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ABSTRACT
In this paper, we present a robust method for estimating the mo-
del parameters in a mixture of probabilistic principal component
analyzers. This method is based on the Stochastic version of the
Expectation Maximization (SEM) algorithm. Parameters of this
mixture model are herein used to constrain the 3D reconstruction
problem of scoliotic rib cage from a pair of planar and conventio-
nal calibrated radiographic images (postero-anterior with normal
incidence (IPA) and lateral (ILAT )). More precisely, the propo-
sed PPCA mixture model is herein robustly exploited for dimen-
sionality reduction and to get a set of probabilistic prior models
associated to each detected class of pathological deformations ob-
served on a representative training scoliotic rib cage population.
By using an appropriate likelihood and for each considered class-
conditional prior model, the proposed 3D reconstruction is stated
as an energy function minimization problem, which is solved with
a stochastic optimization algorithm. The optimal 3D reconstruc-
tion then corresponds to the class of deformation and parameters
leading to the minimal energy. This 3D method of reconstruc-
tion has been successfully tested on several biplanar radiographic
images, yielding very promising results.

1. INTRODUCTION

The 3D reconstruction problem of scoliotic rib cage from two
projections has not been widely studied and only few references
exist in the literature. Recently, Mouren [1] has proposed a me-
thod allowing to reconstruct the 3D geometry of the rib cage from
two radiographic projections (postero-anterior and lateral) and a
global prior knowledge on the geometrical structure of each rib.
To £nd this geometrical knowledge while reducing the dimensio-
nality of this problem, a Principal Component Analysis (PCA) is
applied to a training scoliotic rib cage population. This method
is interesting but may not be very accurate. First, it is widely su-
pervised and highly operator-dependent ; it requires to manually
identify and digitize a set of 60 points in the lateral view. Moreo-
ver, the PCA only de£nes a linear dimensionality reduction, which
is a strong and not necessarily true assumption in this context.

In order to overcome this problem of supervision and improve
the accuracy of the deformation model, we propose herein to use a
mixture of Probabilistic PCA [2] (PPCA). In order to estimate the
parameters of such a mixture model, the Expectation Maximiza-
tion (EM) algorithm was already proposed [2]. Nevertheless, the
initial parameter values have a signi£cant impact on the conver-
gence of this iterative procedure and on the quality of the £nal

estimation (The EM converges to a local and not necessary global
optimum estimate). In order to give the procedure more robust, we
herein propose a stochastic version of the EM-PPCA relying on
the Stochastic version of the EM (SEM) algorithm [3]. This SEM-
PPCA is herein ef£ciently exploited for dimensionality reduction
and to get a set of probabilistic prior models, associated to each
detected class of pathological deformations, observed on a repre-
sentative training scoliotic rib cage population. For each conside-
red class-conditional prior model of pathological deformations, the
proposed reconstruction method then consists in £tting the projec-
tions of an instance of the deformation model with the segmen-
ted contours of the corresponding rib cage on the two radiographic
views. This matching problem leads to a set ofK optimization pro-
blems (one for each detected class of pathological deformations)
which is ef£ciently solved in our application with a stochastic op-
timization algorithm. The optimal 3D reconstruction corresponds
to the solution, leading to the minimal energy, amongst these K
optimization problems.

This paper is organized as follows. In Section 2 we present
the basic concept of mixtures of PPCA. Section 3 is devoted to
the SEM algorithm for estimating of the model parameters in a
mixtures of PPCA. Sections 4 and 5 describe the proposed 3D re-
construction method and the related sequence of energy function
to be optimized. In Section 6, we show some 3D reconstruction
results.

2. PROBABILISTIC MODEL FOR DIMENSIONALITY
REDUCTION

PCA is a well established model for dimensionality reduction.
Nevertheless, one limiting disadvantage of this technique is the
absence of an associated probability density model or generative
model [2]. PPCA overcomes this problem.

