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ABSTRACT

This paper investigates the use of a region-based approach for
the stereo matching problem. We have stated this problem in a
commonly adopted global energy-based framework. Our energy-
based model mixes a local and robust regularization term with
global spatial constraints. These constraints are related to a (pre-
computed) partition into homogeneous regions with identical dis-
parity. In practice, our approach assigns a single disparity to re-
gions instead of individual pixels. These regions, used to globally
constrain the ill-posed nature of our minimization problem, are
estimated by combining an unsupervised Markovian segmentation
and a roughly estimated disparity map. This disparity map is com-
puted with a basic Winner-Take-All (WTA) procedure. The propo-
sed global energy function seems to be well suited to find good
disparity discontinuities at object boundaries, especially when the
number of disparities is large. An Iterated Conditional Modes (ICM)
algorithm is used to optimize this global energy function. We pro-
vide experimental results on real stereo image pairs. A quality
measure, based on ground truth data, is used to evaluate the per-
formance of our algorithm. Results indicate that our approach is
fast and performs well compared to other existing methods.

1. INTRODUCTION

Stereo matching is one of the most active research areas and
challenging topics in computer vision. A stereo vision setup com-
monly used is one involving two images separated by a distance
D on a linear path, perpendicular to their optical axis [1, 2]. The
goal of a stereo correspondence algorithm is to estimate a dispa-
rity map d with respect to a reference input image or a cyclopean
view located between the two input images [2]. In this context,
because the epipolar lines are horizontal, the disparity is seen as
a difference in location between features seen in the two images
[3]. In this work, dp (the disparity at pixel p) makes a correspon-
dence between pixel p in a reference image (Iref) and a pixel q in a
matching image (Imat), when q = p + dp.

In most previous work, the disparity map computation is stated
in a heuristic energy-minimization framework. Among the simple
energy-based methods, we can cite the local ones. Fast, greedy and
easy to implement, they are known to generate more or less accu-
rate results. Based on a matching cost, these methods generally
use the Winner-Take-All (WTA) [1] procedure which selects the
disparity with minimum matching cost (possibly aggregated [1])
for each individual pixel.

Another class of energy-based models are the global ones [1,
2, 4], which include dynamic programming [2, 5], graph-cut [6, 7],

simulated annealing [8, 9], and highest confidence first [10]. These
algorithms are generally slower then WTA but generate smoother
and more accurate results [1].

In these latter methods, the energy function E(d) often in-
volves two components. The first one (Edata(d)) is called the li-
kelihood energy term and measures the disagreement between the
disparity map d and the two input stereo images Iref and Imat. As for
the second one (Esmooth(d)), called the prior energy term, it encodes
constraints on the desired solution (essentially the smoothness as-
sumption of the disparity map). Edata(d) is pixel-based or window-
based and is generally seen as a matching cost function such as a
sum of absolute or squared difference. Esmooth(p) is often restricted
to measure differences between pixel disparity. A simple function
often used is one provided by the Potts model which simply counts
the number of adjacent pixels with different disparities.

In this paper, we propose a novel global energy-based model
efficiently mixing a local and robust regularization term with glo-
bal spatial constraints. In practice, our model assumes that the dis-
parity map is piecewise smooth and assigns single disparity to re-
gions instead of pixels. Estimating a good set of regions R̂ is a
delicate task since ideally, all regions r ∈ R̂ must be spatially ho-
mogeneous with identical disparity. This partition into regions R̂
is estimated by combining an unsupervised Markovian segmenta-
tion with a roughly estimated disparity map. The latter disparity
map is obtained by using a basic WTA procedure. The proposed
global energy function is well suited to finding good disparity dis-
continuities at object boundaries, especially when the number of
disparities is large. An Iterated Conditional Modes (ICM) [11] al-
gorithm is used to optimize this discontinuity-preserving global
energy function.

The remainder of this paper is organized as follows. In sec-
tion 2, our spatially constrained energy-based model is described.
Section 3 describes the region partition model while Section 4 is
devoted to the deterministic optimization algorithm used in our ap-
plication. Finally, Section 5 reports some experimental results on
real images and Section 6 concludes.

