namely @, = @, (X) and ng = @,(X,Y) for completely observed data.
When X is unobservable, the iterative ICE procedure defines @Egk-H] and @_E/kﬂ]
as conditional expectations of @, and @, given ¥ = y, computed according to
the current values @[xk] and @E,k]. These are the best approximations of @, and @,
in terms of the mean squares error. By denoting Fj, the conditional expectation

using o] = [@Ef], @g/k]], this iterative procedure is defined as follows:

e One takes an initial value @I = [@ETO],@LO]].

o dlF+1 is computed from ®*l and Y =y by :

B+ = B (b, |V = o] (1)
o+l = B[, |Y = ] 2)

The computation of these expectations is impossible in practice, but we can
approach (1) and (2), thanks to the law of large numbers by:

1
(pgﬁ—l] _ ~ [@x(l’(l)) + -+ (Px(:l:(n))] (3)



1
PG = — - [@y(21),9) + + Py (), )] )

where z(;, ¢« = 1,...,n are realizations of X according to the posterior dis-

tribution Px/}:@[k](fﬁ/y,@[k]). Finally, we can use the ICE procedure for our
application because we get:

e An estimator @,(X,Y) of the complete data : we use a Maximum Likelihood
(ML) estimator for the noise model parameter estimation. In order to esti-
mate &, = &, (X), given a realization « of X, we use the LSQR estimator
[2] described by Derin et al. which will be summarized in subsection 3.2.

e An initial value @[% not too far from the optimal parameters (see section 4).

e A way of simulating realizations of X according to the posterior distribution
Px;v(x/y) by using the Gibbs sampler [15].

The ICE procedure is not limited by the form of the conditional distribution
of the noise. This algorithm is well adapted for our application where the speckle
distribution in the sonar images is not exactly known and varies according to
experimental conditions. Besides, let us recall that this method does not assume
the independence of the random variables X; such as the SEM or the EM
algorithm [8][9] and takes into account the Markovian characteristics of the a
priori label field.

3 Estimation of the Model Parameters for the complete
data

3.1 Noise Model Parameters

The Gaussian law, N'(u, 0?), is an appropriate degradation model to describe
the luminance y within shadow regions (essentially due to the electronical noise).
The most natural choice of the estimator ng = &,(xz = eg,y) is the empirical
mean and the empirical variance. If Ny pixels are located in the shadow areas,

we have:
= Y )
e = NO s:Ts=e -
ThaL = 1_ : (ys — finar)? (6)
NO 1 S ry=e

In order to take into account the speckle noise phenomenon [16], we model the
conditional density function of the sea bottom class by a shifted Rayleigh law
R(min, a?) [3] :

Ys — min

Plys/zs = e1) = — .exp[_w]
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The maximum value of the log-likelihood function is used to determine a
Maximum Likelihood estimator of the complete data. If gy, is the minimum
grey level in the sea bottom areas and N; the number of pixels located within
the sea bottom regions, we obtain the following results:

. 1 —
Qi = N, s‘xz::e (ys — mmML)2 (7)
MM L A Gmin — 1 (8)

In the two cases, 7y (the proportion of the kth class) is given by the empirical

frequency:
Ny,

TN, + M

Tk

ke {0,1}

3.2 A Priori Model Parameters

A MRF prior model is specified in terms of parameters, called the clique param-
eters. These parameters correspond to the clique potential values of an equivalent
Gibbs Random Field representation. Several schemes have been proposed in the
computer vision literature for the estimation of the MRF parameters. We can
cite the coding and the maximum pseudo likelihood method proposed by Besag
in [4]. Let us also mention the stochastic gradient method converging to the
maximum of the likelihood developped in [17]. These methods offer a rigorous
mathematical justification, but they are iterative and have to solve a set of non-
linear equations. This means that they require an initial guess for the solution
and may run into a local maximum without reaching the proper solution.

The MRF parameter estimation method described in this section has been
proposed by Derin et al. This scheme is not iterative and parameters estimated
are close to the optimal parameters [2]. We briefly describe this estimator in
terms of our model, i.e., with respect to the 2”? order neighborhood system.
Let X, represent the set of labels assigned to the neighbors of site s and &,=
[B1, B2, B3, Ba] be the a priori parameter vector corresponding to two-site clique
potentials (see Fig. 1).

Sew (100
uxu, [ ] ]

VAW o B B B

Fig. 1. 2"? order neighborhood and two-site associated cliques.



