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ABSTRACT

In this paper, we describe an unsupervised segmentation method
for contours which proves quite adapted for the images obtained
by electronic acquisition. We present two statistical models for the
norm of the gradient of the gray level at the pixels of an image,
one for contour points and one for points outside contours. We also
describe a Markov model with constraint which incorporates those
two statistical distributions as likelihood together with a simple a
priori model. Our model is suitable for an Iterative Conditional
Estimation (ICE) procedure for the estimation of the parameters
and an Iterated Conditional Modes (ICM) algorithm, or a simula-
ted annealing, for the segmentation. A preliminary step proceeds
to the segmentation of the image into sub-regions and uses a Mar-
kov model without constraint based on the gray level distribution
on the image.

1. INTRODUCTION

Detection of contours is a fundamental problem in Image Pro-
cessing. One popular tool for solving this problem is the Canny
edge-detector or its variants (Deriche, Shen edge-detectors) based
on the gradient of the gray level at the pixels of the image. The
main inconvenient with these algorithms is the supervision in the
specification of thresholds. Moreover, these algorithms are not ba-
sed on the statistics of the image. In [1], a Markov model with
constraints for segmentation of an image into regions or contours
has been presented. However, again, the model is not directly ba-
sed on the statistics of the image. In [2], an advance has been made
in proposing a statistical model for the norm of the gradient of the
gray level outside contours and for a related random variable on
contours. However, we depart from the model presented in [2],
since this model is adapted to a different problem.

Combining the ideas in [1] and [2], we present in this paper
a Markov model that takes into account regions and contours as
well as the statistics of the image. However, unlike [1], we split the
procedure into two separate steps. The first step consists in a pre-
segmentation of the image into classes of sub-regions. The gray
level distribution on each class is modeled by a single Gaussian
law. The estimation of the parameters is done by an ICE proce-
dure and the ICM algorithm is used to obtain the segmentation.
Taking contours of the segmented image, we obtain a subset �
of the image that contains the contours of interest but also false
contours which appear as artifacts. The second step consists in seg-
menting the points of � into two classes : the points off contours
and the points on contours, thus removing the false contours. For
this step, we model the norm distribution of the gradient of the
gray levels by a Weibull law on the class “off” and by a mixture of

three Gaussian laws on the class “on”. We present a Markov mo-
del based on all pixels of the image subject to a constraint ; namely,
the points outside � are imposed to be in the class “off”. We use
again an ICE procedure for the estimation of the parameters and
the ICM algorithm for the segmentation. Despite its computational
load, our method presents two advantages. Firstly, our method is
totally unsupervised, contrary to simpler methods. Secondly, and
more deeply, our model can be used to solve other problems, such
as unsupervised localization of shapes, as will be shown elsewhere.

This paper is organized as follows. In Section 2, we present in
details the pre-segmentation of the image into sub-regions. Section
3 presents the segmentation of the image into contours. In Section
4, we discuss briefly empirical results.

2. PRE-SEGMENTATION OF THE IMAGE INTO
SUB-REGIONS

Given an image of size � , �����	��
��� will denote the non-
oriented graph consisting of the � pixels of the image with neigh-
borhoods given by the usual 8-neighbors. We consider a couple of
random fields ��������
���� , where ����������
! #"$�&% represents
the field of observations located on the sites  (associated to the
pixels of the image), and ������� � 
! �"'�(% the label field.

In this section, �)� represents the gray level at a pixel and takes
its value in ��*+
�,-,.,�
!/10203% , whereas ��� represents a class of sub-
regions in the image and takes its values in ��465�
74989
-,:,:,:
!42;�% , where< �=0 in all our experiments. The distribution of ����
��>� is defi-
ned by a prior distribution ?A@>��B)� , supposed to be stationary and
Markov and by site-wise likelihoods ?�C9D!E @ D3��F �G B � � whose para-
meter H depends on the class label BI� . We assume independence
between each random variable � � given � � . The observable � is
called the “incomplete data”, and � the “complete data”.