2. SPATIALLY CONSTRAINED ENERGY-BASED
MODEL

The energy function used in this work involves two terms,

E(d) = Edata(dR̂) + λEsmooth(d), (1)

i.e., a linear combination of a likelihood and prior term. In our
application, the likelihood term is constrained by a set of spa-



tially homogeneous regions with identical disparity R̂ ∆
= {rn,

n = 1, . . . , Nrmax}. A constant disparity label is associated with
each site belonging to a detected region rn ∈ R̂. The way R̂ is
computed will be further explained in Section 3. For the likelihood
energy term Edata(dR̂), we choose to use a (region-constrained) ab-
solute difference, namely,

Edata(dR̂) =

Nrmax
∑

n=1

∑

p∈rn

|Iref(p)− Imat(p + dp)|, (2)

with the constraint (∀rn ∈ R̂, ∀s ∈ rn, ds = C st
r) which means

that every pixel within a region rn is assigned a constant disparity
C st

r . Iref(p) and Imat(p + dp) designate respectively the gray (or
color) level value at pixel p and p+dp (on the same line) in the two
stereo images. Experiments have shown that squared difference
gives somewhat similar results [1].

Concerning Esmooth(d), the choice of a good prior model is cru-
cial, mainly to avoid poor results over object boundaries1. The
Potts model is among the simplest edge-preserving models since it
penalizes pairs of disparity equally [7, 12] :

Esmooth(d) =
∑

p

∑

v∈Np

δK(dp, dv), (3)

where Np is the set of neighboring pixels (in the disparity map)
around p and δK(dp, dv) is the Kronecker delta function that re-
turns 1 when dp 6= dv and 0 otherwise. The Potts model per-
forms well mainly when the number of disparity levels is small.
However, when this value is large, the Potts model tends to over-
smooth the disparity labels. To minimize this problem, we used a
robust Potts model by replacing δK in Eq. (3) by a robust function
ρ(dp, dv) ∈ [0, 1]. For simplicity, we use the Leclerc function,
namely,

ρ(dp, dv) = 1− exp
(

−
(dp − dv)2

σ2

)

, (4)

where σ is a constant value. Notice that Eq. (4) is isotropic and
does not explicitly represent the discontinuities in disparity at the
boundaries of objects. So, to capture this phenomenon, we made
Esmooth(d) also depend on the intensity difference of the input refe-
rence image Iref,

φ(Iref(p), Iref(v)) = exp
(

−
|Iref(p)− Iref(v)|

γ2

)

, (5)

in order to make depth discontinuities in d correspond to spatial
discontinuities in Iref (γ is a constant value). Similar (but different)
discontinuity-preserving constraints were proposed by Kolmogo-
rov and Zabih [7] and Belhumeur [2].

Combining together Eqs. (1) to (5), the global energy function
to be minimized can be written as

E(dR̂) =
∑Nrmax

n=1

∑

p∈rn
|Iref(p)− Imat(p + dp)| +

λ
∑

p

∑

v∈Np
ρ(dp, dv) φ(Iref(p), Iref(v)). (6)

With this global energy function, the estimated disparity map can
be expressed by

d̂ = arg min
d

E(dR̂).

1Let us note that this characteristic is also taken into account and enfor-
ced by the global spatial constraints of our model.

3. REGION PARTITION MODEL

Two steps are required to obtain a reliable partition R̂ into
spatially homogeneous regions with identical disparity. First, the
reference image Iref has to be spatially segmented into a label field
Iseg. To this end, we use an unsupervised Markovian model desi-
gned for a gray level segmentation into m spatially homogeneous
classes. Second, Iseg must be combined with a roughly estimated
disparity map d[k] in order to make sure that each region r ∈ R̂ is
likely to contain a single disparity.

3.1. Unsupervised Spatial Markovian Segmentation

Let (Iref, Iseg) be a pair of random fields where Iseg = {Iseg(s),
s ∈ S} and Iref = {Iref(s), s ∈ S} represent respectively the
label field (related to the segmented image) and the observation
field. They are both defined on S = {s = (i, j)}, a 2D lattice of
N sites. Each Iref(s) takes a value in {0, ..., 255} (256 gray levels)
and each Iseg(s) takes a value in {1, . . . , m}, where m corresponds
to the number of classes of the segmentation map.

In this framework, the segmentation problem in m classes can
be viewed as a statistical labeling problem according to a global
Bayesian formulation in which the posterior distribution P (Iseg/Iref)
∝ exp−U(Iseg, Iref) has to be maximized [11]. By assuming inde-
pendence between each random variable Iref(s) given Iseg(s), and
an isotropic Potts model with a second-order neighborhood, the
corresponding posterior energy to be minimized is [11]

U(Iseg, Iref) =
∑

s∈S

Ψs(Iseg(s), Iref(s)) +

β
∑

<s,t>

[

1− δ(Iseg(s), Iseg(t))
]

, (7)

where Ψs(Iseg(s), Iref(s)) = − ln P (Iref(s)/Iseg(s)) and δ is the
Kronecker function. This segmentation step leads to the minimi-
zation of U(Iseg, Iref) which is also an energy function of the form
of Eq. (1), i.e., Edata(.) + β Esmooth(.).

