
Unsupervised Markovian Segmentation

on Graphics Hardware

Pierre-Marc Jodoin Jean-François St-Amour Max Mignotte

Université de Montréal,
Département d’Informatique et de Recherche Opérationnelle (DIRO)

P.O. Box 6128, Studio Centre-Ville, Montréal, Québec, H3C 3J7.
E-mail: {jodoinp/stamourj/mignotte}@iro.umontreal.ca

Abstract. This contribution shows how unsupervised Markovian seg-
mentation techniques can be accelerated when implemented on graphics
hardware equipped with a Graphics Processing Unit (GPU). Our strat-
egy exploits the intrinsic properties of local interactions between sites of
a Markov Random Field model with the parallel computation ability of
a GPU. This paper explains how classical iterative site-wise-update algo-
rithms commonly used to optimize global Markovian cost functions can
be efficiently implemented in parallel by fragment shaders driven by a
fragment processor. This parallel programming strategy significantly ac-
celerates optimization algorithms such as ICM and simulated annealing.
Good acceleration are also achieved for parameter estimation procedures
such as K-means and ICE. The experiments reported in this paper have
been obtained with a mid-end, affordable graphics card available on the
market.

1 Introduction

Image segmentation is generally understood as a mean of dividing an image into
a set of uniform regions. Here, the concept of uniformity makes reference to
image features such as color or lightness intensity. Among the existing classifi-
cation approaches proposed in the literature, segmentation models can roughly
be divided between feature-space based and image-space based families [1]. Be-
cause image-space based techniques incorporate information from the image to
be segmented and the segmentation map, the results they produce are generally
more precise, although at the cost of heavier computational loads.

Among the image-space based techniques are the Markovian algorithms [2,
3] which incorporate both image and spatial characteristics by using Markov
Random Fields (MRF) as a priori models. The first contribution in that field
came from Geman et al. [2] who proposed the concept of Maximum a Posteri-

ori (MAP) as image-space criteria. While some authors proposed ad-hoc MAP
energy-based functions, others used probabilistic functions to model the way the
desired (hidden) label field is distributed. The shape of these probabilistic func-
tions depends on parameters that are either supposed to be known (or manually
adjusted) or estimated in a first step of processing. In the latter case, estimation
algorithms such as Expectation Maximization (EM) or its stochastic Markovian
extension called Iterative Conditional Estimation (ICE) [4, 5] have demonstrated
their efficiency.

Markovian models are known to be flexible and precise. However, they are
also known to be slow, especially when implemented along with a stochastic
optimizer such as simulated annealing (SA) [6] and/or with a parameter esti-
mation step. Although some deterministic optimization algorithms such as ICM
[3] or HFC [7] dramatically reduce computation times, Markovian algorithms
are still far from being real-time. In this contribution, we show how processing
times of classical unsupervised Markovian segmentation algorithms can be signif-
icantly reduced when implemented on mid-end programmable graphics hardware
equipped with a Graphical Processor Unit (GPU). Although such graphics hard-
ware is built to process vertices, lights and textures in the context of image syn-
thesis, many applications beyond traditional graphics have been demonstrated
to run on GPUs [8–10]. Recently, some computer vision tasks, such as anisotropic
diffusion, segmentation by level-set and motion estimation were successfully im-
plemented on a GPU [10]. Parallel implementations of Markovian algorithms
applied to motion detection [11] and picture restoration [12] have been already
proposed in the past. Unfortunately, these methods were build upon dedicated,
expensive and sometimes obsolete architectures.

The rest of the paper is organized as follows. In Section 2, a review of the
Markovian segmentation theory is proposed while Section 3 and 4 present es-
timation and optimization algorithms. Section 5 gives a look to the graphics
hardware architecture and presents how a Markovian segmentation algorithm
can be implemented on such hardware. Finally, Section 6 and 7 show some ex-
perimental results and conclude.

2 Unsupervised Markovian Segmentation

Let X and Y be respectively the label field (the segmentation map to be esti-
mated) and the observation field (the input image to be segmented). Each field
is defined on a rectangular lattice of size N ×M, represented by S = {s | 0≤s<

N×M} where s is a site located at the Cartesian position (i, j). It is common
to represent a realization of a field with a low-case variable such as x or y. For
each site s ∈ S, xs takes a value in ∆ = {e1, e2, ..., eN} and ys takes a value
in Γ = {ε1, ε2, ..., εζ} (ε1 = 0 and εζ = 255 for grayscale images and εi is a
3D vector with a value contained between (0, 0, 0) and (255, 255, 255) for color
images).

