
Markovian Energy-Based Computer Vision
Algorithms on Graphics Hardware

Pierre-Marc Jodoin, Max Mignotte, and Jean-François St-Amour

Université de Montréal, DIRO,
P.O. Box 6128, Studio Centre-Ville, Montréal, Québec, H3C 3J7

{jodoinp, mignotte, stamourj}@iro.umontreal.ca

Abstract. This paper shows how Markovian segmentation algorithms
used to solve well known computer vision problems such as motion esti-
mation, motion detection and stereovision can be significantly accelerated
when implemented on programmable graphics hardware. More precisely,
this contribution exposes how the parallel abilities of a standard Graph-
ics Processing Unit (usually devoted to image synthesis) can be used to
infer the labels of a label field. The computer vision problems addressed
in this paper are solved in the maximum a posteriori (MAP) sense with
an optimization algorithm such as ICM or simulated annealing. To do
so, the fragment processor is used to update in parallel every labels of
the segmentation map while rendering passes and graphics textures are
used to simulate optimization iterations. Results show that impressive
acceleration factors can be reached, especially when the size of the scene,
the number of labels or the number of iterations is large. Hardware re-
sults have been obtained with programs running on a mid-end affordable
graphics card.

1 Introduction

Graphics hardware nowadays available are often equipped with a so called Graph-
ics Processing Unit (GPU). This unit can execute general purpose programs
independently of the CPU and the central memory. As the name implies, this
architecture was optimized to solve typical graphics problems in the goal of ren-
dering complex scenes in real-time. Because of the very nature of conventional
graphics scenes, graphics hardware have been designed to efficiently manipulate
texture, vertices and pixels. These primitives are processed either by the vertex
processor or the fragment processor. What makes these processors so efficient
is their fundamental ability to process vertices and fragments (see pixels) in
parallel, involving interesting acceleration factors.

However, in spite of appearances, it is possible to take advantage of the par-
allel abilities of programmable graphics hardware to solve problems that goes
beyond graphics. This is what people call general-purpose computation on GPUs
(GPGPU). Some authors have shown that applications such as fast Fourier trans-
forms [1], linear algebra [2], motion estimation and spatial segmentation could
run on graphics hardware [3,4]. Even if these applications have little in common

F. Roli and S. Vitulano (Eds.): ICIAP 2005, LNCS 3617, pp. 592–603, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Markovian Energy-Based Computer Vision Algorithms 593

with traditional computer graphics, they all share a common denominator: they
are problems solved by parallizable algorithms.

This paper presents how Markovian segmentation algorithms used to solve
computer vision problems such as motion detection [5], motion estimation [6]
and stereovision [7], can be significantly accelerated when implemented on a
typical GPU. These computer vision problems are herein expressed by Marko-
vian energy-based models through Gibbs distribution. This framework stipu-
lates that a solution (also called label field or segmentation map) is optimal when
it minimizes a global energy function made of a likelihood term and a prior
term[8].

For all Markovian energy-based model, the label field has to be inferred by an
optimization algorithm such as simulated annealing (SA) [9], ICM [10] or HFC
[11]. Although ICM and HFC are much faster than SA, the processing time of
these deterministic optimization algorithms can be very much prohibitive. In
this contribution, we expose how optimizers such as SA or ICM –used to solve
energy-based computer vision problems– can be significantly accelerated when
implemented on programmable graphics hardware. Even if GPUs are cutting
edge technologies made for graphics rendering, implementing a MAP segmenta-
tion algorithm on a fragment processor isn’t much more difficult than writing it
in a typical C-like procedural language.

The remainder of the paper is organized as follows. In Section 2, a review of
the Markovian theory is proposed before Section 3 presents the three computer
vision problems we are interested into. Section 4 presents the optimization algo-
rithms ICM and SA after which Section 5 gives a look to the graphics hardware
architecture. Finally, Section 6 shows some experimental results before Section
7 concludes.