We define:

@t(xsaﬂs) = [I(IS,Ul) +I($S,’U3),I(IS,U2)+
I(ISJ U4)7I(I5, 'Ul) +I(:ESJ 'UB)JI('rSJ 'UZ) +I(I5a '04)]

Where T(21,20) = {0 if 29 = 29,

1 otherwise.
The local energy function U can be expressed as:

Us(zs,m5,Pz) = OF(z5,715) Py (9)
The prior local conditional probability at site s can be written as:

PXstyS (1‘5;775) _ Z_1~ exp
Px,, () ’

Px,/x, (2s/15) = —Us(zs,15,Px)

Where Z; is the local partition function and P(ey,n;) is the joint distribution
of the label e; with the neighborhood n,. We obtain the following expression for
the two different values of 2 (25 = g and 5 = e1) with identical neighborhood
i

_ Px, x,, (e1,m)

exp[—U (e, 7, Pz) + Uleo, mi, Pa)] = Px, x,, (€0, ni)

Taking logarithms on both sides and substituting for U from (9), we have:

Px, x,, (e1, 772)]

10
Px, x,, (€0, m) 10

[©(eo,mi) — Oler,mi)]' s = In [

@, is the unknown parameter vector to be estimated and the ratio of the right
hand side of (10) may be estimated using simple histogramming (by counting
the number of 3 x 3 blocks of type (e1, 7;) and dividing by the number of blocks
of type (eg,n;) over the image). By substituting for each value of n; in (10),
we obtain 256 equations (2% possible neighborhood configurations) in four un-
knowns. A specific combination (e;, 7;) may not exist. In this case we cannot
obtain a linear equation because of the logarithm in (10). Moreover ©(eg,7;)
= O(e1, ;) implies equations of type 0 = C*!, therefore we ignore those types
of equations too. This overdetermined linear system of equations is solved with
the least squares method.

We present some examples of the parameters estimation of a Gibbs Distri-
bution (GD) using realizations that are generated with specified values. The
estimates are compared to the specified values of the parameters in Table 1.
Realizations of GD are presented in Figure 2.



Fig. 2. Realizations of GD with specified parameters (see Table 1 for parameters
values).

Fig &, 51 (o Bz [a
) &, 0.3 03 0.3 03
é, 0.3 0.29 0.31 0.31

®) &, 2 1 -1 1
é
)

« 1.770.94 —0.86 0.98
z 2 2 0 0

@ 1.931.94 -0.050.01
d o, 1 1 -1 1
é 0.950.93 —0.96 1.03

Table 1. Specified (@) and estimated parameters (st) 81, B2, B3, Ba designate
the potentials associated with the horizontal, vertical, right diagonal, left diagonal
cliques.

Synthetic textures created in Figure 2 show that the Gibbs Random Field
representation is an appropriate spatial distribution to model the a priori label
field distribution. Figure 2.a shows inhomogeneous shapes such as segmented
pebbly sea bottom. Figure 2.5 and 2.c¢ depict homogeneous shapes respectively
with a dominant orientation representative of segmented dunes (2.h) or with
geometric shapes as for the shadows of manufactured objects (2.c). Figure 2.d
looks like segmented real scenes containing ridges of sand.

Parameter variation for a GD class gives a wide range of texture realizations.
Those presented are only a few samples. These experiments demonstrate that
estimated parameters are close to the true parameters.

4 Initialization

The initial parameter values have a significant impact on the rapidity of the
convergence of the ICE procedure and on the quality of the final estimates. In
our application, we use the following method: The initial parameter of the noise

model @go] are determined by applying a small non overlapping sliding window



over the image and calculating the sample mean, variance and minimum grey
level estimates. Each estimation calculated over the sliding window thus gives a
sample x;, (i.e a three component vector). These samples {x1,...,xa} are then
clustered into two classes {eg, 1} using the K-means clustering procedure. This
algorithm uses a similarity measure that is the Euclidean distance of the samples
and a criterion J defined by:

K
JIZ Z |Xl—c1; |2
i=1 x;€C;
where the second sum is over all samples in the ith cluster and ¢; is the

center of the cluster. It is easily seen that for a given set of samples and class
assignements, J is minimized by choosing ¢; to be the sample mean of the ith
cluster. Moreover, when c; is the sample mean, J is minimized by assigning x;
to the class of the cluster with the nearest mean. A number of other criteria are
given in [18]. The complete algorithm is outlined below:

1. Choose K initial cluster centres c[ll], cey C[Il(]. These could be arbitrarily, but
are usually defined by:

Mox, 1<i<k
2. At the k*" step, assign the sample x;, 1 <1 < M to cluster 7 if
lx =<l =T v G

In fact, we reassign every sample to the cluster with the nearest mean. In our
application, the measure of similarity between two samples is the Euclidean
distance. In the case of equality, we assign x; arbitrarily to ¢ or j.