In the context of the MAP [2], the objective of a segmentation algorithm is to
estimate the best label field x given y or equivalently the optimal solution x̂MAP

which maximizes the posterior probability function P (X = x|Y = x) (written
P (x|y) to simplify notation). In accordance with Bayes theorem, the optimal
label field is obtained when

x̂MAP = argmax
x

P (y|x)P (x)

P (y)
(1)

where P (y|x) is the likelihood, P (x) the prior and P (y) the evidence. Since P (y)
isn’t related to x, without lost of generality, this equation can be simplified to
x̂MAP = argmaxx P (y|x)P (x).

If X and Y are MRFs, according to the Hammersley-Clifford theorem, the
likelihood and prior probability functions have a Gibbsian shape, respectively,
P (y|x) ∝ exp{−W (x, y)} and P (x) ∝ exp{−V (x)}, where W (x, y) and V (x)
are energy functions. Incorporating these two Equations to the MAP framework
leads to the optimization formulation x̂MAP = argminx{W (x, y) + V (x)}. As-
suming that the noise in the observed image y is uncorrelated, since X and Y

are MRFs, the global energy functions W (x, y) and V (x) can be represented by
a sum of local energy functions

x̂MAP = argmin
x

∑

s∈S

{Ws(xs, ys) + Vηs
(xs)} (2)

where ηs stands for the neighborhood around site s (in this contribution, we
use a second-order neighborhood). Vηs

is a sum of potential functions of the
form Vηs

=
∑

c∈Cs
Vc(xs), where Cs is the set of binary cliques linking s to sites

r ∈ ηs. Here, the Potts model was used to represent Vηs
.

In the case of a probabilistic segmentation, input data ys is related to a
class xs according to a distribution P (ys|xs). Consequently, the energy function
Ws(xs, ys) has to be designed according to that distribution, namely Ws(xs, ys) ∝
− lnP (ys|xs). A very popular function used to model P (ys|xs) is the multidi-
mensional Gaussian distribution

P (ys|xs)=
1

√

(2π)d|Σxs
|
exp {−

1

2
(ys−µxs

)Σ−1
xs

(ys−µxs
)T}

where d is the dimensionality of ys (d = 3 for color images and d = 1 for gray-
scale images) and (µxs

, Σxs
) are the mean and variance-covariance of class xs.

Thus, the energy function of Eq. (2) can be written as

∑

s∈S

{1

2
(ln |Σxs

| + (ys − µxs
)Σ−1

xs
(ys − µxs

)T)
︸ ︷︷ ︸

Ws(xs,ys)

+Vηs
(xs)

}
.

In the case of unsupervised segmentation, the Gaussian parameters Φ =
{(µi, σi) | 1≤ i<N} has to be estimated conjointly with x or preliminary to the
segmentation step. Many parameter estimation algorithms are available among
which EM, K-means and ICE [5] are the most popular.

3 Parameter Estimation

The two parameter estimation algorithms we have implemented are K-means
and ICE [5]. K-means is an iterative clustering method [4] that assumes in-
put data {ys} are distributed within K spherical clusters of equal volume. At
each iteration, every site s are assigned to the nearest cluster before a second
step re-estimates the center of mass of every cluster. The resulting K-means
clustering minimizes the sum-of-square error function

∑N
i=1

∑

xs=ei
||ys − µi||2

1 µi ← random initialization , ∀µi ∈ Φµ

2 For each site s ∈ S
2a∗ xs ← arg minei∈Γ ||ys − µei

||2

3 µi ←
1

Ni

∑

xs=ei

ys , ∀µi ∈ Φµ

4 Repeat steps 2-3 until each mean µi no longer moves
5 Σnm

i ← 1

Ni

∑

xs=ei

(yn
s − µn

ei
)(ym

s − µm
ei

)∀Σi ∈ ΦΣ

1 Φ← K-means
2 For each site s ∈ S
2a∗ P (ei|ys)=

1

Zs
exp {(W (ei, ys) + Vηs

(ei))} ∀ei ∈ Γ

2b∗ xs ← according to P (xs|ys), randomly select ei ∈ Γ
3a µi ←

1

Ni

∑

xs=ei

ys ∀µi ∈ Φµ

3b Σnm
i ← 1

Ni

∑

xs=ei

(yn
s − µn

ei
)(ym

s − µm
ei

)∀Σi ∈ ΦΣ

5 Repeat steps 2-3 until Φ no longer changes

Table 1. K-means and ICE algorithms. Here n, m ∈ [1, d].

