
Superpixel and Entropy-Based Multi-atlas
Fusion Framework for the Segmentation

of X-ray Images

Dac Cong Tai Nguyen2,3, Said Benameur2,3(B), Max Mignotte2,
and Frédéric Lavoie1,3

1 Orthopedic Surgery Department, Centre Hospitalier de l’Université de Montréal
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Abstract. X-ray images segmentation can be useful to aid in accurate
diagnosis or faithful 3D bone reconstruction but remains a challenging
and complex task, particularly when dealing with large and complex
anatomical structures such as the human pelvic bone. In this paper,
we propose a multi-atlas fusion framework to automatically segment the
human pelvic structure from 45 or 135-degree oblique X-ray radiographic
images. Unlike most atlas-based approach, this method combines a data
set of a priori segmented X-ray images of the human pelvis (or multi-
atlas) to generate an adaptive superpixel map in order to take efficiently
into account both the imaging pose variability along with the inter-
patient (bone) shape non-linear variability. In addition, we propose a new
label propagation or fusion step based on the variation of information cri-
terion for integrating the multi-atlas information into the final consensus
segmentation. We thoroughly evaluated the method on 30 manually seg-
mented 45 or 135 degree oblique X-ray radiographic images data set by
performing a leave-one-out study. Compared to the manual gold standard
segmentations, the accuracy of our automatic segmentation approach is
85% which remains in the error range of manual segmentations due to
the inter intra/observer variability.

Keywords: Consensus segmentation · X-ray images · Multi-atlas seg-
mentation · Variation of information based fusion step · Superpixel map

1 Introduction

In clinical practice, X-Ray radiographic images are used to assist in disease
diagnosis, pre-operative planning and treatment analysis. Extraction of the con-
tours and/or regions of the bone structures (pelvis, talus, patella, etc.) from 45-
degree and 135-degree oblique X-Ray radiographic images may eventually play
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an important role in the diagnosis and treatment of diseases such as osteoarthri-
tis (e.g. joint-replacement planning) or osteoporosis (e.g. fracture detection and
bone density measurements).

X-Ray segmentation of bone structures in the pelvic region is both intrinsi-
cally and extrinsically difficult. This is caused partly by the intrinsic difficulties
of the system. First because of the X-Ray imaging systems: Noise in X-Ray
images has a number of origins, but the most fundamental is from the X-Ray
source itself. This type of noise is called quantum noise, in reference to the
discrete nature of the X-Ray photons producing it. Also, bone regions in X-
Ray images often overlap with soft tissues and other bones. Extrinsic difficulties
are usually due to the patients: neighboring tissues inside human body may
have similar X-Ray absorption rates. As a result, the boundaries of the organs
may be ambiguous and there is sometimes no clear edge between two neigh-
boring bone structures. In addition we must also consider the bone structures
density variability, the inter-patient (bone structure) shape variability and the
imaging pose variability. These difficulties are particularly true when dealing
with large and complex anatomical structures such as the human pelvic bone
which explains why the segmentation process of such anatomical structures is
currently performed manually or semi-automatically and often requires human
expert interaction.

To simplify and guide an automatic segmentation task, a priori anatomical
information is essential and may be provided in different ways. For instance,
with the knowledge of the luminance distributions within each different tissue or
regions to be segmented [1] or in the form of deformable statistical models rep-
resented by a family of parametrized curves [2,3] or by one or several prototype
templates together with their parametric spaces of deformations [4].

A recent, simple and non-parametric alternative to bring spatial prior knowl-
edge to the segmentation process consists in defining and using a multi-atlas,
i.e., a set of training segmented images (possibly with the set of their associated
X-ray images) [5–7]. With this latest strategy, the automatic segmentation task
turns into a two step procedures; namely a first registration step where each
atlas segmented (possibly with its associated X-ray image) is registered to the
target image independently and the calculated transformation is then applied to
the segmentation of the atlas image to obtain a segmented version of the target
image and a second fusion or label propagation step where the preceding candi-
date segmentations, resulting from the first step, are finally fused to produce a
final consensus segmentation.

More precisely, in the multi-atlas segmentation strategy, the first registra-
tion stage is usually carried out in two steps: a global rigid registration that
obtains an initial rough alignment followed by a local non-rigid (and non-linear)
registration to take into account the target specific deformation (mainly due to
inter-patient bone structure and imaging pose variability). This latter non-linear
registration is typically performed by applying a non-linear parametric transform
model on the control points of a free-form deformation grid with B-spline-curves,
demons, optical flows, etc. [8]. In these commonly used registration strategies,
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it is important to note that the parametric deformation model is generally com-
putationally expensive, could fail in the case of complex deformations and is not
learned from the multi-atlas data set. In this work, the multi-atlas allows us to
generate an adaptive superpixel map which is then exploited to efficiently take
into account the non linear target-specific deformations and to comprise all the
non-linear variability of the multi-atlas population.