2.1. Probabilistic PCA

Here, we recall the concept and formulation of PPCA. Let S
and b be two random vectors related by [2],

S = Φb+ ν + ε,

where Φ is a d×mmatrix that represents the principal subspace of
S. The assumption is that b ∼ N (0, Im) as well as ε ∼ N (0, σ2Id)
are zero mean Gaussian distributed random vector (Ir denotes the
r × r identity matrix andN () represents the normal distribution).
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Consequently the random vector S is also normally distributed ac-
cording to

pS(s) = N (s; ν, σ2Id +ΦΦT ). (1)

The variable S represents the full data, whereas b represents the
reduced data (the dimension m of b is signi£cantly smaller than
the dimension d of S).

Let [s1, s2, ..., sn]T be a i.i.d. observation sample issued from
S, λ1, ..., λd be the eigenvalues of the covariance matrix, in de-
creasing order, of this sample, Λm be the diagonal matrix with
entries λ1, . . . , λm, and Um be the d × m matrix with columns
equal to the corresponding eigenvectors, normalized so that they
have euclidean norm equal to 1. From [2], a ML estimation of
(ν, σ2,Φ) is given by,

ν = s̄ =
1

n

n
∑

i=1

si ,

σ2 =
1

d−m

d
∑

i=m+1

λi ,

Φ = Um(Λm − σ2Im)1/2. (2)

The conditional probability distribution of S given b, is ex-
pressed by [2]

PS/b(s/b) = (2πσ2)−1/2 exp
(

−
1

2σ2
‖s−W − s̄‖

)

,

where W = Um(Λm−σ
2Im)1/2b. Hence, the ML reconstructed

data point should be taken as

ŝ = Um(Λm − σ2Im)1/2 b̂+ s̄.

2.2. Mixtures of PPCA

A Mixture of PPCA (MPPCA) is a distribution of the form[2]

PS(s) =
K
∑

c=1

ωcN (s; νc, σ
2
cId +ΦcΦ

T
c ),

where K designates the number of components of the mixture and
ωc is the proportion of each component c. This mixture depends
on a vector of parameters Γ = (ν1, σ1,Φ1, ..., νK , σK ,ΦK). In
order to reduce data, the following strategies can be adopted ; we
compute for each mixture component c, the reconstruction point
s̄c and take the one nearest to s the one that maximizes the distri-
bution PS(s) (optimality in the ML sense).

3. ESTIMATION OF A MIXTURES OF PPCA

In order to estimate the parameter vector Γ, we resort to the
SEM algorithm [3]. This iterative procedure requires initial para-
meters which can be given by a K-means clustering procedure [4]
(in doing so, we assume, as £rst approximation, that the considered
clusters are spherical with equal volumes). The obtained spherical
partitions allow to obtain a rough estimation of the mixture para-
meters which are then used to initialize the SEM clustering and
estimation procedure.

3.1. Stochastic EM Algorithm

Let K be an upper bound on the number of classes and ξ ∈
]0, 1[ be a chosen threshold. In the context of the estimation of a
MPPCA, the SEM algorithm [5] can be outlined as follows, (the
superscript denoting the iteration number).

Initialization
We initialize the SEM algorithm by the parameters estimated

on the complete data obtained by K-means algorithm clustering
[4] of S into K classes. For every observation si, a probability
P
[0]

S/C(si/c) of its belonging to the class c, (c ∈ {1, . . . ,K}) can
be de£ned. An iteration of SEM consists of three steps.

Step S (Stochastic)
For each si, we select from the set of classes an element accor-

ding to the distribution [P [p]C/S(1/si,Γ
[p]), . . . , P

[p]

C/S(K/si,Γ
[p])].

This selection de£nes a partition [ϑ[p]1 , . . . , ϑ
[p]
K ] of the sample S =

[s1, s2, ..., sn]
T .

