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ABSTRACT

In this work, we propose an unsupervised Bayesian model for the
detection of moving objects from dynamic scenes. This unsupervi-
sed solution is a three-step approach that uses a statistical mo-
del of an inter-frame gradient norm field (as likelihood model)
with a local regularization term (as prior model) combined with
strong intra-frame spatial constraints. In the first step, the spatial
constraints are estimated by making an unsupervised Markovian
spatial over-segmentation of two input frames. In the second step,
the inter-frame gradient (derived from the input frames) is restored
to minimize undesired noise. In the last step, an unsupervised Mar-
kovian temporal segmentation (with global spatial constraints) is
performed to generate the desired motion label field. The Maxi-
mum A Posteriori (MAP) estimation of the label field associated
with the spatial segmentations (in the first step) and the motion
label field (in the third step) is performed by a classical Iterative
Conditional Mode (ICM) algorithm. An Iterative Conditional Esti-
mation (ICE) procedure is exploited for estimating the parameters
of the spatial model and the region-constrained temporal model.
This new statistical method of motion detection has been success-
fully applied to real dynamic scenes and seems to be well suited
for the temporal detection of noisy image sequences.

1. INTRODUCTION

Motion segmentation plays an important role in image sequence
analysis and thus has received a lot of attention in the past twenty
years [1]. Motion segmentation refers to the general task of la-
beling image regions that contain uniform displacement vectors.
Motion detection is a special case of motion segmentation since it
aims at partitioning the image into spatially homogeneous regions
that are either moving or stationary. In the literature [1, 2], the la-
bel field associated with this motion detection map is often called
the Change Detection Mask(CDM).

Motion detection methods can be divided in two groups, na-
mely the motion-based approaches versus the spatio-temporal tech-
niques. Motion-based approaches segment image sequences based
on temporal information only such as optical flow [3, 4, 5, 6] or
inter-frame difference [7, 8, 2, 9, 10]. Some well known limitations
of motion-based detection techniques come from their sensitivity
to temporal noise and their difficulty to accurately preserve dis-
continuities at object boundaries. To overcome these limitations,
spatio-temporal segmentation techniques make use of intra-frame
spatial information to rectify and improve the temporal segmen-
tation results. Consequently, such techniques are generally more

robust but slower due to the extra computational effort required.
In this context, two types of spatial constraints are often proposed,
namely contour-based [2, 11] or region-based [12].
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F1G. 1 — Pipeline used by our motion detection method

In this paper, we propose a new statistical spatio-temporal ap-
proach built over an inter-frame difference feature space with region-
based spatial constraints. Our method differs from the others in
that the proposed Bayesian strategy makes use of a restored ver-
sion of the inter-frame gradient norm field and has strong intra-
frame global spatial constraints.

Our approach is a three-step procedure. In the first step, the
two input time frames fr and f;41 are partitioned (with an un-
supervised spatial Markovian segmentation) into a set of uniform
regions R. The purpose of this step is to decompose every moving
object into small uniform region that are likely to be either mo-
ving of stationary. The second step is a restoration procedure that
minimizes undesired noise within the inter-frame gradient image
o¢. This step adds robustness to the temporal segmentation pro-
cedure. The third and final step is a spatio-temporal Markovian
segmentation that partitions the denoised inter-frame gradient o
into three classes. This segmentation uses global spatial constraints
(taken from R) to overcome the problem of noise sensitivity and
boundary inaccuracy. In other words, this step is a region-based
segmentation that assigns motion labels to regions (&) instead of
pixels(see Fig.1 for a schematic view of our three-step motion de-
tection method).



The search for the label field associated with the spatial seg-
mentation (first step) and with the motion label field (third step) is
performed by a classical markovian procedure.

The remainder of this paper is organized as follows. In Section
2, we provide a brief overview of the strategy used for both Mar-
kovian segmentations while the three-step spatio-temporal motion
detection procedure is discussed in Section 3. In Section 4, experi-
mental results are presented and a brief conclusion is provided in
section 5.

2. UNSUPERVISED BAYESIAN SEGMENTATION

The motion detection method presented in this work performs
two Markovian segmentations in order to obtain the CDM. The
first one is an M-class spatial segmentation applied to the two in-
put images, i.e f; (frame at time ¢) and f;41 (frame at time ¢ + 1).
The second one is a three-class temporal segmentation with spa-
tial constraints applied to the denoised inter-frame gradient image
otderived from f; and fi4+1. In both cases, the segmentation mo-
del and the parameter estimation procedure use the same strategy.
Only the likelihood model is different and will be defined in Sec-
tion 3.

