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ABSTRACT

In this paper, we describe a new hidden Markov random field mo-
del, which we call hierarchical multi-data model, and which is ba-
sed on a triplet of random fields (two hidden random fields and one
observed field) in order to capture inter-scale and within-scale de-
pendencies between various scales of resolution of wavelet-based
texture features. We present a variation of the Iterated Conditional
Modes (ICM) algorithm for the segmentation, and an adaptation
of the Iterative Conditional Estimation (ICE) procedure for the es-
timation of the statistical parameters of the model. Results of tests
performed on 75 mosaics of Brodatz textures are reported.

1. INTRODUCTION

Hidden Markov random field (HMRF) models have shown to
be fundamental in understanding the problem of image segmen-
tation. After the pioneer work of [1], [2], various hierarchical ver-
sions have been presented in order to speed up convergence. Multi-
resolution (MR) models (for instance [3]) consider a same HMRF
but at various levels of resolutions, whereas in multi-model (MM)
approaches [4], the HMRF varies with the level of resolution.

One can also consider only the full resolution but analyzed at
various scales, such as in the hierarchical multi-grid (HMG) model
of [5] (where no inter-scale relation is modeled). In [6], a hierar-
chical multi-scale (HMS) model is introduced in order to take into
account the inter-scale dependency. In the HMS models of [7] and
[8], both the inter-scale dependencies and the spatial within-scale
relations are considered.

One can also consider different data at each scale, such as in
the HMS model of [9] (where no spatial within-scale relation is
modeled). In the HMS of [10], the spatial within-scale and inter-
scale dependencies are captured in a contextual model, and the
data varies according to the scale of wavelet coefficients. In [11],
the previous model is extended to a joint multi-context and multi-
scale (JMCMS) model.

We present in this paper a new HRMF model, which we call
hierarchical multi-data (HMD) model (see Section 2). The model
is based on a triplet of random fields : the observed field in which
the data can vary from one scale to another ; one hidden discrete
field that represents the texture classes ; and one auxiliary hidden
discrete field that is used in modeling mixtures of distributions.
When a Sequential Maximum A Posteriori (SMAP) recursive al-
gorithm is adopted, the data gets truncated when passing from one
scale to the next finer scale, whereas the parent label is inherited.
Thus, fusion of decisions is performed. In this paper, we consider
the data as a whole, as is done in [7]. Thus, we use the HMD model

to perform fusion of data, the decision being taken at the bottom
level.

The data features represent a wavelet-based description of the
gray levels contained in windows of various sizes, in a manner
closely related to [12], and are modeled using mixtures of Proba-
bilistic Principal Component Analyzers (PPCA) [13] (Section 4).
In contrast, [10] and [11] use the wavelet coefficients as modeled
by [14]. We present a variation of the Iterated Conditional Modes
(ICM) algorithm [2] for the segmentation (Section 3), and an adap-
tation of the Iterative Conditional Estimation (ICE) procedure [15]
for the estimation of the statistical parameters of the model (Sec-
tion 5). We report in Section 6, the results of tests performed on 75
mosaics of Brodatz textures.