Concerning the second fusion or label propagation step, the commonly used
combination strategies, proposed in the literature, include majority voting [9],
(possibly locally) weighted voting [5] or Expectation-Maximization algorithm
based vote procedure[10]. In this study, we propose to use a label propagation
strategy based on the minimization of the variation of information criterion [11]
between the candidate segmentations to be fused. This fusion procedure has
already turned out to be very relevant for combining multiple low cost and inac-
curate segmentations given by several simple algorithms of a textured natural
image to achieve a final improved segmentation [11].

2 Proposed Model

2.1 Data Set and Multi-atlas Creation

Anonymised 45 and 135 degree oblique X-ray radiographic images of the full
pelvic bone from 31 patients without pelvic deformity were obtained after
approval by the local ethics board. Images of the pelvis were manually segmented
into 14 different regions of interest (ROIs) by experts well trained in pelvic
anatomy and medical image segmentation. These segmentations included the
entire pelvis with all three adjoining bones, namely the left and right proximal
femurs as well as the sacrum including the coccyx (tail bone). Each hemipelvis
consists of the ischium, the ilium and the pubis (see Fig. 1).

2.2 Image Pre-processing

All the acquired X-Ray images to be segmented are firstly pre-processed with
a histogram equalization technique and a DCT-based denoising step [12,13] to
enhance the contour of the different bones of the human pelvis region. These con-
tour cues will be then exploited in the contour-based registration step explained
in the following section.

2.3 Proposed Multi-atlas Fusion Procedure

Linear Registration and Multi-atlas Selection Step. As said in Introduc-
tion, the most informative and reliable visual cues in a X-Ray image of the pelvic
region remains the boundary contours between the different pelvic bone structures
and particularly the external bone contour of the pelvis. Considering this, each
atlas segmented image is linearly registered to the target image independently
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Fig. 1. 6 examples of 45-degree oblique manual segmentations of the human pelvic
bone used in our multi-atlas.

using a contour-based registration technique. More precisely, a global linear reg-
istration (affine or rigid transformations) is performed to obtain an initial align-
ment that maximizes a measure of similarity between the external contour of the
pelvis region in the segmented image of the atlas and an edge potential field (edge
map) estimated on the X-Ray image by a simple Canny edge detector (allowing to
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Fig. 2. Superpixel maps obtained for a given X-ray 45 and 135 degree image to be
segmented.

obtain a binary edge image) [14] followed by a Gaussian blur (filter) with standard
deviation σ controlling the degree of smoothness of this edge potential map [15].
The global rigid registration that maximizes the summation of this potential map
over all the pixels on the boundary of the external contour of the pelvis (given by
the manual segmentation) thus allows to obtain a rough alignment of each atlas
image to the target image.

In addition, our contour-based similarity registration metric allows us to
rank the different manual segmentations of our multi-atlas by decreasing order
of similarity and consequently to select the first half of the segmented images of
the multi-atlas for generating the superpixel map which will be explained in the
following section.

Superpixel Map Creation. The first half of the segmented images of the
multi-atlas allows us to generate a superpixel map where each defined super-
pixel remains a coherent unit which, in fact, contains a set of connected pixels
belonging to the same label region for each segmented image of our subset (ı.e.,
pre-selected as previously mentioned) of manual segmented images of the multi-
atlas. This superpixel map is simply obtained by the intersection of all the regions
(or segments) existing in the multi-atlas (see Fig. 2).

The use of superpixel was originally developed by Ren and Malik in [16] as
a pre-processing step for the segmentation of natural images [16] in order to
reduce the number of entities to be labeled when the segmentation is formulated
as a difficult optimization problem (in the space of all possible segmentations).
Let us also note that the use of superpixels in an energy-based fusion procedure
has also been initially proposed in [17] with a different goal, namely the one of
blending a spatial segmentation (region map) and a quickly estimated and to-
be-refined application field (e.g., motion estimation/segmentation field, occlusion
map, etc.) and in [18] for restoration application.
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In our application, the superpixel map is thus adaptive for each X-Ray target
image to be segmented and will allow us to carry out an adaptive local non-rigid
registration to take into account the non linear target-specific deformations. This
will be explained in the following section.