2.1. Markovian Segmentation

Let Z = {X, Y} a pair of random fields where X = {z,,s €
Stand Y = {ys,s € S}, represent respectively the label field
(related to the spatial or temporal segmented image) and observa-
tion field (associated with f; or f;1 in the first step or associated
with o, in the third step), both defined on S = {s = (¢,7)}. a
2D lattice of IV sites. Each y, takes a value in {0, ..., 255} and z
takes a value in {1, ..., m}, where m corresponds to the number
of classes of the segmentation map. The distribution of {X, Y} is
defined by the Markovian prior distribution P(X) combined with
the conditional data likelihood P(Y/X') depending on a parameter
vector .

In this framework, the segmentation problem can be viewed as
a statistical labeling problem according to a global Bayesian for-

mulation in which the posterior distribution P(X/Y") o exp —U(X,Y)

has to be maximized [13]. By assuming independence between

each random variable Y; given X (i.e., P(Y/X) = [[,csP(Ys/X5s)),

and an isotropic spatial Potts model with a second-order neighbo-
rhood for both models, the corresponding posterior energy to be
minimized is

UX,Y) =) Ws(as,ys)+ y_ Bl —28(ws,24)], (1)
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where § is the Kronecker function, 3 isa constantand ¥ (xs, ys) =
—In P(ys/zs). The conditional distribution P(y,/zs) of each class
x, is modeled by a Normal law depending on a set of parameters
®. To perform an unsupervised segmentation of Y, @ = [(u1, 01)
y++, (bm,om)] has to be estimated. To this end, we resort to an
iterative method called Iterated Conditional Estimation (ICE) [14].

2.2. Mixture Parameter Estimation

Assuming that the “complete data” Z = {X,Y} is known,
the parameters of the gaussian mixture can be computed with the
Maximum Likelihood (ML) estimator on each class {1,...,m}.

The random field X being unobservable, the ICE procedure de-
fines ®P+1 at iteration p + 1 as the conditional expectation of
@ given Y = y, computed according to the current value &1,
This gives the best approximation in terms of the mean square er-
ror [14]. Denoting E, the expectation relative to parameter vector
ol e+ js computed from @) and Y = y, as a fixed point,
by E,[®(X,Y)|Y = y]. This expectation is impossible to com-
pute in practice, but it can be approximated in the following way,
thanks to the law of large numbers :

1. o
(Q[p](.’l,‘u),y) +...+ (I:'[p](x(n): y))’
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where z(;y,4 = 1,...,n are realizations of X drawn from the

posterior distribution P(X/Y, 1), As it turns out, n = 1 is so-
metimes found sufficient to get good estimates when convergence
is reached [14]. It is also the case in our unsupervised segmenta-
tion models and we actually choose n» = 1 in our experiments.
A good initialization is important and has a significant impact on
the speed of convergence of this iterative procedure. In our appli-
cation, we use a K-mean clustering algorithm to roughly obtain
an m-class partition of the input image. ML estimators on these
partitions then allow ®°! to be obtained.

3. THREE-STEPMOTION DETECTION PROCEDURE
3.1. Step One: Markovian Spatial Segmentation

This first step intends to efficiently detect, from two successive
frames, small uniform regions that are likely to be either moving
of stationary. This is done by defining a partition R 2 {rn,n =
1,..., Nrpa } OF fr and fi41 into a set of disjoint and uniform
regions. These regions will be exploited as spatial constraints with
the Markovian temporal detection model (in step three).

To calculate R, we over-segment f; and fi41 by using a Gaus-
sian law as degradation model to describe the gray-level luminance
within each spatial region r € R. In this context, z is the spatial
label field and the data likelihood energy term Ukaa(.) of Eq. (1)
can be written as

. (02, 9(s)) = n(VEma,,) + W B2l )

where g(s) is either f;(s) or fir1(s) and & = {(pta, ,04,),zs €
{1,...,m}} is estimated by the ICE procedure on f; (see Section
2.2). Segmentation results of f; and f:4+1 (i.e., label field images
f:2 and f£73,) are then combined together by the following linear
operation

I7(s) = £7(s) + mf31(s)

such that I;® contains the desired set of uniform disjoint regions
R.

3.2. Step Two : Restoration of the Temporal Gradient Field

The inter-frame gradient image o = | fi+1 — f:| is often very
noisy and induces unacceptable errors when used directly as an
observation field in a temporal segmentation model. In order to
reduce the effect of inter-frame noise, o, is restored with an edge-
preserving denoising procedure. To this end, we have implemented
a filtering algorithm called mean shift. Mean shift is a simple ite-
rative nonparametric estimator of density gradient that was first



introduced by Fukunaga and Hosteler [15] and adapted to image
filtering by Comaniciu and Meer [16]. As shown in Fig. 2b, mean
shift efficiently reduces undesired noise while preserving edges
well.

