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Abstract. Traditional motion segmentation techniques generally depend on
a pre-estimated optical flow. Unfortunately, the lack of precision over edges
of most popular motion estimation methods makes them unsuited to recover
the exact shape of moving objects. In this contribution, we present an orig-
inal motion segmentation technique using a K-nearest-neighbor-based fusion
of spatial and temporal label cues. Our fusion model takes as input a spatial
segmentation of a still image and an estimated version of the motion label
field. It minimizes an energy function made of spatial and temporal label cues
extracted from the two input fields. The algorithm proposed is intuitive, simple
to implement and remains sufficiently general to be applied to other segmen-
tation problems. Furthermore, the method doesn’t depend on the estimation
of any threshold or any weighting function between the spatial and temporal
energy terms, as is sometimes required by energy-based segmentation models.
Experiments on synthetic and real image sequences indicate that the proposed
method is robust and accurate.

1 Introduction

Motion segmentation is one of the most studied research areas in computer vision.
It refers to the general task of labeling image regions that contain uniform displace-
ment. Consequently, motion segmentation has often be related to motion estimation.
Actually, a common way to segment an image sequence is to estimate an optical flow
field and then segment it into a set of regions with uniform displacement. Such an
approach is sometimes called motion-based [1] since segmentation is performed on
the basis of displacement vectors only. This kind of segmentation is rather easy to
implement and generates more accurate results than say, an 8×8 block classification-
segmentation procedure. However, motion-based approaches are known to depend on
the accuracy of an optical flow field which isn’t reliable over textureless and/or oc-
cluded areas. Consequently, motion-based algorithms are doomed to return imprecise
results, especially around edges of moving objects.

To help motion segmentation converge toward more precise solutions (i.e., solu-
tions in which the contour of segmented regions fit the silhouette of the moving ob-
jects), some include spatial constraints to the segmentation process. These constraints
are often edges or regions extracted from one or more image frames. Motion segmen-
tation approaches with spatial constraints are often called spatio-temporal techniques.
These techniques are generally slower than motion-based approaches, but generate
more precise segmentation results.

The approach we propose is based on a K-nearest-neighbor-based fusion procedure
that mixes spatial and temporal data taken from two input label fields. The first one is
a spatial segmentation which contains regions of uniform brightness while the second
label field is an estimated version of the motion label field we will search to refine. The
two segmentation maps are obtained with an unsupervised Markovian procedure. Our
fusion method works with an iterative optimization algorithm called ICM (Iterative
Conditional Mode) [2] whose mode (the maximum local energy for each site at each
iteration) is obtained with a K-nearest neighbor algorithm. The result returned by



our fusion model is a label field that exhibits uniform regions in the sense of brightness
and motion.

The rest of the paper is organized as follows. In Section 2, we present some motion
segmentation techniques recently proposed by the computer vision community before
section 3 describes the proposed technique. The Markovian method we use to generate
the two input label fields is discussed in Section 4 while the overall algorithm we
proposed is summarized in section 5. Section 6 presents results produced by our
method while concluding remarks are presented in Section 7.

2 Previous Work

A great number of papers have been published in motion segmentation during the
past two decades [1, 3]. Among the most popular motion-based approaches are the ones
using parametric motion models [1]. The goal of these motion segmentation methods is
to jointly estimate motion models and their associate motion regions. To this end, the
motion regions and the motion model parameters are generally estimated in two steps
[4] that are iterated until convergence. The first step consists in estimating the motion
model parameters according to a pre-estimated optical flow field and the current
motion label field [5, 6]. By opposition, the second step consists in estimating new
motion regions while the motion models are kept unchanged. Tekalp [7, 8] summarizes
these two steps with his Maximum Likelihood (ML) and Maximum a Posteriori (MAP)
procedures. The difference between the former and the latter is the use of an a priori

energy function that helps smoothing the resulting motion label field.