We model the conditional distribution P (Iref(s)/Iseg(s)) of each
class by a Normal law. The parameter vector Φ = [(µ1, σ1) , . . . ,
(µm, σm)] of this distribution mixture is estimated with the Itera-
tive Conditional Estimation (ICE) algorithm [13] which gives the
best estimation Φ̂ in the least-squares sense. Once Φ̂ is estimated,
Eq. (7) can be optimized using a classical ICM relaxation tech-
nique [11].

3.2. Partition Into Regions

To obtain a reliable partition R̂, a roughly estimated disparity
map d[0] is needed. This is obtained with a basic Winner-Take-All
(WTA) procedure. A set of regions R̂ is then defined by combining
d[0] and Iseg with the following operation : every pixel s ∈ R̂ is
assigned to the class label d[0](s) + m × Iseg(s), where m is the
number of classes in Iseg. In this way, every region rn ∈ R̂ is both
spatially homogeneous (in the MAP sense according to the model
defined in Section 3.1) and belonging to a unique disparity class
(according to the WTA model). This set of regions is exploited by
our region-based energy model defined in Section 2 which will be
optimized by our minimization strategy defined in Section 4.



4. MINIMIZATION STRATEGY

To minimize the global energy function of Eq. (6), we used
a region-constrained version of the classical ICM relaxation al-
gorithm [11] (cf. Algorithm 1). This deterministic algorithm is
not guaranteed to find the global minima ; nevertheless, it dras-
tically reduces computational time compared to stochastic relaxa-
tion techniques such as simulated annealing [8]. In our application,
two factors ensure a fast and good convergence. The first one de-
rives from the fact that the initial depth map, obtained with a WTA
procedure, is relatively close to the global minima. A local opti-
mization technique will efficiently improve this rough estimation.
The second reason comes from the fact that our problem is cor-
rectly and strongly constrained by the precomputed partition map
into regions R̂. It guarantees the existence and the uniqueness of a
consistent solution which continuously depends on the data.

Region-based ICM Algorithm

d The disparity map to be estimated
dp Disparity at pixel p taking

values ∈ [1, . . . , Nd]
E(.) A real-valued function to be minimized
Iref Input reference image
Iseg Label field of Iref returned by the Marko-

vian segmentation procedure
k The iteration step
R̂ Partition into regions

1. Initialization
d[0] is obtained with a simple WTA procedure
Iseg ← Segmentation of Iref into m classes
k←0

2. ICM optimization
while d[k+1] 6= d[k] do
R̂ ← d[k] + m× Iseg

for each region r ∈ R̂ do
for every possible disparity p ∈ [1, . . . , Nd]
do

Compute E(d
[k]

R̂,[ds=p ∀s∈r]
), by consi-

dering a constant disparity label p for
each site s ∈ r,

Assign to every site s ∈ r the disparity p that
most minimizes E(.), i.e.

∀s ∈ r, ds = p̂ with

p̂ = arg min
p

E(d
[k]

R̂,[ds=p ∀s∈r]
)

k ← k + 1
d[k] ← d[k−1]

Algorithm 1: Region-based ICM algorithm

5. EXPERIMENTAL RESULTS

To reduce the effect of the noise in d[0], the matching cost
(Cdi

(x, y)) for every disparity di is aggregated over a two-dimensional
support region [1]. This operation is performed by making a 2D
convolution,

Cdi
(x, y) = w(x, y) ∗ C0

di
(x, y),

where w(x, y) is a 3 × 3 separable box filter and C0
di

(x, y) is the
absolute difference over all pixels when disparity equals di.

To evaluate our stereo algorithm, we implemented a quality
measure, based on a ground truth disparity map dTruth which com-
putes the percentage of bad matching pixels, namely,

B =
1

N

∑

p

(|dp − dTruth
p | > δ),

where N is the total number of pixels in disparity map d, and δ is a
disparity tolerance that we set to 1. We also provide the percentage
of bad matching pixels for all pixels located over non-occluded re-
gions. We call this measure BŌ [1]. Furthermore, since processing
time is an important factor when comparing stereo algorithms, we
added a time measure reported in seconds. Table 1 summarizes re-
sults for five different algorithms including our region-based ICM
(RB-ICM) approach.

