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Abstract. Most statistical background subtraction techniques are based
on the analysis of temporal color ? intensity distributions. However, learn-
ing statistics on a series of time frames can be problematic, especially
when no frames absent of moving objects are available or when the avail-
able memory isn’t sufficient to store the series of frames needed for learn-
ing. In this paper, we propose a framework that allows common statistical
motion detection methods to use spatial statistics gathered on one frame
instead of a series of frames as is usually the case. This simple and flexi-
ble framework is suitable for various applications including the ones with
a mobile background such as when a tree is shaken by wind or when the
camera jitters. Three statistical background subtraction methods have
been adapted to the proposed framework and tested on different syn-
thetic and real image sequences.
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1 Introduction

Motion detection methods are generally used to evaluate and locate the pres-
ence (or absence) of motion in a given animated scene. To this end, one class
of solutions that enjoys tremendous popularity is the family of background sub-
traction methods [1]. These methods are based on the assumption that the scene
is made of a static background in front of which animated objects with different
visual characteristics are observed. Typical applications for background subtrac-
tion methods include camera surveillance [2], traffic monitoring [3,4] and various
commercial applications [5].

As the name suggests, the most intuitive background subtraction method
involves one background image and an animated sequence containing moving
objects. These moving objects are segmented by simply thresholding the differ-
ence between the background and each frame. The threshold can be a priori
known or estimated on the fly [6]. Unfortunately, such a simple solution is sen-
sitive to background variations and can only meet the requirements of simple
applications.

Background variations can be caused by all kinds of phenomena. For in-
stance, noise induced by a cheap low-quality camera or by motion jitter caused
by an unstable camera are typical situations that can’t be handled properly by
simplistic background subtraction methods. Also, there are many applications
for which some background objects aren’t perfectly static and induce local false
positives. It’s the case, for instance, when a tree is shaken by wind or when the



background includes animated texture such as wavy water. Another common
source of variation is when the global illumination isn’t constant in time and
alters the appearance of the background. Such variation can be gradual such as
when a cloud occludes the sun, or sudden such as when a light is turned on or
off.

For all these situations, a more elaborate background subtraction strategy is
required. In this perspective, many methods proposed in the literature, model
each pixel of the background with a statistical model learned over a series of
training frames. For these methods, the detection becomes a simple probability
density function (PDF) thresholding procedure. For instance, a single-Gaussian
distribution per pixel [7,8] can be used to compensate for uncorrelated noise.
However, this single-Gaussian approach is limited by the assumption that the
color distribution of each pixel is unimodal in time. Although this assumption
is true for some indoor environments, it isn’t true for outdoor scenes made up
of moving background objects or for sequences shot with an unstable camera.
Therefore, because the color distribution of moving background pixels can be
multimodal, many authors use a mixture of Gaussians (MoG) [9, 3, 10] to model
the color distribution of each pixel. The number of Gaussians can be automati-
cally adjusted [9] or predefined based on the nature of the application [3]. Non-
parametric modeling [2,11] based on a kernel density estimation has also been
studied. The main advantage of this approach is the absence of parameters to
learn and its ability to adapt to distributions with arbitrary shape. Let us also
mention that block-based methods [12], Markovian methods [13] and predictive
methods [14, 15], to name a few, have been also proposed.

The main limitation with statistical solutions is their need for a series of
training frames absent of moving objects. Without these training frames, a non-
trivial outlier-detection method has to be implemented [9]. Another limitation
with these methods is the amount of memory some require. For example, in
[3], every training frame needs to be stored in memory to estimate the MoG
parameters. Also, for kernel-based methods [2,11], a number of N frames need
to be kept in memory during the entire detection process which, indeed, is costly
memory-wise when N is large. In this paper, we propose a novel framework
that allows training on only one frame and requires a small amount of memory
during runtime. Our framework considers two kinds of illumination variations
: a unimodal variation (caused by noise) and a multimodal variation (caused
by local movement). The methods we have adapted to our framework are thus
robust to noise and background motion.

The rest of the paper is organized as follows. In Section 2, we present our
framework before Section 3 explains how statistical background subtraction
methods can be adapted to it. Several results are then presented in Section
4 to illustrate how robust our framework is. Section 5 draws conclusions.