2. A HIERARCHICAL MULTI-DATA (HMD) MODEL

2.1. The triplet (X, Y, C)

We consider a standard segmentation problem in which one
wants an optimal realization (in the sense of some statistical cri-
terion) of a discrete hidden random field X given an observed
random field Y . Both X and Y are defined on a graph G whose
nodes form a set S ; i.e., the components of the vectors X and
Y are attached to the nodes s of the graph : X = (Xs)s∈S and
Y = (Ys)s∈S . We assume that the graph G has a hierarchical
structure organized in J levels (or scales) : the set of nodes S of
G is partitioned into J subsets Sn, 1 ≤ n ≤ J , such that any
node s ∈ Sn at level l(s) = n is connected only to nodes be-
longing to levels n − 1, n or n + 1. Furthermore, we assume that
for each node s at the top level J , the subgraph G(s) of G obtai-
ned by gathering the inter-level descendants of s (i.e. the subset
{t : d(s, t) = l(s) − l(t)}, where d(s, t) denotes the distance
between the nodes s and t in the graph G) forms a tree of depth
J −1. For simplicity, we will consider in what follows a quad-tree
graph structure on each G(s), s ∈ SJ , so that S1 corresponds to
the pixels of the image, and for each level n = 2, ..., J , Sn corres-
ponds to blocks of 2n−1 × 2n−1 pixels. Moreover, at level n, each
block of 2n−1×2n−1 pixels is connected to its usual 8 within-level
neighboring blocks of pixels. For n = 1, ..., J , the restrictions of
X and Y to the level Sn are denoted Xn and Y n, respectively.
We assume that each random variable Xs takes its value in a fixed
finite set of classes Λ = {e1, ..., eK}, no matter the level of s. Mo-
reover, for a given level n, we assume that each random variable
Ys, s ∈ Sn, takes its values in a fixed state space Υn ; the state
spaces Υn are allowed to vary from one level to another. In this
setting, each level corresponds to a possibly distinct set of data (or
features) yn attached to the image, that allows making a decision



as to what should be the realization of Xn ; moreover, these rea-
lizations of X1, X2, ..., XJ are of same nature, in the sense that
they correspond to the same set of classifying hidden labels. The
prior distribution P (x) is defined up to a constant by

∏

s∈S

P (xs | xN(s))
∏

s6∈SJ

P (xs | xN(P(s))),

where xN(s) is the restriction of x to the set of 8 within-level
neighbors of s, and P(s) is the inter-level parent of s. So, the prior
distribution captures within-level as well as inter-scale relations of
the labeling field X .

We also consider an auxiliary hidden random field C on the
graph G, where at each level n, Cs takes its values in a finite set of
auxiliary labels Λn = {gn

1 , ..., gn
Kn

}, possibly different from one
level to another. We assume that the likelihood P (y | c, x) admits
a site-wise decomposition∏

s∈S

P (ys | cs, xs);

i.e., the components of Y are mutually independent given X and
C, and P (ys | c, x) = P (ys | cs, xs). Moreover, the two hidden
fields are related by a likelihood P (c | x) of the form (up to a
constant) ∏

s6∈SJ

P (cs | cP(s), xs)
∏

s∈S

P (cs | xs).

Altogether, the joint distribution of the triplet of random fields
(X, Y, C) is given by P (x, y, c) = P (y | c, x)P (c | x)P (x).

2.2. Examples of HMD models in the literature
In the HMS model presented in [9], one takes Λn = Λ, for

n = 1 to J , and C = X . Furthermore, the inter-scale distributions
P (xs | xN(P(s))) reduce to P (xs | xP(s)), and the within-scale
distributions P (xs |xN(s)) are the uniform distributions, except at
the top level J , in which case it is of the form P (xs).

In the HMS model of [10] and [11], the auxiliary hidden va-
riables Cs take their values in the label sets Λn = {H, L}3 for
each n (corresponding to the coefficients of the three wavelet sub-
bands HL, HH, and LH at scale n), whereas the classifying set
Λ represents the texture classes in the image. For each site s, the
vector xN(s)\{s} ∪ xN(P(s)) is called there the context vector of
s.

2.3. The couple (X, Y )

In the framework of HMD models, the distribution P (y | x) is
equal to the sum

∑
c P (y, c | x). This sum can be expressed as a

product of the form
∏

s∈SJ fx,y(s). Each factor fx,y(s) depends
on all the nodes of the quad-tree based at the root s and is given by

∑

cs

P (ys | cs, xs)P (cs | xs)
∏

t∈d−(s)

Fx,y(t, cs),

where d−(s) is the set of inter-level children of s. For t 6∈ SJ ,
Fx,y(t, cP(t)) is defined recursively by
∑

ct

P (yt | ct, xt)P (ct | cP(t), xt)P (ct | xt)
∏

r∈d−(t)

Fx,y(r, ct),

and at the leaves, we have

Fx,y(t, cP(t)) =
∑

ct

P (yt | ct, xt)P (ct | cP(t), xt)P (ct | xt).