2 Markovian Segmentation

The computer vision problems this contribution tackles can be seen as segmen-
tation problems. As a matter of fact, these vision problems aim at subdividing
observed input images into uniform regions by grouping pixels having high-level
features in common such as motion or depth. Starting with some observed data
Y (which is typically one or more input images), the goal of any segmentation
process is to infer a label field X containing the class labels (i.e. labels indi-
cating whether a pixel belongs or not to a moving area or a certain depth). In
computer vision, X and Y are generally defined over a rectangular lattice of size
N × M represented by S = {s|0 ≤ s < N × M} where s is a site located at the
Cartesian position (i, j) (for simplicity, s is sometimes defined as a pixel). It is
common to represent by a low-case variable such as x or y, a realization of the
label field or the observation field. For each site s ∈ S, its corresponding element
xs in the label field takes a value in Γ = {e1, e2, ..., eN} where N is the total
number of classes. In the case of motion detection for example, N can be set to
2 and Γ = {StaticClass,MobileClass}. Similarly, the observed value ys takes a value
in Λ = {ε1, ε2, ..., εζ} where ζ is set to 28 for gray-scale images and 224 for color

594 P.-M. Jodoin, M. Mignotte, and J.-F. St-Amour

images. In short, a segmentation model is made of an observation field y that is
to be decomposed into N classes by inferring a label field x.

In the context of this paper, the goal is to find an optimal labeling x̂ which
maximizes the a posteriori probability P (X = x|Y = y) (that we represent by
P (x|y) for simplicity), also called the maximum a posteriori (MAP) estimate [8] :
x̂MAP = argmaxx P (x|y). With Bayes theorem, this equation can be rewritten as

x̂MAP = argmax
x

P (y|x)P (x)
P (y)

(1)

or equivalently x̂MAP = arg maxx P (y|x)P (x) since P (y) isn’t related to x. As-
suming that X and Y are Markov Random Fields (MRF) and according to the
Hammersley-Clifford theorem [8], the a posteriori probability P (x|y) –as well as
the likelihood P (y|x) and the prior P (x)– follows a Gibbs distribution, namely

P (x|y) =
1

λx|y
exp(−U(x, y)) (2)

where λx|y is a normalizing constant and U(x, y) is an energy function. Com-
bining Eq.(1) and (2), the optimization problem at hand can be formulated as
an energy minimization problem i.e.:x̂MAP = argminx

(
W (x, y) + V (x)

)
, where

W (x, y) and V (x) are respectively the likelihood and prior energy functions. If
we assume that the noise in y isn’t correlated, the global energy function U(x, y)
can be represented by a sum of local energy functions such as

x̂MAP = arg min
x

∑

s∈S

(Ws(xs, ys) + Vηs(xs)) . (3)

Here, ηs is the neighborhood around site s and Vηs(xs) =
∑

c∈Cs
Vc(xs) is a sum

of potential functions defined on so-called cliques c. Function Vc(xs) defines the
relationship between two neighbors defined by c, a binary clique linking a site s to
a neighbor r. Notice that x̂MAP is estimated with an optimization procedure such
as SA or ICM which are typically slow algorithms. Details of these algorithms
are discussed in Section 4.

3 Computer Vision Problems

3.1 Motion Detection

Among the first paper in computer vision in which a MAP framework was used
is the one by Bouthemy and Lalande [5]. In their paper, they proposed a sim-
ple energy-based model to solve the problem of motion detection. The solution
presented in this Section was inspired of their work.

The goal of motion detection is to segment an animated image sequence
into mobile and static regions. For this kind of application, moving pixels are
the ones with a non-zero displacement vector, no matter what direction or speed
they might have. Bouthemy and Lalande’s [5] paper influenced many subsequent

Markovian Energy-Based Computer Vision Algorithms 595

contributions including the one by Dumontier et al [12] who proposed a parallel
hardware architecture to detect motion in real time. Unfortunately, the hardware
they used was specifically designed and is not, to our knowledge, available on
the market.