2 Proposed Framework

As mentioned earlier, the choice for a pixel-based background model is closely
related to the nature of background variations. In this perspective, let us consider
two kinds of background variations. The first one concerns variations due to
noise. In this case, the background B is considered as being stationary and the
color of each pixel s at time ¢ is defined as By(s) = B(s) + n where n is an
uncorrelated noise factor and B(s) is the ideal noise-free background color (or
intensity) of site s. In this case, the distribution of B;(s) in time is considered
to be unimodal and centered on B(s). The second kind of variations we consider
is the one due to background movement caused by, say, an animated texture
or by camera jitter. Considering that variations are due to local movements, it
can be assumed that the distribution of By(s) in time is similar to the spatial
distribution of B(s), i.e., the spatial distribution {B(r),Vr € ns} where n; is
a M x M neighborhood centered on s. As a matter of fact, as shown in Fig.1
(a)-(b), when a site s is locally animated, the color observed in time over s often
corresponds to the color observed locally around s. Therefore, since the spatial
distribution is often multimodal, the distribution of B(s) often turns out to be
multimodal too.

Shaking camera (b) Animated texture (waveson sea)  (c)

Temporal Histogram Temporal Histogram Tempora Histogram

0 255 0 255 0 255
Spatial Histogram A Spatial Histogram

5

Fig. 1. Three image sequences ezhibiting local illumination variations. From left to
right: a sequence shot with an unstable camera, a sequence including animated tezture
and a noisy sequence. The histograms show that the spatial intensity distributions often
resemble the temporal distribution.

In this paper, we propose a novel framework which uses only one frame for
training. Unfortunately, with only one training frame, it isn’t possible to deter-



mine whether the distribution of a site s in time is unimodal or multimodal. One
can even think of applications where unimodal regions become multimodal after
a while. A good example is when the wind starts to blow and suddenly animates
a tree. In this way, since the modality of each pixel distribution isn’t known a
priori and can’t be estimated with the analysis of only one background frame,
we decided to use a decision fusion strategy. To this end, each pixel is modeled
with two PDFs: one unimodal PDF (that we call P*) and one multimodal PDF
(called P™). Both these PDFs are trained on one single background frame “B”
(see Section 3 for more details on training). The goal of these two PDFs is to
estimate a motion label field L; which contains the motion status of each site s
at time ¢ (typically, L7(s) = 0 when s is motionless and Lr(s) = 1 otherwise).
The detection criterion can be formulated as follows

L(s) = {0 if P*(I;) > 7 OR P™(I;) > 1)

1 otherwise.

where I; is a frame observed at time ¢ . Estimating the motion label field L; with
this equation turns out to be the same as blending two label fields Ly and L
that would have been obtained after thresholding P¥(I;) and P/™(1I;) separately.
Other configurations for blending P* and P™ as well as other thresholding pro-
cedures have been investigated during this research. It turned out that a decision
criterion such as the one of Eq.1 is a good compromise between simplicity and
efficiency.

3 Spatial Training

In this section, we present how P* and P™ can be trained on data gathered on
one background training frame B.

Single Gaussian

As mentioned earlier, P* models variations due to uncorrelated noise and as-
sumes that the background is perfectly motionless. To this end, P¥ is modeled
with a single Gaussian distribution

PAL) = e (g (T(s) — ) T (L(s) — ) (2)

s (27r)d/2|23|_1/2 2 t s s t s

where d = 1 for grayscale sequences and d = 3 for color sequences. Notice that
for color sequences, X is a 3 x 3 variance-covariance matrix that, as suggested
by Stauffer and Grimson [9], is assumed to be diagonal for efficiency purposes.
Since only one training frame is available in this framework, ps and Xy have
to be estimated with data gathered around s. Of course, by the very nature of
P, the spatial data should ideally have an unimodal distribution that resembles
the one observed temporally over site s. Although some spatial neighborhoods
of a scene offer that kind of unimodal distribution (see neighborhood A in Fig.



2), others are obviously multimodal (see neighborhood B in Fig. 2) and can’t
be used as is for training. In fact, using every pixels within a neighborhood 7,
would often lead to corrupted (and useless) parameters. Thus, to prevent g, and
XY from being corrupted by outliers (the gray pixels of the street near B in Fig.
2 for example), a robust function p is used to weight the importance of each
sample B(r) [16]. More specifically, the parameter estimation can be expressed
as

) = 3 por (B - () VielLd ()

where X;(j) is the variance of the j** color space dimension and 7, is a M x M
neighborhood centered on s. As suggested by Huber [16], we defined p(s,r) as

1 if||B(s) — B <
P ={ e e @
[[B(s)—B(r)]2
where c is a constant that we set to 5. This robust estimator leads to interesting
results as shown by the black dotted Gaussian of Fig. 2.
Notice that global lighting variations can be compensated by updating
and X, at every frame [7,8] as follows

ps — aly(s) + (1 — a)us, YV Li(s) =0 (5)
Zs(7) + alli(s,§) = 1s(7))* + 1 = @) Zs(j) ¥ Le(s) = 0,V € [L,d]. (6)
where a € [0, 1] is the so-called learning rate [3].
A Spatial Histogram (B) A Temporal Histogram (B)
w,
0 255 0 25;

Fig. 2. A sequence shot with a perfectly static camera. While the temporal intensity
distribution of pizel B is unimodal and centered on intensity 254, the spatial intensity
distribution around B is bimodal. However, estimating the Gaussian parameters with
Eq. (3) leads to a distribution (in black) centered on the main mode, uncorrupted by
the graylevels of the street.