To our knowledge, Murray and Buxton [9] were the first to embed motion seg-
mentation in a statistical framework using a Markov random field (MRF) model and
a Bayesian criterion (a MAP criterion). Their technique uses quadratic motion mod-
els and represents the segmentation field with a Gibbs distribution whose energy is
optimized with a Simulated Annealing (SA) algorithm. A few years later, Bouthemy
and Francois [4] presented a motion-based segmentation approach relying on 2D affine
models, used to detect moving objects in a scene observed by a moving camera. As
for Murray and Buxton’s method [9], they proposed a model based on a MAP cri-
terion but include a temporal link between successive partitions to ensure temporal
coherence. Bouthemy and Francois uses an ICM optimization to find the solution.

Other authors use motion segmentation to separate the scene into moving layers

[10]. A well known iterative approach is the one proposed by Wang and Adelson [11].
The algorithm starts by estimating an optical flow field and subdivides the current
frame into a predetermined number of square blocks. Affine motion models are then
fitted over each block to get an initial set of motion models. Since the number of
initial models is larger then the number of layers, the models are merged together
with a K-means clustering method. Some layers can be split afterward to preserve
spatial coherency.

Others have proposed segmentation models based on multiple features, such as
brightness and motion. They are often refereed to as spatio-temporal segmentation
techniques. In this context, Black [12] presented an incremental approach with con-
straint on intensity and motion while accounting for discontinuity. Its approach is
based on a MRF and minimizes a three- term energy function using a stochastic re-
laxation technique. Altunbasak et al. [13] presented a motion segmentation approach
working at a region level. As a first step, they independently compute a motion-based
partition and a color-based partition. Assuming that color regions are more accurate
than the motion regions, a region-based motion segmentation is performed, whereby
all sites contained in a color region are assigned a single motion label. Bergen and
Meyer [14] show how to use a still image segmentation combined with robust regres-



sion to eliminate error due to occlusion. This technique computes depth cues on the
basis of motion estimation error.

Finally, a recent paper proposed by Khan and Shah [15] presents a MAP framework
that softly blends color, position and motion cues to extract motion layers. Each cue
has its own probability density function (PDF). These PDF are combined together
with feature weights that give more or less importance to a cue depending on some
defined observations.

3 Our Method

Our motion segmentation procedure takes as input two label fields. The first one is a
spatial partition of a frame at time t (I t) while the second one is an estimated version
of the motion partition (cf. Fig.1). In our application, these two label fields –called
respectively r and x[0]– are estimated separately with an unsupervised Markovian
procedure (although any other valid segmentation approaches would do the trick).
The Markovian framework used in this paper is presented in Section 4.

Once r and x[0] have been computed, they are fed to a K-nearest-neighbor-based
fusion procedure. This procedure –which is the core of our contribution– blends to-
gether spatial and temporal label cues to generate a partition with uniform regions in
the sense of brightness and motion. In other words, this fusion procedure optimizes an
energy function made of spatial and motion label terms extracted from the two input
label fields. Details on this function and the optimization procedure are presented in
Section 5.

Compared to previous methods, our approach has legitimate advantages. To start
off with, our solution is unsupervised and, as opposed to [11] and [15], doesn’t depend
on any threshold or weighting function that might change from one sequence to an-
other. Secondly, our method is stable and doesn’t generates unexpected results when
its parameters are tweaked. For example, as opposed to [13] that needs an accurate
spatial partition, our method reacts well when r and/or x[0] lacks precision. Finally,
our method is simple to implement and remains sufficiently general to be applied to
other segmentation problems.

r x
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Fig. 1. Schematic representation of our approach. From two frames at times t − 1 and t, a
spatial and a motion label field (r and x[0]) are estimated. These label fields are then fed to

the K-nearest neighbor fusion procedure (ICM optimization) that returns a partition (x[n])
in which regions are uniform in the sense of brightness and motion.

4 Markovian Segmentation

Given Z = {X, Y }, a pair of random fields where X = {xs, s ∈ S} and Y = {ys, s ∈
S}, represent respectively the label field and observation field defined on S = {s =
(i, j)}, a 2D lattice of N sites. Here, Y (an image frame I t or a vector field v) is known
a priori whereas X has to be estimated. Each xs takes a value in Γ = {1, . . . , m},
where m corresponds to the number of classes of the segmentation map while ys is a
vector made of real elements.