As for Bouthemy and Lalande [5]’s method, the solution here proposed is
based on the concept of temporal gradient and doesn’t require the estimation of
an optical flow. From two successive frames f(t) and f(t + 1), the observation
field y is defined as the temporal derivative of the intensity function df/dt namely
y = |f(t + 1) − f(t)|. Assuming that scene illumination variation is small, the
likelihood energy function linking the observation field to the label field is defined
by the following equation

W (xs, ys) =
1
σ2 (ys − mpxs)2 (4)

where mp is a constant and σ is the variance of the Gaussian noise. Because of
the very nature of the problem, N = 2 and xs ∈ {0, 1} where 0 and 1 correspond
to static and moving labels. As for the prior energy term, as in [5] and [12], the
following Potts model was implemented

Vc(xs) =
{

1 if xs �= xr

−1 otherwise. (5)

The overall energy function to be minimized is thus defined by

U(x, y) =
∑

s∈S

(1
σ2 (ys − mpxs)2
︸ ︷︷ ︸

W (xs,ys)

+βMD

∑

c∈ηs

Vc(xs)

︸ ︷︷ ︸
Vηs(xs)

) (6)

where ηs is a second order neighborhood (eight neighbors). Notice that this so-
lution makes the implicit assumption that the camera is still and that moving
objects were shot in front of a static background. To help smooth out inter-
frame changes, one can add a temporal prior energy term Vτ (xs) linking label
xs estimated at time t and the one estimated at time t − 1.

3.2 Motion Estimation

The goal of motion estimation is to estimate the direction and magnitude of
optical motion over each site s ∈ S of an animated sequence [13,14]. Among
the solutions proposed in the literature, many are based on an hypothesis called
lightness consistency. This hypothesis stipulates that a site s ∈ S at time t keeps
its intensity after it moved at time t+1. Although this hypothesis excludes noise,
scene illumination variation, and occlusion (and thus is an extreme simplification
of the true physical nature of the scene) it allows simple energy functions to
generate fairly good results. Under the terms of this hypothesis, the goal of
motion estimation is to find, for each site s ∈ S, an optical displacement vector

596 P.-M. Jodoin, M. Mignotte, and J.-F. St-Amour

vs for which fs(t) ≈ fs+vs(t + 1). In other words, the goal is to find a vector
field v̂ for which

v̂s = argmin
vs

|fs(t) − fs+vs(t + 1)|, ∀s ∈ S. (7)

Notice that the absolute difference could be replaced by a cross-correlation
distance. Such strategy is called region-matching. In the context of Eq.(7), the
observation field y is the input image sequence and y(t) is a frame at time t. The
label field x is a vector field made of 2D vectors defined as xs = vs = (ζi, ζj)
where ζi, ζj are integers taken between −dmax and dmax as shown in Fig. 1 (b).

Eq.(7) has one major limitation which comes from the fact that real-world
sequences contain textureless areas and/or areas with occlusions. Typically, over
these areas more than one vector xs have a minimum energy, although only
one is valid. This is the well known aperture problem [15]. In order to guaranty
the uniqueness of a consistent solution, several approaches have been proposed
[13]. Among these approaches, many add a regularization term (or smooth-
ness constraints) whose essential role is to rightly constrain the ill-posed na-
ture of this inverse problem. These constraints typically encourage neighboring
vectors to point in the same direction with the same magnitude. In the con-
text of the MAP, these constraints can be expressed as a prior energy func-
tion such as the Potts model of Eq.(5). However, since the number of labels
can be large (here (2dmax + 1)2), we empirically observed that a smoother
function was better suited. The following linear function was implemented :
Vc(xs) = βME (|xs[0] − xr[0]| + |xs[1] − xr[1]|), where c is a binary clique link-
ing site s to site r. Notice that other smoothing functions are available [15]. The
global energy function U(x, y) to be minimized is obtained by combining Eq.(7)
to Vc(xs) as follows

U(x, y) =
∑

s∈S

(|ys(t) − ys+xs(t + 1)|
︸ ︷︷ ︸

Ws(xs,ys)

+βME

∑

c∈Cs
s,r∈c

(|xs[0] − xr[0]| + |xs[1] − xr[1]|)

︸ ︷︷ ︸
Vηs(xs)

.

Let us mentioned that Konrad and Dubois [6] did proposed a similar solution -
short of a line process they used to help preserve edges.