Assuming that the “complete data” is known, the parameters
of the gray level statistical distribution associated to each class can
then be computed with the Maximum Likelihood (ML) estimator
on each class JK�ML1
-,:,:,:
 < .

Based on the assumption of electronic acquisition, we model
each distribution function ?�C9D.E @ D3��F3� G 4�NO� by a Gaussian lawP ��FIQSR N 
�T N �U� LV /9W�T 8N�X.Y+Z [�\ ��F

\ R N � 8/9T 8N ] ,
If ���^���_5-
-,�,.,-
���`a� are b random variables i.i.d. according to
a “single” Gaussian law

P C ��FIQSRc
7TA� , and Fd�e��F 5 
-,�,-,-
�F ` � is a
realization of � , the ML estimator of R ML 
7T 8ML for the “complete
data” is given by,fR ML � Lb `g Nih 5 F1N�Q fT 8ML � Lb `g Njh 5 ��F3N \ fR ML � 8 ,



When the segmentation result is unknown (i.e, the class la-
bel of each pixel is not supposed to be known), the situation is
more complex. By assuming that the �KN are independent, this pro-
blem can be viewed as the estimation of the parameters of a

<
-

component mixture. In this case, the observed image, or the sampleF ����F 5 
.,-,-,-
�F � % , is a realization of � with distribution function,

? C ��F �U� ;g� h 5 W � ? C E @�� ��F G 4 � 
!H � �

where the W � are the mixing proportions ( * � W � � L for allJ � L1
�,.,-,-
 < and � � W � � L ). In order to obtain a reliable
estimation of the parameter, we resort to the ICE algorithm. This
procedure, described in detail in [3], is briefly recalled here. This
method relies on an estimator

fH ����
 ��� with good asymptotic pro-
perties (like the ML estimator) for the complete data case. When� is unobserved, this procedure starts from an initial parameter
vector H�� 	�
 (not too far from the optimal one) and generates a se-
quence of parameter vectors leading to the optimal parameters. To
this end, H � �� 5 
 at step ����� L�� is chosen as the conditional ex-
pectation of

fH given � ��F , computed according to the current
value H�� ��
 . It is the best approximation of H in terms of the mean
squares error [3]. By denoting � � , the expectation relative to pa-
rameter vector H � ��
 , H � �� 5 
 is computed from H � ��
 and � � F byH � �� 5 
 ��� � � fH�����
��>��� ���=F�� . The computation of this expec-
tation is impossible in practice, but we can approach it thanks to
the law of large numbers by,H � �� 5 
 � L��� fH���B � 5"! 
 F �#�%$�$�$�� fH ��B �'& ! 
�F �"( 

where B � N ! 
*) ��L1
-,�,.,-
 � are realizations of � drawn according
to the posterior distribution ? @ E-C ��B G FI
7H�� ��
i� . In order to decrease
the computational load, we can take � � L without altering the qua-
lity of the estimation [4]. Finally, we can use the Gibbs sampler
algorithm [5] to simulate realizations of � according to the poste-
rior distribution. For the local a priori model of the Gibbs sampler,
we adopt a two-dimensional isotropic Potts model with a first or-
der neighborhood [6]. In this model, there are three parameters,
called “the clique parameters” denoted + 5 
,+ 8 
�+.- and associated
to the horizontal, vertical, and transverse binary cliques respecti-
vely. Given this a priori model, the prior distribution ? @ ��B)� can
be written as,?A@ ��BI� � X.Y+Z / \ g0 �21 3"4 + �,365 L \87 ��B � 
�B 3 ��9�:�

where summation is taken over all pairs of neighboring sites and7 � , � is the Kronecker delta function. In order to favor homoge-
neous regions with no privileged orientation in the Gibbs sampler
simulation process, we choose + ��3 �;+A5 �;+)8���+ - � L . Fi-
nally, the distribution mixture parameter estimation procedure for
the “incomplete data” using the ICE procedure is outlined as fol-
lows :

Parameter initialization : we can use the
<

-means algorithm
described in [7] or an initial guess for H<� 	�
 (not “too far” from the
optimal one). Then H � �� 5 
 is computed from H � ��
 in the following
way :

1. Stochastic step : using the Gibbs sampler, one realizationB is simulated according to the posterior distribution ? @ E-C ��B G F � ,
with parameter vector H � ��
 .