[4]. The variance-covariance of each cluster is estimated once the algorithm has
converged.

Because K-means is a deterministic algorithm, it is sensitive to noise and
is likely to converge toward local minima. Furthermore, its assumption that
all clusters are spherical with equal volume is simplistic an often unsuited to
some observed images. Thus, many authors suggest to refine Φ with a more
realistic model, less sensitive to noise and local minima such as the stochastic
ICE estimation algorithm. Details of this algorithm are presented in [5] while
Table 1 presents a version adapted to this paper.

4 Optimization Procedures

Because Eq. (2) has no analytical solution, it has to be solved with an optimiza-
tion algorithm such as simulated annealing (SA) [2] or ICM [3]. SA is a stochastic
algorithm built upon a temperature variable that slowly decreases toward zero
with time. If the cooling rate is small enough, this annealing schedule theoreti-
cally guarantees the convergence to the global MAP. The ICM algorithm is a hill
climbing deterministic algorithm that isn’t guarantied to converge toward global
minima. However, it is drastically faster than SA and generates fairly good re-
sults when properly initialized. As Besag mentioned [3], it can be understood as
an instantaneous freezing in SA. Both algorithms are presented in Table 2.

1 T ← TMAX

2 For each site s ∈ S

2a∗ P (ei|ys)=
1

Zs
exp

{
1

T
(W (ei, ys) + Vηs

(ei))
}

, ∀ei ∈ Γ

2b∗ xs ← according to P (xs|ys), randomly select ei ∈ Γ
3 T ← T∗coolingRate
5 Repeat steps 2-3 until T ≤ TMIN

1 Initialize x (with ICE and/or K-means)
2 For each site s ∈ S
2a∗ xs = arg minei∈Γ (W (ei, ys) + Vηs

(ei))
3 Repeat steps 2 until x stabilizes

Table 2. Simulated annealing and ICM algorithms.

5 Graphics Hardware Architecture

Graphics hardware is highly optimized to solve traditional computer graphics
problems. Nowadays, graphics hardware is most of the time embedded on a
graphics card which can receive/send data from/to the CPU or the main mem-
ory via the system bus, be it PCI, AGP or PCIe. Most graphics hardware are
designed to fit the so-called graphics processing pipeline [13, 14]. This pipeline is
made of various stages which sequentially transform images and geometric input
data into an output image stored in a section of graphics memory called the
framebuffer. Part of the framebuffer (the front buffer) is meant to be visible on
the display device.

During the past few years, the major breakthrough came when the vertex
processing and fragment processing stages have been made programmable. These
two stages can now be programmed using C-like languages to process vertex and
fragments in parallel. Let us mention that a fragment is a per-pixel data structure
created at the rasterization stage and containing data such as color, texture
coordinates and depth. A fragment is meant to update a unique location in the
framebuffer. Because the GPU is a streaming processor (i.e. a processor with
inherent parallel processing abilities) mapping general computation problems to
its unique architecture becomes very interesting [10].

1 Copy the input image y into texture memory.
2 Compile, link and load the ICM shader on the GPU.
3 Specify shader parameters (N,N ,M, Φ for example).
4 Render a rectangle covering a window of size N ×M
5 Copy the framebuffer into texture memory
6 Repeat steps 4 and 5 until convergence
7 Copy the framebuffer into a C/C++ array

if needed

1 x̂s ← arg minei∈Γ W (ei, ys) + Vηs
(ei)

2 framebuffers ← x̂s

1 Copy the input image y into texture memory.
2 Compile, link and load the K-means shader on the GPU.
3 Φ← Init Gaussian parameters.
4 Specify shader parameters (N,N ,M and Φµ).
5 Render a rectangle covering a window of size N ×M
6 E ← Copy the framebuffer into a C/C++ array.
7 µi ←

1

Ni

∑

Es=ei

ys, ∀µi ∈ Φµ

8 Repeat steps 4 to 7 until convergence.
9 Σnm

i ←
∑

Es=ei

(yn
s − µn

ei
)(ym

s − µm
ei

), ∀Σi ∈ ΦΣ

10 Copy the framebuffer into a C/C++ array if needed

1 xs ← arg minei∈Γ ||ys − µei
||2

2 framebuffers ← xs

Table 3. High level representation of ICM and K-means hardware programs. The upper
sections (line 1 to 7 and 1 to 10) are C/C++ CPU programs used to load the shader,
render the scene and manage textures. The lower sections (line 1-2) are the fragment
shaders launched on every fragment (pixel) when the scene is rendered (line 4 and 5).