3.3 Stereovision

The goal of stereovision is to estimate the relative depth of 3D objects from
two (or more) images of a scene. For simplicity purposes, many stereovision
methods use two images taken by cameras aligned on a linear path with parallel
optical axis (this setup is explained in detail in Scharstein and Szelisky’s review
paper [7]). To simplify the problem, stereovision algorithms often make some
assumptions on the true nature of the scene. One common assumption (which
is similar to motion estimation’s lightness consistency assumption) states that
every point visible in one image is also visible (with the same color) in the second

Markovian Energy-Based Computer Vision Algorithms 597

image. Thus, the goal of stereovision algorithms based on such assumption is to
estimate the distance between each site s (with coordinate (i, j)) in one image
to its corresponding site t (with coordinate (i+ds, j)) in the second image. Such
distance is called disparity which is, in this case, proportional to the inverse depth
of the object projected on site s. This gives rise to a matching cost function that
measures how good a disparity ds ∈ [0, DMAX] is for a given site s in a reference
image yref. This is expressed mathematically by

C(s, d, y) = |yref(i, j) − ymat(i + ds, j)| (8)

where ymat is the second image familiarly called the matching image. Notice that
the absolute value could be replaced by a quadratic or a robust function [7]. In
the context of the MAP, C(.) is the likelihood energy function and the disparity
map d is the label field to be estimated. Thus, to ensure uniformity with Section
2’s notation, the cost function of Eq.(8) will be defined as C(s, x, y).

To ensure spatial smoothness, two strategies have been traditionally pro-
posed. The first one is to convolute C(s, x, y) with a low-pass filter or a so-called
aggregation filter w (see [7] for details on aggregation). Although a prefiltering
step slows down the segmentation process, it can significantly reduce the effect of
noise and thus enhance result quality. Spatial smoothness can also be ensured by
adding a prior energy term Vηs(x) of the form Vηs(x) =

∑
s∈S

∑
c∈ηs

|xs − xt|.
Notice that the absolute value could be replaced by another cost function if
needed. The global energy function U(x, yref, ymat) can thus be written as

U(x, yref, ymat) =
∑

s∈S

((w ∗ C)(s, x, y)
︸ ︷︷ ︸

Ws(xs,ys)

+βS

∑

c∈ηs
s,r∈c

|xs − xt|)

︸ ︷︷ ︸
Vηs (xs)

) (9)

where βS is a constant. Notice that some authors minimize only the likelihood
energy function W (x, y) assuming the low-pass filter is enough to ensure spa-
tial smoothness. This strategy, called Winner-Take-All (WTA), is greedy and
converges after only one iteration. Another way to save on processing time is
to pre-compute the likelihood function in a 3D table. Such table is called the
Disparity Space Integration (DSI) and contains N × M × DMAX cost values.

4 Optimization Procedures

Since Eq.(3) has no analytical solution, x̂ has to be estimated with an optimiza-
tion algorithm. An optimization procedure we have implemented is the simulated
annealing (SA) which is a stochastic relaxation algorithm similar to the Gibbs
sampler. The concept of SA is based on the manner in which some material
recrystallize when slowly cooled down after being heated at a high temperature.
The final state (called the frozen ground state) is reached when temperature gets
down to zero. Similarly, SA searches for the global minima by cooling down a
temperature factor T [9] from an initial temperature TMAX down to zero. In this

598 P.-M. Jodoin, M. Mignotte, and J.-F. St-Amour

(a) (b)

(i+ ,j−)(i − ,j−)

(i − ,j+) (i+ ,j+)

MAX MAXd d
MAX MAXd d

MAX MAXd d MAX MAXd d

s

(i,j)

M
A

X
d

MAXd

Fig. 1. (a) Motion detection, motion estimation, and stereovision label fields obtained
after an ICM optimization. (b) The total number of possible displacement vector for
each site s ∈ S is (2dmax + 1)2.

paper, the system probability is made of the global energy function (here U(x, y))
and a temperature factor T . This probability function is similar to Boltzmann’s
probability function [9] which can be written as

P (x, y) =
1
λ

exp{−U(x, y)
T

}. (10)

where λ is a normalization factor. The SA algorithm is presented in Table 1.