Step M (Maximization)
The SEM algorithm supposes that every si belonging to ϑ[p]c

for each c ∈ [1,K], is realized according to the distribution de£-
ned by PS/C(si/c,Γ) (Eq. (1)), the density corresponding to the
class c. Let N be the number of rib cages in the training base. By
denoting π̂[p+1]c = Card(ϑ[p]c )/N , we can estimate Γ[p+1], the pa-
rameter of the mixture, in the ML sense (Eq. (2)). If π̂[p+1]c < ξ,
we eliminate the class c in the mixture.

Step E (Estimation)
For each si, we de£ne the next distribution [PC/S(1/si,Γ

[p+1])

, . . . , PC/S(K/si,Γ
[p+1])] by the posterior distribution based on

the current parameter Γ[p+1] :

PC/S(c/si,Γ
[p+1]) =

π
[p+1]
c PS/C(si/c,Γ

[p+1])
∑K

c=1 π
[p+1]
c PS/C(si/c,Γ[p+1])

.

Return to step S until the sequence Γ becomes steady.

4. MIXTURE OF STATISTICAL DEFORMABLE
MODELS

In our application, the shape s of each rib cage of our training
database is de£ned by a set of l control points or landmarks, which
approximate the geometrical shape of the mid-lines of each rib.
Each scoliotic rib cage, in the training population, is thus repre-
sented by the following 3l dimensional vector,

s = (x1, y1, z1, ..., xl, yl, zl)
T ,

where (xi, yi, zi)T are the Cartesian coordinates of the ith control
point of the shape.

4.1. Training Phase
After aligning of the training shapes, considered as our ob-

servation sample, we estimate the parameters of a MPPCA with
K classes. Each component of this MPPCA allows to reduce the
dimensionality to mc (¿ 3l), for each class c (c ∈ [1,K]) and al-
lows to get a probabilistic deformable model with parameters νc,
σ2c , and Φc = Umc

(Λmc
− σ2cImc

)1/2. This gives us non-linear
admissible and probabilistic deformations for the mean shape of
each pathological deformations detected in our representative lear-
ning set.

2950



4.2. Deformation Parameters
The globally deformed template for each class c is £nally de-

£ned by,

sc = M(k, α)[sc +Φcbc] + T, (3)

where,
• T and M(k, α) account for rigid deformations of the tem-

plate, (T is a global translation vector, and M(k, α) per-
forms a rotation and a scaling by k (in the x, y or z axes)).

• Φc = (φ1, . . . , φmc
) is the matrix of the £rst mc eigenvec-

tors associated with the mc largest eigenvalues and bc =
(bc,1, . . . , bc,mc

)t is a vector containing the weights for
these mc deformation modes.

A global con£guration of the deformable rib cage template is thus
described by mc + 9 parameters corresponding to rigid transfor-
mations and mc modal weights bc.

4.3. Prior Energy Term
Let Θ be the random variable corresponding to the vector of

deformations. We model the distribution of Θ by [6],

PΘ(sc) = U(T, k, α) exp
(

−
1

2
bt(Imc

− σ2cΛ
−1
mc

) b
)

.

Where U is the uniform distribution. By considering that

PB(Sc) =
1

ζp
exp(−Ep(sc)),

where ζp is a normalization constant, A prior energy term Ep(sc)
can be deduced,

Ep(sc) =
1

2
bt(Imc

− σ2cΛ
−1
mc

) b. (4)

This energy term, which does not penalize af£ne transformations,
will be used in our energy-based model to constrain our 3D re-
construction model by penalizing the deviation of the deformed
template from the mean shape.

4.4. Likelihood Energy Term

As proposed in [7], the likelihood model is expressed by the
following heuristic likelihood energy term,

El(sc, IPA, ILAT) =−
1

nPA

∑

ΓPA

ΨPA(x, y)−
1

nLAT

∑

ΓLAT

ΨLAT(x, y), (5)

where the summation of the £rst and second term of El is overall
the nPA and nLAT points of the external contour of the respectively
ILAT and IPA perspective projections of the deformed template,
belonging to the class c, on two pre-computed edge potential £elds
of each radiographic image.