A fragment processor is designed to load and execute in parallel a program
(also called a shader) on each fragment generated during the rasterization stage

[13, 15]. Thus, a fragment shader is executed whenever a graphics primitive such
as a polygon or a line is rendered. To be effective though, the shader must be
initially loaded, compiled and linked on the GPU. This is illustrated by the two
C/C++ programs of Table 31. The first algorithm represents an ICM program
whereas the second one represents a K-means program. The first section of these
programs (line 1 to 7 and line 1 to 10) is written in C/C++ and runs on the CPU.
This section essentially compiles, links and loads the shader, renders a graphics
primitive and manipulates texture memory. Its crucial to understand that the
shader (as opposed to traditional CPU programs) is loaded, compiled, linked
and executed during the runtime execution of the C/C++ program. The shader
(second section of Table 3) is launched on every fragment when the primitive
–here a rectangle polygon– is rendered (line 4 and 5). After the primitive has
been rendered, the results returned by the shaders is located in the framebuffer.
This buffer can be copied in another section of the graphics memory (line 6 of
the ICM code) or transfered back into central memory (line 7 of ICM code and
lines 6 and 10 of K-means code). This last operation involves data traffic on the
system bus and thus induces significant latency.

5.1 General-Purpose Computation on the GPU

The fragment processor is better suited for image processing problems than the
vertex processor, simply because it is the only part of the graphics pipeline that
has access to both input memory (texture memory) and output memory (the
framebuffer). Although fragment shaders can be written in C-like languages [13,
15], they have some specificities as compared to ordinary C/C++ programs. The
most important ones are the following:

1. a fragment shader is made to process every fragment in parallel;
2. the only memory in which a fragment shader can write into is the write-only

framebuffer and depthbuffer;
3. the only data a fragment shader can read is contained in the texture memory,

in built-in variables or in user-defined variables. As such, it cannot read the
content of the framebuffer or the depthbuffer;

4. since fragments are processed in parallel, fragment shaders cannot exchange
information. GPUs do not provide its shaders with access to general-purpose
memory.

With such specificities, minimizing a global Markovian energy function such
as Eq. (2) can be tricky. In fact, three main problems have to be overcome. The
first problem is to make sure the rasterization stage generates one fragment for
each pixel of the input image y. Such one-to-one mapping from the input pixels
to the output buffer is achieved by rendering a screen-aligned rectangle covering
a window with exactly the same size than the input image (see line 4 and 5 of

1 Although other CPU programming languages such as JAVA could be used, C and
C++ are by far the most widely utilized at the moment.

Table 3). In this way, the rasterization stage generates N ×M fragments, one
for each input pixel ys.

The second problem comes from the fourth limitation. Since GPUs provide
no general-purpose memory, one might wonder how can the prior energy func-
tion Vηs

have access to the labels xt contained in the (write-only) framebuffer.
This situation is handled by coping the framebuffer (i.e. the section of texture
memory containing the label field x computed after an iteration) into texture
memory (line 5 of ICM, Table 3). In this way, at the next iteration, the texture
memory (which can be read by the fragment shader) will contain the label field
x computed during the previous iteration. Thus, Vηs

is computed with labels it-
eratively updated and not sequentially updated as it is generally the case. Such
strategy was already proposed by Besag [3]. As observed by some authors [11],
the difference between these two updating schemes is very narrow, although the
former might infer some small energy oscillations.

The last problem with shaders comes with their inability to generate ran-
dom numbers such as needed by the stochastic algorithms SA and ICE. As a
workaround, we generate an image containing random values at the beginning
of the CPU application. This random image is then copied in texture memory
where the shader can access it. Although this strategy isn’t as efficient as a
good random number generator, the results generated are very close to the ones
obtained with standard CPU programs.