3. Let C’Z[k] denote the i*? cluster after Step 2. Determine new cluster centres
by:
1) _ 1
B Ly
xECEk]
where N; = number of samples in Cl[k]. Thus, the new cluster centre is the
mean of the samples in the old cluster.

4. Repeat until convergence is achieved (c£k+1] = cgk] Vi).

Although it is possible to find pathological cases where convergence never
occurs [18], the algorithm does converge in all tested examples. The rapidity of
convergence depends on the number K, of cluster centers chosen, the choice of
initial cluster centers and the order in which the samples are considered. In our
application K = 2.

Figure 3.a represents a sonar image and the result of the K-means clustering
algorithm is reported in Figure 3.b. Figure 3.c shows the representation of the
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two clusters associated to the shadow class and sea bottom reverberation class.
Each sample x; is represented by a point.

ML estimation is then used over the K-means segmentation to find @E/O]. On
one hand, a small size window can increase the accuracy of the segmentation and
then the precision of the distribution mixture estimation. On the other hand, it
decreases the number of pixels with which x;’s are computed and can increase
the misclassification error. In our application, good results are obtained with a
6 * 6 pixels window.

The initial parameters of the Gibbs distribution are obtained by using the
LSQR method from the ML segmentation #[°].

@EE)] = @LSQR(&:[O]) with :Z‘EU] = argmax P, /x (p[o](ys/xs,@go]) (Vs €9)

5 Parameters Estimation Procedure for the incomplete
data

We can use the following algorithm to solve the unsupervised sonar image seg-
mentation problem. Let us remind that this method takes into account the di-
versity of the laws in the distribution mixture estimation as well as the problem
of the estimation of the label field parameters.

e Parameter Initialization: K-mean algorithm (see section 4). Let us denote
o0 = [@LO],@EJO]], the obtained result.

e ICE procedure:
olF+1] is computed from @ in the following way:
> Using the Gibbs sampler, n realizations z(1y, ..., z(,) are simulated ac-
cording to the posterior distribution with parameter vector @1, with:

Py, /x,(ys/xs = eo) a Gaussian law (shadow area)

Py, /x,(ys/xs = e1) a shifted Rayleigh law (sea bottom area)



> For each z(; (i = 1,...,n), the parameter vector @, is estimated by the
Derin et al. algorithm and &, with the ML estimator of each class.
> ¢l +1] is obtained from (Pe(z)), Pylz@py,y)) 1<i<n by (3)and (4).

If the sequence @] becomes steady, the ICE procedure is ended and one
proceeds to the segmentation using the estimated parameters.

In order to estimate the min parameter of the sea bottom reverberation class
during the ICE procedure, we can associate a very low probability for the pixels
in the sonar image with a grey level equal to min [12].

We can regulate the importance of the “stochastic” aspect of the ICE by
choosing n. When n increases, the “stochastic” side of the algorithm decreases.
The intentional choice of a small value for n (n = 1 in our application) can
increase its efficiency [19]. In [12], we have shown the superiority of the ICE
procedure over the EM or SEM algorithm in case of different distributions
mixture estimation or Rayleigh law mixture estimation. We have shown also
that the estimation of the noise model parameters ¢, was better according to
the Kolmogorov distance or x? error [12], when @, and @, are jointly estimated.

The Figure 4 represents the mixture of distributions of the sonar image shown
in section 4, and the convergence of the estimation of the a prior: parameters
can be seen in Figure 4.b. The obtained results are given in Table 2.

convergence of the a priori model parameters
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Fig a: Image histogram of the picture reported Fig b: Convergence of the estimation of the

in Figure 3.a and estimated mizture a priori parameters

Fig. 4.

The quality of the estimations is difficult to appreciate in absence of the
real values. We can roughly perform such an evaluation by comparing the im-
age histogram with the probability densities mixture corresponding to the esti-
mated parameters. Figure 4.a shows the resulting mixture solution in graphical



Initialization : K-means
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Estimated parameters on the picture reported in Figure 3.a. m stands for the proportion of the
two classes within the sonar image. u and o2 are the Gaussian parameters (shadow area). min
and o are the Rayleigh law parameters (sea floor reverberation). 8;’s are the a priori parameters
of the Markovian modeling. #l0] represents the initial parameter estimates and the final estimates

are denoted .

Table 2.

form. The two dashed curves in the figures represent the individual components
Py;x,(y/em)(0 < m < K). The histogram is quite close to the mixture densities
based on the estimated parameters, and a segmentation with these estimates
(see section 6) gives good results.