Table 1. Simulated annealing and ICM algorithms

1 T ← TMAX

2 For each site s ∈ S
2a P (xs = ei|ys)= 1

λ
exp

{ −1
T

U(ei, ys)
}

, ∀ei ∈ Γ
2b xs ← according to P (xs|ys), randomly select ei ∈ Γ
3 T ← T∗cooling Rate
5 Repeat steps 2-3 until T ≤ TMIN

1 Initialize x
2 xs = arg minei∈Γ U(ei, ys) ∀s ∈ S
3 Repeat step 2 until x stabilizes

The major limitation with SA is the number of iterations it requires to reach
the frozen ground state. This makes SA unsuitable to many applications for
which time is an important factor. This explains the effort of certain researchers
to find faster optimization procedures. One such optimization procedure is Be-
sag’s ICM algorithm [10]. Starting with an initial configuration x[0], ICM iter-
atively minimizes U(x, y) in a deterministic manner by selecting, for every site
s ∈ S, the label ei ∈ Γ that minimizes the energy function at that point. Since
ICM isn’t stochastic, it cannot exit local minima and thus, requires x to be
initialized near the global minima. ICM algorithm is presented in Tab 1.

Markovian Energy-Based Computer Vision Algorithms 599

5 Graphics Hardware Architecture

Most graphics hardware are designed to fit the so-called graphics processing
pipeline [16,17]. This pipeline is made of various stages which sequentially trans-
form images and geometric input data into an output image stored in a section
of graphics memory called the framebuffer. Part of the framebuffer (the front
buffer) is meant to be visible on the display device. During the past few years,
the major breakthrough in graphics hardware has been that the vertex process-
ing and fragment processing stages have been made programmable. These two
stages can now be programmed using C-like languages to process vertex and
fragments in parallel. Because the GPU is an inherently parallel processing unit,
mapping general computation problems to its unique architecture becomes very
interesting [3].

The fragment processor is better suited for image processing problems than
the vertex processor, simply because it is the only part of the graphics pipeline
that has access to both input memory (texture memory) and output memory
(the framebuffer). Let us mention that a fragment is a per-pixel data structure
created at the rasterization stage and containing data such as color, texture
coordinates and depth. A fragment is meant to update a unique location in the
framebuffer. This location covers one or many pixels.

5.1 Markovian Segmentation on GPU

As one might expect, fragment programs (also called fragment shader) have some
specificities as compared to ordinary C/C++ programs. The most important
ones are the following:
1. a fragment program is made to process each fragment in parallel;
2. the framebuffer and the depthbuffer are the only memory a fragment program

can write into;
3. the only data a fragment program can read is contained in the texture mem-

ory, in built-in variable or in user-defined variable. It cannot read the content
of the framebuffer or the depthbuffer;

4. since a fragment program cannot read the framebuffer and since each frag-
ment are processed in parallel, fragment programs cannot exchange infor-
mation. GPUs do not provide its programs with access to general-purpose
memory.

With such limitations, minimizing a global Markovian energy function such
as Eq.(3) can be tricky. In fact, three main problems have to be overcome.
Firstly, when performing a Markovian segmentation, fragment operations should
be performed on every pixel of the input scene. As such, a 1 : 1 mapping from
the input pixels to the output buffer pixels is necessary. This is achieved by
rendering a screen-aligned rectangle covering a window with exactly the same
size as the input image. This generates exactly the right amount of fragments
in the graphics pipeline such that a label estimated by a fragment program will
be copied into one and only one pixel of the framebuffer. Such implementation

600 P.-M. Jodoin, M. Mignotte, and J.-F. St-Amour

is illustrated in Table 2. Notice that a fragment program is launched over each
pixel when the rectangle is rendered (line 4). In this way, the N ×M label field x
is estimated with the help of one CPU program and N ×M fragment programs.
In other words, the CPU program renders the scene and manages the texture
memory while a fragment program minimizes the energy function U(xs, ys) for
each pixel.

Table 2. High level representation of an ICM hardware segmentation program. For
an SA implementation, a temperature factor as well as a cooling rate shall be added.
The first program (line 1 to 7) is the C/C++ CPU program loading the fragment
program, rendering the scene and managing textures. The second program (line 1-2)
is the fragment program launched on every pixel when the scene is rendered (line 4).
Notice that images x and y are contained into texture memory.