Mixture of Gaussians

Multimodal histograms such as the ones in Fig. 1 (a)-(b) can’t be appropriately
modeled with one single Gaussian. However, a mixture of K Gaussians can be
a good choice to model such distributions:

K
PM(I) = Zws,i N (I4(s), ps,is Ts,i) (7)
i=1

where N(.) is a Gaussian similar to the one of Eq.(2), ws; is the weight of
the i** Gaussian and K is the total number of Gaussians (between 2 and 5
typically). In this context, a number of 3 x K parameters per pixel need to
be estimated during the training phase. To do so, the well known K-means
algorithm has been implemented. The objective of K-means is to iteratively
estimate the mean of K clusters by minimizing the total intra-cluster variance. In
our framework, K-means takes as input for each pixel s, the M x M background
pixels {B(r),r € n,} contained withing the square neighborhood ns;. When the
algorithm converges and the mean p, ; of every cluster has been estimated, the
variance X ; and the weight w,; are then estimated. In this paper, the number
of K-means iterations was set to 6. For further explanations on K-means, please
refer to [17].

As we mentioned for P}, the MoG parameters can be updated at every frame
to account for illumination variations. As suggested by Stauffer and Grimson [9],
at every frame I, the parameters of the Gaussian that matches the observation
I;(s) can be updated as follows

Ms,i < aIt(S) + (]— - a)l’/s,i: th(s) =0 (8)
T5,i(5) < a(le(5,5) = psi)? + (1 =) Zsi(j)  VLy(s) =0 9)
Ws, i <~ (1 - a)ws,i + aMs,i (10)

where M, ; is 1 for the Gaussian that matches and 0 for the other models. The
weights w; ; are then normalized.

Nonparametric Density Estimation

Since the color distribution of each pixel can’t always be assumed to follow a
parametric form, a multimodal density can be estimated with an unstructured
approach. One such nonparametric approach is the kernel-based density estima-
tion (also called Parzen density estimate [18]) which locally estimates density
from a small number of neighboring samples. The kernel method we have imple-
mented has been inspired by the work of Elgammal et al. [2].

Considering 75 as being a M x M neighborhood centered on site s, the density
at s is estimated with

1
M x M

P(L) = Y Ko(Ii(s) - B(r)) (11)

TENs



for grayscale sequences and, for color sequences,

PPL) = s S [T Koy (1s,9) = B, ). (12

rens j=1

where j is the color-space index (red, green or blue) and B is a background frame.
Here, K is a kernel function —i.e. some PDF— which, in practice, turns out to be
normal or uniform [18]. As suggested by Elgammal et al. [2], we implemented
K, as being a zero-mean Gaussian of the form

1 —z?
Ko-(.’L') = E exp F

(13)

Although o can be estimated on the fly for each pixel [2], we used a constant
value. In this way, a single global 256-float-long lookup table can be precalculated
to allow significant speedup during runtime. The table values are accessed with
the intensity value difference I;(s, j) — B(r, j) as index.

Let us mention that the background frame B used to model P™ can be
updated at every frame to account for lighting variations. This can be easily
done with the following operation:

B(s) « aB(s) + (1 — a)I(s). (14)

4 Experimental Results

To validate our framework, we have segmented sequences representing different
challenges. These tests aim at validating how stable and robust our framework
is with respect to traditional methods using a temporal-training approach. For
each example presented in this section, a neighborhood 7, of size between 11x 11
and 15 x 15 has been used.

The first sequence we segmented is the one presented in Fig.3 (a) which
contains strong noise caused by rain. The segmentation has been performed by
thresholding independently a single-Gaussian PDF (see Eq. (2)) trained over
each pixel. At first, the Gaussian parameters have been computed with a 20-
frame temporal training. Then, the parameters have been trained spatially on
one frame using Eq. (3). As shown in Fig. 3, the label fields obtained with both
approaches are, to all practical ends, very much similar. They both exhibit some
few isolated false positives (due to rain) and some false negatives over the truck
window.