6 Segmentation on Real Pictures

The segmentation of sonar images in two classes is stated as a statistical labelling
problem according to a global Bayesian formulation in which the posterior distri-
bution Px,y ¢(x/y, ¢) x exp —U(z,y) has to be maximized. The corresponding
energy function to be minimized is of the form:

U(m,y) = Z%(%,ys)—l— Z Bs ¢ I(IS’It)

sES <st>

Ui(z,y) Usz(z)

where U; expresses the adequacy between observations and labels (¥ (25, ys) =
—InP(ys/xz,)), and Uy the energy of the a priori model (8 : = f1,f2,Bs, or
B4 according to the type of neighboring pair < s,¢ >). The energy function is
complex and the MAP (Maximum a Posteriori) solution is difficult to estimate.
In order to avoid local minima and to speed up the convergence rate, we use
a multigrid strategy [20]. The observation field remains at the finest resolution,
only the MRF model will be hierarchically defined. The energy function is re-
written at each scale as a coarser MRF model.
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Fig. 5. Neighborhood system and the multiscale relaxation structure.

To generate the multigrid MRF model, the grid S is hierarchically partitioned
into N; sets bl (with k € {1...N;}) of size 2! x 2!. We consider that the label
z! assigned to a block b} is constant over all the pixels of the block. Given this
constraint, an energy U'(z!,y) can be easily derived from the original one by
rewritting and properly grouping terms of U(z,y) when 2 is actually block-wise

constant relative to the partition (Vp € b}, z, = 2%) [5][20] :

U'(2',y) = Ui(2', y) + Us(2')

N
. A
with  Uj(a',y) = Y wi(al, o) =D Y Wiak,up)
sES! kIlpEbL
and U= Y L Tl o)

<k,m>

where Yol stands for the set of all the observations of the cell b}, and ﬁfc,m are
deduced from the §;’s [20]. For propagating information through scale, we use a
coarse to fine minimization strategy: in order to minimize the energy function
associated with the MRF model at each scale, we use the ICM algorithm [4];
The final estimate obtained at a given level is interpolated to be used as an
initialization for the relaxation process at the next finer level.

The segmentation result obtained for the image shown in Figure 6.a is re-
ported in Figure 6.b.

We have presented in Figure 7 and 8 the different steps of two other unsu-
pervised segmentation on real sonar images. Figures 7.a and 8.a represent two
original observations. Figures 7.6 and 8.b show the result of the K-means clus-
tering algorithm and Figures 7.c and 8.¢, the representation of the two clusters
associated to the shadow class and sea-bottom class. The mixture of distributions
is represented by Figures 7.d and 8.d and the final result of the segmented image
is reported in Figures 7.e and 8.e. The obtained results are given in Table 3 and
Table 4.

One can see that this approach gives convincing results and allows to con-
verge toward a good image segmentation in spite of speckle noise. The rocks and
manufactured object shadows are well segmented and close to the result we ex-
pected. The cast shadow of a manufactured object (reported in Figure 6.5) has a



Fig a: sonar picture Fig b: Multigrid MAP segmentation results
(object and rock shadows)  with parameters obtained with the ICE procedure

Fig. 6.

geometric shape easily identifiable for the classification step. This method allows
to detect the little rocks (see Figure 7.¢) and to preserve their shadow shapes at
the finest resolution. Nevertheless, we can see in Figure 8.e that the proposed
algorithm do not permit to eliminate totally the speckle noise effect which in-
duces false small shadow areas. In order to still improve the results, we are now
working on unsupervised hierarchical approach with inter-level connections.

7 Conclusion

We have described an unsupervised iterative estimation procedure based on the
ICE algorithm [1] which offers an appropriate estimation of the noise model
and Gibbs distribution parameters. The Estimation Step takes into account the
diversity of the laws in the distribution mixture of a sonar image and can be used
in a global estimation-segmentation procedure in order to solve the hard prob-
lem of unsupervised sonar image segmentation. This scheme is computationally
simple, exhibits rapid convergence properties and well suited to automatic ex-
traction of information from a large variety of sonar images. This method has
been validated on a number of real sonar images demonstrating the efficiency
and robustness of this scheme. The extension of the method to unsupervised
hierarchical segmentation (with inter-level connections) will be the topic of our
next research.
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Table 3: estimated parameters on the picture reported in Figure 7.
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the two classes within the sonar image. u and o2 are the Gaussian parameters (shadow area). min

and o are the Rayleigh law parameters (sea floor reverberation).

Bi’s are the a priori parameters

of the Markovian modeling. ol represents the initial parameter estimates and the final estimates

are denoted .

Fig 7.d: Image histogram of the picture reported in

Figure 7.a and estimated mizture

Fig 7.e: Multigrid MAP segmentation estimates

with parameters obtained with the ICE procedure
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Fig 8.d: Image histogram of the picture reported in
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Fig 8.e: Multigrid MAP segmentation results

with parameters obtained with the ICE procedure
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