3. MAP SEGMENTATION USING HMD MODELS

One could use the SMAP recursive algorithm on the couple
(X, Y ) of the HMD model, in order to do a segmentation of the
image as a fusion of decisions. In this paper, a different point of
view is adopted : fusion of the data located at the various levels
is performed, leaving the decision at the bottom level. In order
to do so, we restrict the realizations of X to those of the form
(x1, x2, ..., xJ), where each xs at level n > 1 is obtained from the
realization x1 at the lower level, by voting over the corresponding
block of size 2n−1 × 2n−1 (taking the label of minimal index in
case of a tie). In that setting, we denote x by x̃1. We then consider
the segmentation of an image in the sense of the MAP.

Thus, we want to minimize the average cost E[C(X1, x1)|Y =
y], where the cost function C(X1, x1) is defined by 1 − δ(X1 −
x1) = 1 − δ(X̃1 − x̃1). The solution is given by

x̂
1 = arg max

x1
P (x̃1 | y)

= arg min
x1

− ln{P (y | x̃1)} − ln{P (x̃1)}.

For a given pixel s ∈ S1, the corresponding local energy term
is given by

− ln{fx̃1,y(sJ)} −
J∑

n=1

ln{P (x̃1
sn | x̃1

N(sn))}

−
J−1∑

n=1

ln{P (x̃1
sn | x̃1

N(sn+1))}

where sn denotes the ancestor of s located at the nth level.
One could use the Simulated Annealing (SA) algorithm [1] or

the Iterated Conditional Modes (ICM) algorithm [2] directly at the
bottom level. Instead, we use what we call a coarse-to-fine ICM
algorithm. This approach consists in taking at each intermediate
level n0, starting with the top level, the partial energy term

− ln{fx̃n0 ,y(sJ )} −
J∑

n=n0

ln{P (x̃n0

sn | x̃n0

N(sn))}

−
J−1∑

n=n0

ln{P (x̃n0

sn | x̃n0

N(sn+1)
)}

where x̃n0 is obtained by voting at level n0, and fx̃n0 ,y(sJ) is
computed as fx̃1,y(sJ ), but ending the recursion at level n0 rather
than 1 (i.e., as if levels n < n0 were removed from G).

Thus, taking n0 = J , we start with a segmentation x̂J of SJ

in the sense of the Maximum Likelihood (ML) :

x̂
J
s = arg min

e
− ln{

∑

cs

P (ys | cs, e)P (cs | e)}.

We then update dynamically the resulting realization x̂J by swee-
ping in a fixed order the sites s of SJ recursively, choosing at each
site s the label
x̂

J
s = arg min

e
− ln{fx̂J (s,e),y(s)} − ln{P (e | x̂J(s, e)N(s))}

where x̂J(s, e) is obtained from the current realization x̂J by set-
ting the label to e at the site s. The recursion comes to an end when
no more site is modified through an entire sweep.

A segmentation x̂n+1 of Sn+1 obtained at level n+1 (n < J)
is passed on to the next lower level by projection onto Sn. We
then update the resulting realization x̂n by scanning Sn, using the
partial energy term presented above to update the label at a site s.
At the bottom level (n0 = 1), the complete energy term is used.



4. A HMD MODEL BASED ON WAVELET TEXTURE
FEATURES

4.1. Assumptions on the HMD model
In what follows, we make the assumption that CJ = XJ and

|Λn| = |Λ|, 1 ≤ n ≤ J , and that P (cs |xs) = δ(cs −xs) whene-
ver l(s) = J . Also, we assume that the likelihoods P (ys | cs, xs)
are of the simpler form P (ys | cs). We model the distributions
P (cs|cP(s), xs) and P (xs|xN(P(s))) by uniform distributions. Fi-
nally, we take an isotropic Potts model for P (xs |xN(s)). Note that
these assumptions simplify greatly the computation of the MAP
segmentation (the details are omitted here).