5.2 ICM and SA on Graphics Hardware

As shown in Table 3, y is first copied into texture memory. A fragment program
is then launched on every pixel in order to solve Eq. (2) (line 4 of ICM, Table
3). The output labels are then copied in the framebuffer. Because the next ICM
iteration needs the newly computed label field to proceed, the framebuffer con-
tent is copied back to the texture containing the label field information. This
operation is extremely efficient because no data needs to be transmitted between
the GPU and the CPU. The SA method is implemented in a manner very similar
to the ICM algorithm, the only difference being that it requires a random func-
tion inside the fragment program. This situation is handled with the workaround
presented in the previous Section. Notice that because fragment programs can
only write in the framebuffer during a rendering pass, multiple rendering passes
are used to simulate ICM/SA iterations.

5.3 K-means and ICE on Graphics Hardware

Unlike the optimization methods, K-means and ICE are not perfectly suited
to a mapping to the GPU. While the first step of these algorithms (assigning
the best label xs to each image pixel, line 2a and 2a, 2b of Table 1) is perfectly
implementable in parallel, the second step (Gaussian parameters computation,
line 3 and 3a, 3b of Table 1) is not. As such, we have to take a simple hybrid
approach: execute line 2 on the GPU (parallel processing) and line 3 on the CPU
(sequential processing).

To do so, the input image y is first copied in texture memory so it is acces-
sible by the fragment processor. A fragment program is then activated for each
pixel that determines in parallel the best class ei for that pixel. The result is
then outputted in the framebuffer. Once every pixel have been assigned a label
(line 2), the Gaussian parameters for every class now need to be recomputed
(line 3). Because this operation can’t be parallelized, the framebuffer image con-
taining the current class of each pixel is read back to CPU memory, where the
computation takes place. Once the parameters are re-estimated, they are passed
back to the GPU after which a new iteration can begin. This hybrid approach
is illustrated by the K-means algorithm of Table 3.

6 Experimental Results

We first implemented the four algorithms presented in Section 3 and 4 in C++.
Then, we adapted these programs to the graphics hardware architecture by re-
placing with Cg code2 the instructions identified with a star (∗) in Table 1 and 2.
We used OpenGL to render the polygon and manage texture memory, and used
the Cg Runtime Library [15] to load, compile and link the fragment shader.
The software and hardware version of these programs run in the same C++
environment and thus, can be fairly compared.

The performances of each implementation was evaluated by varying the num-
ber of segmentation classes and the size of the images to be segmented. Process-
ing times have been obtained by averaging results obtained after segmenting
several grayscale and color images. The acceleration factor between the software
and hardware version of the programs is presented in Fig. 1. In the leftmost
graphics, the programs were launch over images of size ranging from 64 × 64
to 1024 × 1024 with a number of classes set to 4. In the other graphics, results
were obtained after segmenting images of size 256 × 256 with different number
of classes.

The SA parameters TMAX, TMIN and the cooling rate were respectively set
to 10.0, 0.05 and 0.99. This setting corresponds to a total of 500 iterations as
opposed to 10 iterations for K-means, ICE, and ICM. Let us note that the
number of iterations for the software and hardware implementations is exactly
the same. The results were obtained on a computer equipped with AMD Athlon
64 Processor 3200+ and an NVIDIA GeForce 6800 GT graphics card.

Notice that the speedup factor between hardware and software version of
ICM and SA (between 20 and 120) is more important than the one for K-means
and ICE (between 2 and 8). This can be explained by the fact that both K-means
and ICE algorithms have to exchange information (for the Gaussian parameter
estimation) with the CPU which is major bottleneck for such hardware programs.
Also, the speedup factor for K-means is larger than for ICE because ICE has
to estimate and invert the variance-covariance matrix which isn’t required for
K-means. This extra load on the CPU makes ICE less efficient than K-means.
Similarly, the speedup factor for SA and ICM is more important on color images

2 Cg is a C-like hardware language program developed by NVIDIA.

200 400 600 800 1000

Image
Size

2

4

6

8

10

12

Acceleration
factor

Parameter Estimation

K- Means and ICE

KMeansColor KMeans Gray ICE Color ICE Gray

3 4 5 6 7 8

Nb
Classes

2

4

6

8

10

12

Acceleration
factor

Parameter Estimation

K- Means and ICE

KMeans Color KMeans Gray ICE Color ICE Gray

200 400 600 800 1000

Image
Size

20

40

60

80

100

120

Acceleration
factor

Image Segmentation
ICM and SA

ICM Color SA Color ICM Gray SA Gray

3 4 5 6 7 8

Nb
Classes

20

40

60

80

100

120

140

160

Acceleration
factor

Image Segmentation
ICM and SA

ICM Color SA Color ICM Gray SA Gray

Fig. 1. Acceleration factor for K-means, ICE, SA and ICM obtained on grayscale and
color images.

than on grayscale images. This is explained by the fact that the global energy
function of Eq. (2) is more expensive to compute for color images than for
grayscale images. Thus, parallelizing this costly CPU operation leads to a more
important acceleration factor. Notice that the acceleration factor is larger when
segmenting large images and/or segmenting images with many classes.