The WTA method that we have implemented simply selects
for each pixel the disparity with lowest matching cost. The PB-
ICM method proposed here is a basic pixel-based ICM algorithm
[11] applied to minimize the global energy function of Eq. (6).
As for SA, it is a simulated annealing algorithm involving a Gibbs
sampler [8] procedure also used to minimize Eq. (6). The number
of iterations for SA is 500. For the graph cut (GC) method, we
used the Maxflow / min-cut algorithm of Roy and Cox [6] which
is one of the first graph cut algorithms applied to the problem of
stereo matching. For these five algorithms, we chose parameters
that give the best statistics. In this perspective, aggregation of the
matching cost is made with a 9 × 9 sliding window [1] for WTA,
ICM and SA but not for GC and RB-ICM. Results from Tsukuba
and Cones are presented in Figure 5.

For every example, outside λ, our algorithm had constant pa-
rameters. We set γ2 = 64, σ = nbDisparities × 0.1, β = 1 and
m = 9. For Tsukuba and Venus examples, we set λ = 3, and for
Sawtooth and Cones, we set λ = 12. All stereo algorithms were
executed on a 2 GHz Pentium IV with 512 MB of memory. Let
us note that all examples used in this work were downloaded from
Middlebury’s stereo vision web site [14] (thanks to D. Scharstein
and collaborators).

Table 1 shows that graph cut (GC) and region-based-ICM (RB-
ICM) are clearly superior which is in part consistent with other pu-
blished results [7, 1]. When comparing RB-ICM and GC, it should
be noted that the latter minimizes a different global energy func-
tion since the prior term Esmooth(d) is replaced by a single smoo-
thing constant [6]. However, in most cases, RB-ICM happens to be
quicker and more accurate. In all cases, RB-ICM converged bet-
ween 5 and 12 iterations.

6. CONCLUSION

We have presented an original framework for inferring scene
geometry from a pair of stereo images. The spatially-constrained
global energy function introduced here is made of a combination



Tsukuba Venus Sawtooth Cones
Dimensions 384x288 434x383 434x380 225x187

Disparity Levels 16 20 20 28
B BŌ Time B BŌ Time B BŌ Time B BŌ Time

WTA 6.5% 5.3% 9.3s 7.7% 5.4% 18.1s 4.3% 1.3% 18.2s 18.6% 16.4% 6.2s
ICM 6.0% 4.9% 19.5s 9.3% 6.8% 44.6s 4.2% 1.2% 46.6s 18.6% 17.1% 16.9s
SA 4.0% 2.3% 503s 4.4% 2.4% 1004s 4.8% 2.7% 982s 18.0% 15.1% 350s
GC 3.6% 2.0% 44.5s 3.2% 1.3% 98.1s 5.8% 2.3% 78.5s 16.4% 11.7% 25.8s

RB-ICM 3.2% 1.56% 26.7s 3.1% 1.4% 48.2s 3.7% 0.91% 65.3s 13.1% 8.9% 15.1s

TAB. 1 – Comparative performance of stereo algorithms using three different measures. B represents the percentage of bad matching pixels
over the entire disparity map, BŌ represents the percentage of bad matching pixels over the non-occluded regions and Time is the time in
seconds needed by each algorithm to converge.

of a likelihood term and a prior term involving a robust Potts model
with a discontinuity-preserving constraint.

The disparity map d is inferred by minimizing E(d). Such an
operation could have been done by a pixel-based stochastic or de-
terministic relaxation method. However, these approaches are not
sufficiently constrained. Consequently, they turn out to be slow
and/or prone to fall into local minimas. To overcome these limi-
tations, we have proposed a deterministic region-constrained pro-
cedure. In practice, it assumes that the disparity map is piecewise
smooth and assigns a single disparity to regions r ∈ R̂ instead of
pixels. The computation of a partition R̂ into spatially homoge-
neous regions with unique disparity is made by a two-step proce-
dure. The first step allows us to obtain a Markovian segmentation
(Iseg) of an input reference image Iref. This result is then combined
with a roughly estimated disparity map d[0]. In order to ensure re-
liable results, the region-based-ICM(RB-ICM) minimization pro-
cedure must be well initialized. This implies that d[0] must not be
far from global minima, or RB-ICM will converge over inaccurate
results. We have shown that a simple WTA is sufficient. Results
indicate that our approach is fast and performs well compared to
other existing methods.
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FIG. 1 – Results obtained by three algorithms over the "Tsukuba"
and "Cones" example.