4.2. Description of the texture features
For each level n = 1, 2, ..., J in the pyramid, we consider at

every block of 2n−1 × 2n−1 pixels in the image, a window of size
N × N = 2n × 2n centered at that block. The spatial configu-
ration of the gray levels of the image contained in this window,
up to translations, is viewed as the raw data y′

s associated to the
corresponding abstract site s ∈ Sn at level n. We perform a trans-
formation on the raw data y′

s by using a wavelet-based filter bank,
as follows.

Fixing N , let h be a low-pass filter defined on the discrete in-
terval [0, ..., N − 1] (we consider periodic discrete signals of per-
iod N ). The complementary high-pass filter is defined by g(k) =
(−1)k+1h(−k+1). We assume the low-pass condition

∑
k h(k) =

1, and the standard condition |ĥ(k)|2 + |ĝ(k)|2 = 1, where ĥ de-
notes the discrete Fourier transform of h. For i ≥ 2, low-pass
filters hi and band-pass filters gi are defined recursively by the
relations

ĥ0(l) = 1,

ĥi+1(l) = ĥ(2i
l)ĥi(l), i ≥ 0

ĝi+1(l) = ĝ(2i
l)ĥi(l), i ≥ 0.

One can show that the identity |ĥI (l)|
2+

∑I
i=1 |ĝi(l)|

2 = 1 holds
for any I ≥ 1, so that a full coverage of the frequency domain is
provided. In particular, any signal f admits a decomposition of the
form f = hI ∗ (hT

I ∗ f) +
∑I

i=1 gi ∗ (gT
i ∗ f), where I ≥ 1, and

fT (k) = f(−k). In this paper, we take I = 1 at the bottom level,
and I = n − 1 at the other levels n. We then obtain a filter bank
for periodic discrete signals of dimension 2 and period N ×N , by
considering for 1 ≤ i ≤ I , the standard filters [16] gi ∗ hi, gi ∗ gi,
hi ∗ gi, as well as the low-pass filter hI ∗ hI .

Now, given a vector of raw features y′
s (viewed as a two-

dimensional signal f ), we consider the square of the mean of the
filter response hI ∗ hI ∗ f , and for all other filters, the energy of
the filter response. This yields a vector of transformed data ys of
dimension 3I + 1. Note that ys is invariant under translations of
the raw data y′

s, which is a desirable property for texture segmen-
tation. See [12] for the exact analogue in the case of non-periodic
signals, using the z-transform. Here, we normalize each feature
independently between 0 and 1 on the whole image.

4.3. Statistical model for the texture features
For each hidden auxiliary class cs, we consider a Probabilistic

Principal Component Analyzer (PPCA) model [13] defined by a
Gaussian distribution of the form

P (ys | cs) = N (ys; ν, σ
2
Id + WW

t)

where σ2 > 0 represents the variance of the noise in the data, ν

is the average d-dimensional vector of features (with d the dimen-
sion of ys), and W is the reconstruction d × q matrix (where q is
the reduced dimension). Here, the statistical parameters σ2, ν, W

depend on the class cs. In [13], it is proved that the ML estima-
tors on a sample of i.i.d. observations t1, ..., tm issued from that
model, are given by the closed formulas

σ
2 =

1

d − q

d∑

i=q+1

λi,

ν = t̄ =
1

m

m∑

i=1

ti,

W = Uq(Λq − σ
2
Iq)

1/2
,

where λ1, ..., λd are the eigenvalues of the sample covariance ma-
trix, in decreasing order, Λq is the diagonal matrix with entries
λ1, ..., λq , and Uq is the d × q matrix with columns equal to the
corresponding eigenvectors, normalized so that they have eucli-
dean norm equal to 1 (i.e., the columns of Uq span the principal
subspace of the sample covariance matrix).

5. ESTIMATION OF THE HMD MODEL OF SECTION 4

In order to estimate the HMD model (X, Y, C) described in
Section 4, we use an adaptation of the Iterative Conditional Esti-
mation (ICE) procedure [15], [17], [18].