Segmentation can be viewed as a statistical labeling problem, i.e., a problem where
each observation vector ys needs to be associated to the best class xs ∈ Γ . Thus,



inferring a label field can be seen as an optimization problem that searches for the

best x in the sense of a given statistical criterion. Among the available statistical
criterion, the Maximum a posteriori states that a label field x is optimal according to
y when it maximizes the a posteriori PDF P (x|y). In this way, x is optimal whenever
x = arg maxx P (x|y) [2].

Because P (x|y) is often complex and/or undefined, it is common to assume that
X and Y are MRFs. In this way, this posterior distribution can be defined by a
Gibbs distribution of the form P (X |Y ) ∝ exp−U(X, Y ) where U(X, Y ) is an energy

function [2]. From Bayes theorem [16], the a posteriori distribution can be represented
as P (X |Y ) ∝ exp{−(U1(X, Y ) + U2(X))} where U1 and U2 are the likelihood and
prior energy functions.

By assuming independence between each random variable Y s (i.e., P (Y |X) =
∏

s∈SP (Y s|Xs)), the corresponding posterior energy to be minimized is

U(X, Y ) =
∑

s∈S

( Ψs(xs, ys)
︸ ︷︷ ︸

U1(xs,ys)

+
∑

<s,t>

β
[
1 − δxs,xt

]

︸ ︷︷ ︸

U2(xs)

), (1)

where U2 is an isotropic Potts model. Here, δa,b is the Kronecker function (returns
1 if a = b and 0 elsewhere), β is a constant, <s, t> is the set of binary cliques that
includes s, and Ψs(xs, ys) = − ln P (ys|xs). Notice that the cliques are defined on a
second-order neighborhood.

The conditional distribution P (ys|xs) models the distribution of the observed
data ys given a class xs. In this paper, this distribution is modeled with a Normal
law which depends on the two parameters (µxs

, Σxs
). Since there are m different

classes, there are m different Normal laws and a total of 2m parameters Φ = [(µ1, σ1)
, . . . , (µm, σm)]. Because these parameters are initially unknown, they have to be es-
timated. To this end, we resort to an iterative method called Iterated Conditional
Estimation (ICE) [17].

Markovian Spatial Segmentation The spatial label field r is obtained by seg-
menting image frame I t with a Markovian procedure based on the the framework
presented in the previous Section. Here, I t stands for the observation field y while ys

is a singleton that takes its value in {0, . . . , 255}. For RGB color images, the brightness
of each site is obtained by simply computing the average value of the three channels,
i.e. ys = (It

sr
+ It

sg
+ It

sb
)/3.

Markovian Motion Segmentation The second label field fed to the optimization
procedure is a motion-based partition called x[0]. Although this partition could be
obtained with any method presented in Section 2, we decided to use an unsupervised
statistical Markovian procedure. Here, an optical flow field v computed with an itera-
tive version [18] of Simoncelli et al.’s algorithm [19] stands for the observation field y.
Every element ys is thus a two-dimensional real vector. For every sequence we have
tested, v was computed with a two-level pyramid and an integration window of size
7 × 7 [18].

5 K-Nearest-Neighbor-Based Fusion

Once r and x[0] have been estimated, they are fed to the K-nearest-neighbor-based
fusion approach as shown in Fig.1. This procedure seeks a motion label field x made
of regions uniform in the sense of brightness (r) and motion (x[0]). To this end, the



fusion procedure was designed as a global spatio-temporal optimizer minimizing the
following energy function:

E(r, x) =
∑

s

V (rs, xs), (2)

where V (rs, xs) is a local energy term and rs and xs are assumed to be indepen-
dent. This energy term returns a low value when the neighborhood surrounding s
(called ηs) is spatially and temporally uniform. To measure the degree of uniformity

of a neighborhood ηs, the local energy term uses two potential functions applied on
every site t ∈ ηs

V (rs, xs) = −
∑

t∈ηs

δrt,rs
δxt,xs

. (3)