© (d)

FIG. 2 — (a) Noisy gradient image o; = |fi — fi+1| taken from the
Karlsruhe sequence. (b) o; after a mean-shift restoration. (c) 8-
class spatial segmentation f;*. (d) 6(t), the filtered gradient field.

3.3. Step Three: Region-Constrained Temporal Segmentation
M odel

This last step segments o, into three classes in order to sepe-
rate regions with low gradient norm from the ones with medium
and high gradient norm. In this context, the set of disjoint regions
R is exploited for two reasons. The first reason is to provide a hie-
rarchical (spatial) filtered version of o, by averaging its values over
each regionr € R,

VreRr (B,g(s)zNi 251(5), Vser, (3)
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where N, is the number of sites within region r € R. As shown
in Fig. 2d, the filtered gradient field 6; better represents the mo-
ving scene than o; or @; since it contains more precise boundaries
around moving regions.

The second reason to exploit R is to globally constrain the
temporal segmentation model. In this perspective, we associate the
same motion label C3 with each site s belonging to a detected
region r € R at time ¢. This helps preserve the integrity of the
different object shapes present in the scene. In this context, z is
the temporal label field and the data likelihood energy term Udgaa(.)
of Eqg. (1) can be written as

Usal,00) = 3 S (Vo) + LUl gy

reR SET

with the constraint that Vr € R, Vs € r, z, = C%. In other words,
this segmentation statistically assigns labels to regions (compu-
ted in step 1) instead of pixels. Once again, the parameters & =
{(pas,0z,), s € {1,...,m}} is estimated with the ICE proce-
dure on o:(s). The resulting label field ; of the segmentation is
the CDM we were looking for.

4. EXPERIMENTAL RESULTS

We have tested our detection method on several image se-
quences. The spatial segmentation map (defined in Subsection 3.1)
and the CDM £, (defined in Subsection 3.3) are both inferred by
the Iterative Conditional Mode (ICM) algorithm [13]. Experiments
have shown that ICM provides results as good as a stochastic es-
timation procedure such as simulated annealing [17], mainly be-
cause of the restoration procedure (in second step) and the global
spatial constraints exploited in the temporal detection procedure
(in third step). For every sequence, the spatial segmentation was
made with 12 classes and 3 was set to 1 for every segmentation.

We have compared our results to the closest Bayesian method
proposed in the literature (to our knowledge), namely the method
developed by Paragios and Tziritas in [10]. This method works
over an inter-frame difference feature space but has no restoration
procedure and no global spatial constraint. Their Bayesian stra-
tegy includes a spatial and a temporal regularization energy term.
More specifically, their method seeks to minimize a global energy
function of the form

U(mtyxt—lyot) = Udala(xtyot) + Usnooth(xt)
+ U(zs, 24-1)

where Usmoon(¢) is the prior energy term, Usaa(z+, 04 ) is the like-
lihood energy term and U(z+, z+—1) is the regularization term that
expresses a temporal coherence with respect to the label field at
the preceding time ¢ — 1. However, since in our framework only
two time frames are available, z;_ is unknown. For this reason,
U (¢, z¢—1) Was set to zero and the other two terms were kept as
is. We used a simulated annealing algorithm [17] to minimize this
energy function.

Our method converged in an average of 10 seconds on a 2
GHz Pentium IV with 512 MB of memory. Note that our program
could be further optimized to reduce processing time. Results over
the sequences Man moving, Trevor white, Mom and daughter and
Karlsruhe are presented in Figs. 3 and 4. Notice that our method
works well for noisy image sequences such as Karlsruhe and Man
moving as well as for the others. It preserves the different boun-
dary discontinuities well (i.e., the integrity of the different object
shapes present in the dynamic scene) without leaving holes within
the moving objets.

5. CONCLUSION

In this work, we have presented a novel three-step unsupervi-
sed Bayesian solution to the problem of motion detection between
two time frames. Our approach estimates the motion label field
by minimizing a global temporal energy function involving a res-
toration process and strong intra-frame global spatial constraints.
Experimental results reported here seem very promising. This stra-
tegy appears to be robust with noisy image sequences and pre-
serves well the integrity of the objects’ boundaries present in the
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F1G. 3 — Results taken from sequences Man moving and Trevor
white. Bottom right results were obtained with a slightly modified
version of Paragios and Tziritas’s Bayesian method [10].

scene. As future work, we aim to adapt our method to object tra-
cking and motion localization over a sequence of more than two
time frames.
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