Each distribution P (ys | gn
i ) depends on a vector of statisti-

cal parameters Φn
i = (σ2

i,n, νi,n, Wi,n), where n is the level of s.
Together with the probabilities P (gn

i |ej), we obtain a vector of pa-
rameters Φ which describes completely the model (X, Y, C). The
ICE procedure relies on ML estimators Φ̂(X, Y, C) of the vector
Φ on the “complete data” (x, y, c) ; i.e, given a realization c, we
have an ML estimator Φ̂n

i (y, c) of Φn
i on the subset {ys : s ∈

Sn, cs = gn
i } ; the probabilities P (cs | xs) can simply be estima-

ted by proportions of occurrences. The goal of the ICE procedure
is to minimize the function ||Φ − E[Φ̂(X, Y, C) | Y, Φ]||2 , where
E[Φ̂(X, Y, C) | Y, Φ] =

∑
(c,x) Φ̂(x, y, c) P (c, x | y, Φ). The es-

timation of the HMD parameters for the “incomplete data” y using
the ICE procedure is outlined as follows :

I) Estimation of P (ys | g
n
i ) for all n ≤ J

Parameter initialization : for each level n in the HMD mo-
del (independently of the other levels), use the K-means algorithm
described in [19] to obtain a raw segmentation cn of Sn. The
first estimate Φ[0] of Φ is then obtained using the ML estimators
Φ̂n

i (y, c).
Then, Φ[p+1] is computed recursively from Φ[p] until conver-

gence is achieved (i.e., Φ[p+1] ≈ Φ[p]), in the following way :

1. Simulation : For each level n (independently), simulate one
realization of cs at each site s ∈ Sn according to the weights
P (ys | cs), with parameter vector Φ[p].

2. Estimation : the parameter vector Φ[p+1] is estimated with
the ML estimator of the “complete data” corresponding to each
class, as described above.

II) Estimation of P (gn
i | ej) for all n < J

Parameter initialization : Set xJ = cJ and project xJ to
each lower level. The next Φ[0] of Φ is then obtained using the
proportions of occurrences of labels for P (gn

i | ej) .



Then, Φ[p+1] is computed recursively from Φ[p] until conver-
gence is achieved (i.e., Φ[p+1] ≈ Φ[p]), in the following way :

1. Simulation : Simulate one realization of x1 using the Gibbs
sampler according to the distribution P (x | y) with parameter vec-
tor Φ[p].

2. Estimation : P (gn
i | ej) is estimated using the proportions

of occurrences of labels.

6. EXPERIMENTAL RESULTS

For our tests, we took 110 Brodatz textures located at the URL
“http ://www.ux.his.no/ t̃randen/brodatz.html”, with #111 omit-
ted, and #14 (absent from the site) replaced by #112. We remo-
ved the highly non-periodic textures # 2,7,12,13,15,23,30,31,39-
45, 58,59,61,62,69-72,88-91,97,99, as well as 48 (the period is too
large), 79 (almost equal to 78) and 106 (almost equal to 105). We
split the remaining list into 15 groups of 5 consecutive textures
(dropping 109-111). We then considered all mosaics of 4 textures
taken among the 5 textures of each group. This gave us a collec-
tion of 75 mosaics, each of size 640 × 640, on which we applied
a coarse-to-fine ICM segmentation using the Haar wavelet, with
J = 5 and |Λ| = 4. We obtained 62.7% (74.7%, 80%, and 88%)
of mosaics with less than 5% (10%, 15%, and 20%, respectively)
of misclassified pixels. Next, we removed the textures # 27 and 28
(which are somewhat similar to 29), 50 (similar to 51), 74 (similar
to 75), 80 (similar to 81), as well as 60, 67, 86 (which are not regu-
lar enough). We then obtain 49 mosaics with 83.7% (95.9%, and
100%) of mosaics with less than 5% (10%, and 15%, respectively)
of misclassified pixels.

FIG. 1 – 128 × 128 mosaic of four synthetic textures and its seg-
mentation using the SA. J = 3 and |Λ| = 4.

7. CONCLUSION

In this paper, we have presented a new hidden Markov ran-
dom field model that seems well adapted to texture segmentation.
Unlike multi-scale approaches, we consider the data as a whole,
and hence aim at performing fusion of data, rather than fusion of
decisions. The experimental results reported here seem very pro-
mising.
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