2. Estimation step : the parameter vector H � �� 5 
 is estimated
with the ML estimator of the “complete data” corresponding to
each class.

3. Repeat until convergence is achieved ; i.e., if H � �� 5 
>=? H � ��
 ,
for some J��ML1
�,-,.,-
 < , return to step 1.

Based on the estimates given by the ICE procedure, we can
compute an unsupervised Markov segmentation of the image. In
this framework, the Markov segmentation can be viewed as a sta-
tistical labeling problem according to a global Bayesian formula-
tion in which the distribution ? @ E-C ��B G F �A@ X.Y+Z � \ �>��BA
SF ��� has
to be maximized [6]. The corresponding posterior energy is,�>��BA
�F �U� g�CBED \AF'G ?_C9DE @ D3��F �G B � �H ICJ KLNM �'O 1 P !

� g0 �C1 3"4 + ��3RQ L \S7 ��B � 
�B 3 �,TH I2J KLEU �'O !
where � 5 expresses the adequacy between observations and labels,
and � 8 represents the energy of the a priori model. We use the
deterministic algorithm ICM [6] to minimize this global energy
function. For the initialization of this algorithm, we exploit the
segmentation map obtained by a ML segmentation.

3. SEGMENTATION OF THE IMAGE INTO CONTOURS

We use the same framework as in the previous section but
with different distributions. Moreover, the observable data � ����)�9
! a"$�(% now represents the norm of the gradient of the gray
level in the image and each � � is in �9435 � “off” 
�428 � “on” % .V First, based on empirical results, we model ?_C2DE @ D1��F �-G 465�
by a Weibull law [8],

W ��F)Q�XZY G 
2[ 
]\c�U� [ \
[ F \ XZY G\ ] ^`_ 5XY Z [ \ ��F

\ XZY G � ^\ ^ ] 

with FbaZXZY G . If � � ��� 5 
-,-,-,.
7� ` � are b random variables i.i.d.
according to a “single” Weibull law

W C ��FIQ]XZY G 
2[ 
]\�� , and F'���F 5�
.,-,-,-
�F3`#� is a realization of � , the ML estimator of [ ML 
�\ ML

for the “complete data” is given by [9],f[ ML � c�� f[ ML �
f\ ML � [ Lb `g Nih 5edF*f^ MLN ] Mgh
ML 


where dF>�=��F \ XZY G � and

c���B)� � bi� `Njh 5 dF ONbi� `Njh 5 � dF ON F'G dF3N	� \ � `Njh 5 F'G dF ON � `Nih 5 dF ON ,
Here, we simply take XZY G � \ L-* _kj�l , where

l
is the maximum

of the norm of the gradient in the given image. We use an iterative
method [9] to find

f[ `nm .V Based on empirical results, we model the conditional density
function ? C D E @ D3��F3� G 4 8 � for contour points by a mixture of three
Gaussian laws,

o ��FIQ]p N 
 R N�
�TIN	�U� -g Nih 5 p N P ��FIQ R N 
7TIN	�,
The ML estimator of the parameters cannot be computed directly.
We used the SEM algorithm [10] with good results in all our tests.



This algorithm is a stochastic version of the EM algorithm [11]
and is identical to the ICE algorithm except for the prior distribu-
tion which is replaced by the proportion of each class. We use the
ML estimator on the result given by a

<
-means clustering seg-

mentation to obtain an initial solution for the parameters of this
mixture.