1 Copy the input images into texture memory
2 Compile, link and load fragment shader (FS) on the GPU
3 Specify parameters of FS (βMD,βME or βS for example)
4 Render a rectangle covering a window of size N × M
5 Copy the framebuffer into texture memory
6 Repeat steps 4 and 5 until convergence
7 Copy the framebuffer into a C/C++ array if needed
1 x̂s ← arg minxs U(xs, ys)
2 framebuffers ← x̂s

The second problem comes from the fourth limitation. Since GPUs provide
no general-purpose memory, one might wonder how the prior energy function
Vηs can be implemented on a fragment program since it depends on the neigh-
boring labels xt contained in the (write-only) framebuffer. As shown in Table 2,
after rendering the scene, the CPU program copies the framebuffer into texture
memory (line 5). In this way, the texture memory contains not only the input
images, but also the label field x computed during the previous iteration. Thus,
Vηs is computed with labels iteratively updated and not sequentially updated as
it is generally the case. Such strategy was already proposed by Besag [10] and
successfully tested by other authors [12]. Notice that the iterative nature of ICM
and SA is reproduced with multiple rendering of the rectangle (lines 4-5-6).

The last problem with shaders comes with their inability to generate random
numbers such as needed by SA. As a workaround, we generate a random image
that we copy in texture memory where the shader can access it.

5.2 Computer Vision on GPU

With the technique illustrated in table 2, performing motion detection, motion
estimation and stereovision on a GPU is fairly straightforward. Since the shading
languages available to write fragment programs (NVIDIA’s Cg language in our
case) are similar to C, the software programs can be reused almost directly.

Markovian Energy-Based Computer Vision Algorithms 601

The implementation of the three fragment shaders is conceptually very similar
since they all minimize an energy function made of a likelihood term and a prior
term. There is one exception though when stereovision requires a pre-filtering
step ((w ∗C)(s, x, y)). We deal with this situation by pre-computing C(s, xs, ys)
in a 3D DSI table located in texture memory. This 3D table is then filtered with
w after which the optimization procedure (SA, ICM or WTA) is launched.

6 Experimental Results

Results compare software and hardware implementations of the three applica-
tions we have discussed so far. The goal being to show how fast a segmentation
program implemented on a GPU is compared to its implementation on a CPU.
The software programs were implemented in C++ while NVIDIA’s Cg language
was used to implement the fragment shaders. All programs were executed on a
conventional home PC equipped with a AMD Athlon 2.5 Ghz, 2.0 Gig of RAM
and a NVIDIA 6800 GT graphics card. NVIDIA fp40 Cg profile was used in
addition to the cgc compiler version 1.3.

Every results were made after varying some variables. In Fig. 2, the lattice
size vary between 64 × 64 and 1024 × 1024, the number of disparities DMAX

between 4 and 32, dMAX between 2 and 6, and the aggregation window size

200 400 600 800 1000

Lattice
Size

10

20

30

40

50

60

70

80

Acceleration
factor Motion Detection

SA Color ICM Color SA Gray ICM Gray

3 4 5 6

10

20

30

40

50

60

Acceleration
factor Motion Estimation

SA Color ICM Color SA Gray ICM Gray

MAXd
200 400 600 800 1000

Lattice
Size

10

20

30

40

50

60

70

80

Acceleration
factor

Motion Estimation

SA Color ICM Color SA Gray ICM Gray

5 10 15 20 25 30

20

40

60

80

100

Acceleration
factor Stereovision

SA ICM WTA

200 400 600 800 1000

Lattice
Size

20

40

60

80

100

Acceleration
factor Stereovision

SA ICM WTA

5 10 15 20 25 30

10

20

30

40

50

60

70

80

Acceleration
factor Stereovision

GrayDSI ColorDSI

MAXD
200 400 600 800 1000

50

100

150

200

Acceleration
factor Stereovision

GrayDSI ColorDSI

Lattice
Size

Stereovision
Aggregation Filtering

3 5 7
Filter
Size

10

20

30

40

50

Acceleration
factor

MAXD

Fig. 2. Acceleration factor for the motion detection, motion estimation and stereovision
programs

602 P.-M. Jodoin, M. Mignotte, and J.-F. St-Amour

between 3 × 3 and 7 × 7. The number of iterations was set to 10 for ICM and
to 500 for SA. Every results are expressed as an acceleration factor between the
software and hardware execution time.