Non-linear Registration from the Superpixel Map. Each X-Ray target
image allows us to generate a specific superpixel map which locally comprises
all the non-linear variability (i.e., inter-patient bone structure and imaging pose
variability) of a selected subset of the multi-atlas population (see the selection
step in section 2.3). To this end, let us recall that the subset of selected segmented
images, used to generate the superpixel map, have been linearly registered to the
target image. By this fact, the superpixel map is already linearly registered to
the target image. An iterative pruning algorithm is then defined to find the set
of connected superpixels which maximizes the contour-based similarity measure
between the edge map of the target X-Ray image and the outer contour of this
superpixel map1.

More precisely, each superpixel, in a lexicographic order, which is connected
with the background label (i.e., which is contiguous with the external region
of the pelvic bone), is considered as belonging to the pelvic region if the outer
contour-based similarity metric increases and until convergence or a maximum
number of iterations is reached. At convergence, this pruning algorithm allows
us to find an accurate closed external contour of the pelvic bone which is then
used in the following step.

Final Selection and Variation of Information Based Fusion Step. A final
linear registration between the previously closed external contour allows us to
select the first quarter of the manual segmentations of our multi-atlas data set, in
term of a region-based similarity metric, and to fuse these segmentations in the
variation of information (VoI) sense [11]. This similarity metric is the F-measure
(the harmonic mean of precision and recall) between the internal region defined
by the previously estimated closed external contour and the internal region of
the pelvis (given by the manual segmentation).

In this label propagation step, the VoI-based fusion procedure allows to infer
the internal region labels of the pelvis from the filtered (or selected) atlases to
the final segmentation image.

1 Experiments have shown that slightly better results are given if the superpixel map is
scaled by a factor slightly greater than one in order to ensure that the pelvis contour
of the X-Ray target image is fully contained in the superpixel map. To this end,
after trial and error, a scale factor of 1.02 allows us to give the best segmentation
results.
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Fig. 3. Original oblique X-Ray radiographic images of pelvis before and after the
pre-processing step (see Section 2.2: the pre-processing step).

3 Experimental Results

In all the experiments, we have tested our multi-atlas segmentation approach
on 31 images (45 or 135-degree oblique) X-ray radiographic images of the pelvis
acquired using a X-ray imaging system (see Fig. 3).

In order to validate our procedure, we have performed a leave-one-out proce-
dure, i.e., we removed each existing manual segmentation from the multi-atlas
data set while other manual segmentations remained. Each X-Ray image asso-
ciated to the previously removed segmentation map was then segmented by our
strategy and compared, in terms of classification error rate, with its manual seg-
mentation. Compared to the manual gold standard segmentations, the accuracy
of our automatic segmentation approach was 85%. Examples of segmentations
are given in Figures 4 and 5. Figure 6 shows two segmentation results from our
automatic segmentation approach compared to a manual gold standard segmen-
tation. In this example, the accuracy of our automatic segmentation approach
is respectively 89% for Figure 6(g), 85% for Figure 6(h), 81% for Figure 6(i).
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Fig. 4. Example of external pelvis contours on the corresponding 45 and 135 -degree
oblique X-ray radiographic (original and gradient) images.

Fig. 5. Resulting fusion image estimated after the VoI-based label propagation step,
with the estimated internal region labels of the pelvis.



Superpixel and Entropy-Based Multi-atlas Fusion Framework 159

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6. Comparison of two segmentation results from our automatic segmentation app-
roach and a manual gold standard. (a),(b) and (c) original oblique X-Ray radiographic
images of pelvis; (d),(e) and (f) external pelvis contours on the corresponding 45 -degree
oblique X-ray radiographic images; (g),(h) and (i) resulting fusion image estimated after
the VoI-based label propagation step, with the estimated internal region labels of the
pelvis; (j),(k) and (l) a manual segmentations of the corresponding 45 -degree oblique
X-ray radiographic images
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4 Conclusion

In this paper, a new multi-atlas based segmentation method is presented. Unlike
most atlas-based approach, the proposed method includes the following contribu-
tions. First, the multi-atlas data set allows us to generate an adaptive superpixel
map which comprises all the non-linear variability of the multi-atlas population
and allows us to take into account the non linear target-specific deformations
of our multi-atlas based segmentation approach. Second, the similarity measure
used in our registration step is used in an atlas selection strategy both for the
registration step and for the label propagation fusion step, which is herein per-
formed in the variation of information sense. Third our approach allows us to
consider only the most informative and reliable visual cues in a X-Ray image of
the pelvic region, i.e., the external bone contour of the pelvis and the fusion step
then allows to infer the internal region labels of the pelvis from the filtered (or
selected) atlases to the final segmentation image. The average classification rate,
obtained with a leave-one-out method, is within the range of observer variability
when compared to a semi-automatic segmentation technique that is performed
by an expert.
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