Finally, for the local a priori model of the Gibbs sampler, we
consider the set � formed by the contours of the sub-regions ob-
tained in the pre-segmentation step. The prior distribution ? @ ��BI�
can then be written as,? @ ��BI�U� X.Y+Z / \ g0 �C1 3 4 + ��3 5�L \ 7 ��BI�9
�B.3S� 9�: ����B�� 7 ��B �9
74 5 �
where +I�C1 3_��* whenever  or � ="#� , and +I�C1 3��ML otherwise. This
amounts to imposing the constraint that � ��BI� be minimal, where

�K��B)� � g�CB�� Q L \*7 ��B ��
74 5 �,T_

on the Gibbs field,�>��BA
�F � � g�CBED \AF'G ? C D E @ D3��F3� G BI�.� � g0 �C1 3"4 + �C1 3RQ3L \S7 ��BI��
�Bk3S� T ,
The constrained stochastic relaxation and constrained simulated
annealing have been developed in this context [12] and could be
used in the ICE procedure and segmentation step, respectively. Ho-
wever, we have imposed the constraint directly at all steps of the
ICE procedure and ICM algorithm by setting B � �^435 whenever =" � . In particular, we initialize the ICE procedure by the pa-
rameters estimated on the complete data obtained by a

<
-means

clustering segmentation of � into two classes based on the norm
of the gradient of the gray level. The class with smallest mean is
labeled 465 .

4. EXPERIMENTAL RESULTS

The effectiveness of the proposed method for detection of
contours cannot be measured easily as there is no obvious defi-
nition of contours. However, one could perform goodness-of-fit
tests on the distributions of the gray level and of the norm of its
gradient, though this would not be sufficient. As of now, we have
simply compared visually the empirical density functions and the
estimated distributions. Also, one can compare visually the results
of our method with other edge-detectors. For this short paper, we
simply present the images obtained in two instances (cf. Fig. 1 and
2) as well as the distributions in one instance (Fig. 3). We have
also included one comparison with a detection using the Canny
edge-detector. One can observe that the false contours due to the
pre-segmentation into sub-regions are completely removed by the
segmentation into contours.

We have tested our method on a few X-rays images without
success. This is certainly due to the presence of a different noise
distribution in the images. Also, images that have undergone consi-
derable JPG compression present certain artifacts with our method.
However, on all images obtained by electronic acquisition that we
have tested, our method gave results comparable to the ones pre-
sented here.

In our implementation, an equalization of histogram is perfor-
med before the pre-segmentation step. Then, we re-calibrate the
gray levels between 0 and 255 and apply a 	�
�	 Gaussian mask.
Finally, we re-calibrate the norm of the gradient between * and

L�*2* and proceed to the estimation step (so, XZY G � \ *+, *1* L ). We
fixed the number of iterations to 10 for the ICE procedure, to 100
for each application of the SEM algorithm and to at most 30 for
each estimation of the Weibull law. The entire procedure took 100
seconds on a PC workstation 400MHz for each of the images pre-
sented here.

5. CONCLUSION

In this paper, we have described an unsupervised segmentation
method for contours which proved quite adapted for the images ob-
tained by electronic acquisition. We have presented two statistical
models for the norm of the gradient of gray level at the pixels of an
image, one for contour points and one for points outside contours.
We have also described a Markov model with constraint which in-
corporates those two statistical distributions as likelihood together
with a simple a priori model. Our model is suitable for an ICE pro-
cedure for the estimation of the parameters and an ICM algorithm,
or a simulated annealing, for the segmentation. A preliminary step
proceeds to the segmentation of the image into sub-regions and
uses a Markov model without constraint. The results obtained are
promising. One can also include a complete statistical model that
takes into account the angle formed by the gradient of the gray
level and the tangent to the contour curve, as will be shown elsew-
here.
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FIG. 1 – Example of a detection of contours using the ICM and
based on the parameters estimated by the ICE procedure. From
Top to Bottom : original image ; contours in the pre-segmentation
of the image into sub-regions ; contours detected in the image ;
contours detected with the Canny algorithm with thresholds 16.25
and 25.0.

FIG. 2 – Example of an unsupervised detection of contours using
the ICM deterministic relaxation technique and based on the pa-
rameters estimated by the ICE procedure. Top : original image.
Bottom : contours detected in the image.
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FIG. 3 – Example of the empirical density functions of the norm
of the gradient of the gray level and the distributions estimated by
the ICE procedure (for the first image). Top Left : off contours. Top
Right : on contours. Bottom : comparison of the two distributions.