As shown in Fig 2, the hardware implementation is faster than its software
counterpart by a factor between 10 and 100 approximately. Notice that the accel-
eration factor is generally more important for color sequences than for grayscale
sequences. This is explained by the fact that the likelihood energy function W is
more expensive to compute with RGB vectors than for grayscale values. Thus,
distributing this extra load on a fragment processor results in a more appreciable
acceleration factor.

For stereovision, we have tested the three tasks we have made reference to in
Section 5.2, namely the computation of DSI, the aggregation filtering, and the
optimization procedure (SA, ICM and WTA). As can be seen, the acceleration
factor for ICM and SA is more important than for WTA. This can be explained
by the fact that WTA is a very trivial and efficient algorithm (it converges in
only one iteration). The computational load to distribute on the GPU is thus
less important than for ICM and SA.

7 Conclusion

This paper shows how programmable graphics hardware can be used to per-
forme typical energy-based segmentation applied to computer vision. Results
show that the parallel abilities of GPUs significantly accelerate these applica-
tions (by a factor of 10 to 100 approximately) without requiring any specific
skills in hardware programming. Such hardware implementation is usefull espe-
cially when the image size is large, when the number of labels is large or when
the number of iteration is large.

References

1. Moreland K. and Angel E. The fft on a gpu. In in proc. of Workshop on Graphics
Hardware, pages 112–119, 2003.

2. Kruger J. and Westermann R. Linear algebra operators for gpu implementation of
numerical algorithms. ACM Trans. Graph., 22(3):908–916, 2003.

3. http://www.gpgpu.org/.
4. R. Strzodka and M. Rumpf. Level set segmentation in graphics hardware. In Proc.

of ICIP, 3, pages 1103–1106, 2001.
5. P. Bouthemy and P. Lalande. Motion detection in an image sequence using gibbs

distributions. In Proc. of ICASSP, pages 1651–1654, 1989.
6. Konrad J. and Dubois E. Bayesian estimation of motion vector fields. IEEE Trans.

Pattern Anal. Mach. Intell., 14(9):910–927, 1992.
7. Scharstein D., Szeliski R., and Zabih R. A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms. In Proc. of the IEEE Workshop on Stereo
and Multi-Baseline Vision, 2001.

8. Geman S. and Geman D. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell.,
6(6):721–741, 1984.

Markovian Energy-Based Computer Vision Algorithms 603

9. Kirkpatrick S., Gelatt C., and Vecchi M. Optimization by simulated annealing.
Science, 220, 4598:671–680, 1983.

10. Besag J. On the statistical analysis of dirty pictures. J. Roy. Stat. Soc., 48(3):259–
302, 1986.

11. Chou P. and Brown C. The theory and practice of bayesian image labeling. In
Proc. of ICCV, pages 185–210, 1990.

12. Dumontier C., Luthon F., and Charras J-P. Real-time dsp implementation for
mfr-based video motion detection. IEEE Trans. on Img. Proc., 8(10):1341–1347,
1999.

13. Nagel H-H. Image sequence evaluation: 30 years and still going strong. In proc. of
ICPR, pages 1149–1158, 2000.

14. Mitiche A. and Bouthemy P. Computation and analysis of image motion: a synopsis
of current problems and methods. Int. J. Comput. Vision, 19(1):29–55, 1996.

15. Black M. and Anandan P. The robust estimation of multiple motions: parametric
and piecewise-smooth flow fields. Comput. Vis. Image Underst., 63(1):75–104,
1996.

16. Randi J. Rost. OpenGL Shading Language. Addison-Wesley, 1st edition, 2004.
17. Tomas Akenine-Möller and Eric Haines. Real-time Rendering. AK Peters, 2e

edition, 2002.

	Introduction
	Markovian Segmentation
	Computer Vision Problems
	Motion Detection
	Motion Estimation
	Stereovision

	Optimization Procedures
	Graphics Hardware Architecture
	Markovian Segmentation on GPU
	Computer Vision on GPU

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