The edge potential £eld Ψ is computed from Canny edge [8]
and de£ned as in [9] by,

Ψ(x, y) = exp

(

−

√

ξ2x + ξ2y
τ

)

∣

∣

∣
cos
(

γ(x, y)
)

∣

∣

∣
, (6)

where ξ = (ξx, ξy) is the displacement to the nearest edge point in
the image, and τ is a smoothing factor which controls the degree of
smoothness of this potential £eld. γ(x, y) is the angle between the
tangent of the nearest edge and the tangent direction of the contour
at (x, y) [7].

5. OPTIMIZATION OF THE ENERGY FUNCTION

For each class c (∈ [1, . . . ,K]), the unsupervised 3D recons-
truction procedure is stated as a energy function minimization pro-
blem, namely,

E(sc, θ) = El(sc, IPA, ILAT) + βEp(sc),

where El is the likelihood energy term, Ep is the prior energy
term or the regularization term. β is a factor allowing to control
the balance between the two energy components and the rigidity
of the deformable template.

In order to minimize this complex energy functions [7], we
resort to the E/S optimization algorithm, recently proposed by O.
François in [10], already used for shape localization [6], non pho-
torealistic rendering [11], and 3D reconstruction of the scoliotic
spine [7].

Finally, we consider that the optimal 3D reconstruction corres-
ponds to the solution, leading to the minimal energy, amongst the
K possible optimization problems

Eoptimal(sc, θ) = argmin
c

{

argmin
θ

E(sc, θ)
}

.

6. EXPERIMENTAL RESULTS

In our application, the rib cages database consists of N = 532
(representative) scoliotic rib cages. Each shape is represented by
660 mid-line points and have the same number of ribs (11 right
ribs and 11 left ribs whose the mid line is composed of 30 points).
The training phase yields a reduced dimension for the non-linear
deformations with less than 15% error. The reduced dimensions,
associated to each different classes, are presented in Table 1. For
the experiments, we have chosen β = 0.02 for the weighting factor
penalizing the prior energy term with respect to likelihood energy
and K = 8 number of classes. We used the Canny edge detector
to estimate the edge maps which are then used for estimation of
the edge potential £elds on the two radiographic views (used in
the likelihood energy term). In our application, σ = 1, mask size
is 5 × 5, and the lower and upper thresholds are given by the un-
supervised estimation technique proposed in [2]. We £x the size
of population to 100 and the number of iterations to 100. Fig. 2
shows an example of 3D reconstruction of scoliotic rib cage from
two radiographic images (postero-anterior and lateral).

class 1 2 3 4 5 6 7 8
reduced dim. 23 20 21 23 16 15 18 17

Table 1. Reduced dimension for each detected class of the PPCA
mixture.

7. CONCLUSION

In this paper, we have presented a robust method for estima-
ting all of the model parameters in a mixture of probabilistic prin-
cipal component analyzers. This method is based on the Stochastic
version of the Expectation Maximization (SEM) algorithm.

In order to validate this estimation technique, we have also
presented a new technique for the 3D reconstruction of scoliotic
rib cage from two radiographic projections IPA and ILAT . This
method ef£ciently exploits the estimation of a mixture of PPCA for
both dimensionality reduction and to constrain the 3D reconstruc-
tion problem. The proposed 3D reconstruction problem is viewed
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Fig. 1. Prior model of four £rst class. Two deformed shapes obtai-
ned by applying ±1 of all deformation modes to the mean shape
of rib cage and from the sagital and coronal views.

Fig. 2. Projections of reconstructed rib cage on the two radiogra-
phic views (i.e. postero-anterior and lateral views).

as a set of optimization problem, each one associated and constrain
by a speci£c class of pathological deformation observed on a re-
presentative training scoliotic rib cage population and ef£ciently
detected by the MPPCA method.
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