With our actual hardware implementation, a color image of size 128 × 128
is segmented in 4 classes at a rate of 76 fps for ICM, 1.4 fps for SA, 2.5 fps for
ICE and 14 fps for K-means. These frame rates do not however include the time
needed to load, compile and link the shaders which vary between 0.1 second and
5 seconds. Although this might seem prohibitive, the initialization step is done
only once at the beginning of the program. In this way, when segmenting more
than one image (or segmenting an image of size larger than 128 × 128), this
initialization time soon gets negligible as compared to the acceleration factor.

7 Conclusion

This paper exposed how Markovian algorithms devoted to image segmentation
can be significantly accelerated when implemented on programmable graphics
hardware. Even if GPUs were built to process traditional graphics primitives, we
demonstrated how fragment programs can be adapted to the context of Marko-
vian estimation and optimization algorithms such as K-means, ICE, ICM and
SA. The acceleration factor between software and hardware implementation was
more impressive for the optimization algorithms (between 20 and 120) than the
estimation ones (between 2 and 8). Results have shown that remarkably fast

optimization was achievable, especially over large images and/or with a large
number of classes.

As future work, we plan to implement on graphics hardware energy-based
computer vision tasks such as motion estimation, motion segmentation and stere-
ovision. Because these tasks can be defined on a Markovian framework similar
to the one presented in this paper, we have good reasons to believe that the
hardware version of these algorithms will be more efficient that its software
counterpart. We also look forward to implement and compare the most popular
optical flow techniques on graphics hardware (Horn and Schunck, Lucas Kanade,
Anandan, etc.[16]).

References

1. Lucchese L. and Mitra S. Color image segmentation: A state-of-the-art survey. In Proc. of
INSA-A, 2003.

2. Geman S. and Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration
of images. IEEE Trans. Pattern Anal. Machine Intell., 6(6):721–741, 1984.

3. Besag J. On the statistical analysis of dirty pictures. J. Roy. Stat. Soc., 48(3):259–302, 1986.
4. Bishop C. Neural Networks for Pattern Recognition. Oxford University Press, 1996.
5. Pieczynski W. Statistical image segmentation. Machine Graphics and Vision, 1(1):261–268,

1992.
6. Kirkpatrick S., Gelatt C., and Vecchi M. Optimization by simulated annealing. Science, 220,

4598:671–680, 1983.
7. Chou P. and Brown C. The theory and practice of bayesian image labeling. In ICCV, pages

185–210, 1990.
8. Kruger J. and Westermann R. Linear algebra operators for gpu implementation of numerical

algorithms. ACM Trans. Graph., 22(3):908–916, 2003.
9. Moreland K. and Angel E. The fft on a gpu. In proc. of Workshop on Graphics Hardware,

pages 112–119, 2003.
10. http://www.gpgpu.org/.
11. Dumontier C., Luthon F., and Charras J-P. Real-time dsp implementation for mfr-based video

motion detection. IEEE Trans. on Img. Proc., 8(10):1341–1347, 1999.
12. Murray D., Kashko A., and Buxton H. A parallel approach to the picture restoration algorithm

of geman and geman on a simd machine. Image and Vision Computing, 4:141–152, 1986.
13. Randi J. Rost. OpenGL Shading Language. Addison-Wesley, 1st edition, 2004.
14. Tomas Akenine-Möller and Eric Haines. Real-time Rendering. AK Peters, 2e edition, 2002.
15. Fernando R. and Kilgard M. The Cg Tutorial: The Definitive Guide to Programmable Real-

Time Graphics. Addison-Wesley, 2003.
16. Barron J., Fleet D., and Beauchemin S. Performance of optical flow techniques. Int. J. Comput.

Vision, 12(1):43–77, 1994.