Here, ηs is a square integration window of size L × L centered on s and δ is the
Kronecker delta function. V (.) works in a similar way the well known K-nearest
neighbor algorithm does [16]. For a given site s and its neighborhood ηs, V (rs, xs)
counts the number of sites t ∈ ηs that are simultaneously in spatial region rs and part
of motion class xs. In this way, the class xs ∈ Γ that occurs the most often within
region ηs is the one with the smallest energy. The way V (.) works is illustrated in
Fig.2. In image r, site α is part of the black class (which is a section of the vehicle)
but has the immobile label in x[0]. When looking at every site in ηα part of the black

section of the vehicle in r, we see there is a majority of sites with mobile label in x[0].
In other words, within the K-nearest neighbors around site s with a black label in r,
there is a majority of mobile sites. For this reason, V (rα, mobile) < V (rα, immobile)
and thus, α is assigned a mobile label in the resulting motion field x[n]. The system
works in a similar way for site β.
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Fig. 2. Zoom on Karlsruhe sequence. Top left is label field r and top right is motion label
field x[0]. The motion label field contains two classes which can be understood as the ”mobile”
and ”immobile” classes. Bottom left is the image frame at time t while bottom right shows

the motion label field after the nth iteration. Note how x[n]’s region silhouette is well localized
as compared to x[0]’s.

Since there are no analytical solutions to x = arg maxx′ E(r, x′), we resort to a
classical iterative ICM [2] technique whose mode (the maximum local energy for each
site at each iteration) is defined by local energy function V (rs, xs). The complete
algorithm of our method is presented in Algo. 1.



K-Nearest-Neighbor-Based Fusion Procedure

It Image frame at time t
v Vector field between It and It−1

r Spatial segmentation of It

x[k] Motion label field after kth iteration
ηs Window of size L×L centered at site s
δa,b Kronecker delta
m,m’ Number of motion/spatial classes

1. Initialization
v ← optical flow between It and It−1

x[0] ← segmentation of v in m classes
r← segmentation of image It in m’ classes
i← 0

2. ICM Optimization (Fusion)
do

i← i + 1
for each site s ∈ S do

for each class xc ∈ Γ do
V (rs, xc)←

∑

t∈ηs
δrt,rsδ

xc,x
[i−1]
t

x
[i]
s ← arg minxc∈Γ V (rs, xc)

while x[i−1] 6= x[i]

Algorithm 1: Our spatio-temporal motion segmentation algorithm based on a K-

nearest neighbor algorithm.

6 Experimental Results

To validate our algorithm, we have segmented sequences representing different chal-
lenges. Some sequences are real while others are synthetic. The latter come with
perfect ground-truth image g and with various degrees of difficulty. The tests pre-
sented aim at validating how stable and robust our algorithm is with respect to the
window size L × L and to the precision of the spatial partition r.

At first, we built two synthetic sequences with different textures that are more or
less easy to segment spatially. As shown in Fig.4, the sequences allow a well defined
spatial partition r, a medium and a badly defined partition r. In the badly defined
partitions (cf. last column of Fig.3), the objects edges in r are barely recognizable. To
measure how precise our algorithm is as compared to ground-truth image g, we have
computed the percentage of bad matching pixels [20], i.e.,

B =
1

NS

∑

s∈S

(1 − δxs,gs
) (4)

where NS is the number of sites in S and δxs,gs
is the Kronecker delta function.

In Fig.4, we compare our results to the ones obtained with methods close to ours.
The first method is Tekalp’s MAP [7, 8] which is a motion-based Markovian approach
using affine motion models. The results return by this method are visually similar to
x[0] (c.f. third row of Fig. 3). The second method is Altunbasak et al.’s [13] region-
based approach which relies on a pre-estimated segmentation map r. As shown in
Fig.4, their method is more sensitive to the precision of r. These results underline
the fact that our algorithm reacts smoothly to a change of its parameters L and r.
It is thus stable and doesn’t generate unexpected results especially when segmented
regions in r don’t exhibit precise edges.
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Fig. 3. Sequences Karlsruhe, Taxi, Tennis, Trevor White, SequenceA, and SequenceB. Se-
quenceA and SequenceB are synthetic sequences with respectively a precise and an imprecise
spatial partition r. The first row presents frames at time t, the second row spatial partitions
r and the last two rows the motion label fields x[0] and x[n] superposed to It. Notice that x[0]

is visually similar to the results returned by Tekalp MAP algorithm [7, 8].