The second sequence we have segmented (see Fig. 3 (b)) is one with no train-
ing frame absent of moving objects. The background frame B needed to learn
the Gaussian parameters has been computed with a simple five-frame median
filter : B(S) = Med[I() (S), I40 (S), Is() (8), 1120 (8), 1160 (8)] This median filter led to
the middle frame of Fig. 3 (b) which, after a spatial training, gave the result of
Fig. 3 (¢).



Sequence without training frames Background image "B" 1Gaussian (satial training)

(obtained with a 5-frame median filtering)

Fig. 3. (a) A noisy sequence segmented with one Gaussian per pizel whose parame-
ters have been spatially and temporally trained. (b) From a sequence without training
frames absent of moving objects, a five-frame median filter has been used to produce the
background frame B.

Temporal
training

Spatial
training

Kernel-based background subtraction MoG background subtraction

Fig. 4. Two frames of a sequence ezhibiting a multimodal background made of trees
shaken by wind. The MoG and the kernel-based method have been trained either tem-
porally on a series of frames or spatially, on single frame.
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Fig. 5. (a) Sequence shot with an unstable camera and (b) a synthetic sequence made
of a boat sailing on a wavy sea. The numbers in the lower left corner of the boat label
fields, indicate the average percent of mis-matched pizels. In each case, the MoG and
the kernel-based method have been used. Both were trained either temporally on a series
of frames or spatially on one frame.

The third sequence we have segmented is the one shown in Fig. 4. This
sequence has been shot with a perfectly static camera and contains a highly
animated background made of trees shaken by wind. The sequence has been
segmented with the MoG and the kernel-based background subtraction method
presented in Section 3. Both have been trained temporally on a series of 150
frames and spatially on one single frame. Since the sequence shows a great deal
of movement in the background, the parameters of each method have been up-
dated at every frame following Section 3’s explanations. In Fig.4, two frames
are presented. As can be seen, the spatial results are very much similar to the
temporal ones although the latter shows a bit more precision. In both cases, a
few isolated false positives due to wind are present at the top, and false negatives
due to camouflage can be seen on the walker. Notice that these isolated pixels
can be efficiently eliminated with a basic 3 x 3 or 5 x 5 median filter.

The third sequence we have segmented is the one presented in Fig. 5 (a) which
exhibits a moving truck. The sequence was shot with an unstable camera making
the background highly multimodal (notice that for the purposes of this paper,
additionnal carema jitter has been added to the original scene). Again, the MoG
and the Kernel-based approach have been used to segment the sequence. Here,
20 frames were used for temporal training. Again, the results obtained after
a temporal training are similar to the ones obtained after a spatial training.
However, the latter seems a bit more precise, mostly because only 20 frames
were available for temporal training. A larger number of training frames would
have had certainly a positive influence on the results’ sharpness (at the expense
of processing time of course).



The fourth sequence shows a boat sailing on a wavy sea. The sequence con-
sists of 200 frames from which the first 80 have been used for temporal training.
The sequence has been computer generated and has a ground-truth label field for
each frame. With these ground-truths, the average percentage of mis-matched
pixels has been computed to empirically compare the four methods. The aver-
age percentage presented in Fig.5 (b) shows, again, how small is the difference
between the spatially-trained and the temporally-trained methods.

5 Discussion

In this paper, a novel spatial framework for the background subtraction problem
has been presented.

Our framework is based on the idea that, for some applications, the tempo-
ral distribution observed over a pixel corresponds to the statistical distribution
observed spatially around that same pixel. We adapted three well known statis-
tical methods to our framework and showed how these methods can be trained
spatially instead of temporally.

Our framework offers three main advantages. First, the statistical parameters
can be learned over one single frame instead of a series of frames as is usually the
case for single-Gaussian or the MoG model. This has the advantage of requiering
much less memory and being more flexible in presence of sequences having no
training frames absent of moving objects. Second, as opposed to the kernel-
based method, only one frame (instead of N) is kept in memory during runtime.
This, again, is a major advantage memory-wise. Also, it makes our kernel-based
methods much easier to be implemented on programmable graphics hardware
[19] having a limited amount of memory. Last, but not least, our framework
maintains the conceptual simplicity and strength of the background subtraction
methods adapted to it. The segmentation function, the adaptation to global
illumination variations and the statistical learning phase are implemented in
a way that is very similar to the one originally proposed under a temporal
framework.

Finally, we have shown that the results obtained with our framework on
sequences with high noise, camera jitter and animated background are, to all
practical ends, identical to the ones obtained with methods trained temporally.
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