As for the real sequences, we superposed the motion label fields x[0] and x[n] with
image It to illustrate how precise the results are. Results are shown in Fig.3. From left
to right, sequences were segmented with respectively three, three, four, six, four, and
three motion classes. We can see that in most cases, the segmentation map returned
by our algorithm is more accurate than the ones with no fusion procedure.

Sequence A

Partition r MAP Alt. x[0] 3× 3 7× 7 11× 11 21 × 21 31 × 31

precise 15.7 0.8 13.2 13.1 5.0 1.9 1.0 0.9
mediocre 12.5 12.5 10.8 10.7 5.4 4.0 4.2 5.3
imprecise 6.0 25.5 8.1 8.1 5.4 5.3 8.3 9.3

Sequence B

Partition r MAP Alt. x[0] 3× 3 7× 7 11 × 11 21 × 21 31 × 31

precise 11.1 0.4 6.2 2.9 0.4 0.4 0.4 0.5
mediocre 11.6 8.9 6.7 3.3 0.7 0.8 0.9 1.3
imprecise 12.4 42.6 5.2 3.3 2.0 2.6 2.7 5.4

Fig. 4. Percentage of bad matching pixels computed with three different versions of two syn-
thetic image sequences. From left to right: results obtained with Tekalp’s MAP algorithm
[7, 8], Altunbasak et al. [13], our unsupervised statistical Markovian algorithm and results
obtained with our fusion algorithm. The five rightmost columns measure the effect of the
window size (L×L). The quality of the spatial partition r is ranked from precise to imprecise
depending on how well objects have been segmented (see second row of Fig.3).

7 Discussion

In this paper, we have considered the issue of segmenting an image sequence based on
spatial and motion cues. The core of our method is a K-nearest-neighbor-based fusion
between a spatial partition r and a temporal partition x[0]. The two fields are blended
together by an ICM optimization procedure that minimizes an energy function made



of a spatio-temporal potential function. This function works in a similar way the
K-nearest neighbor algorithm does.

Although a spatio-temporal segmentation based on pre-estimated label fields might
appears as a step backward when compared to methods such as Black’s [12] or Khan
and Shaw’s [15] (that minimize one large spatio-temporal energy function) it has legit-
imate advantages. To start off with, these methods rely heavily on weighting functions
and/or on weighting coefficients that give more or less influence to the temporal data
vs the spatial data. A bad choice of these parameters can resolve in a bad segmenta-
tion. Also, because these parameters generally depend on the sequence content, they
have to be re-estimated when used on new sequences. Unfortunately, tweaking these
weighting factors isn’t trivial, especially when their number is large (such as 8 for
Black’s [12]). Furthermore, large energy functions (the ones with many energy terms
and/or defined over multidimensional data) are generally less stable than smaller
ones and thus need sometimes to be implemented along with a stochastic (and slow)
optimization procedure such as simulated annealing.

The point with our method is to alleviate these problems by minimizing individu-
ally the spatial and temporal energy functions before to blend it together. Our method
can thus be seen as a divide-and-conquer approach that doesn’t rely on weighting
factors. It uses short energy functions that can be minimized with a deterministic
optimization procedure which converges faster than stochastic solutions. This makes
the solution stable and tractable. Furthermore, we believe our fusion method is trivial
to implement and, since it processes every pixels independently, it could be efficiently
implemented on parallel hardware.

Results obtained on real and synthetic image sequences shows that our algorithm
is stable and precise. It reacts well to a change of its parameters and/or to a poorly
estimated spatial label field r. In the future, we look forward to extend this method to
other vision problems such as stereovision, motion detection and motion estimation.
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