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ABSTRACT

This paper proposes an original inhomogeneous restoration (de-
convolution) model under the Bayesian framework. In this model,
regularization is achieved, during the iterative restoration process,
with an adaptive segmentation-based regularization term whose
goal is to apply local smoothness constraints on estimated constant
areas of the image to be recovered. To this end, the parameters of
this restoration a priori model relies on an unsupervised Marko-
vian over-segmentation. To compute the MAP estimate associated
to the restoration, we use a simple steepest descent procedure re-
sulting in an efficient iterative process converging to a globally
optimal restoration. The experiments reported in this paper de-
monstrate that the discussed method performs competitively and
sometimes better than the best existing state-of-the-art methods in
benchmark tests.

1. INTRODUCTION

The problem of recovering an original image x from a degra-
ded observed version y, is usually known as a restoration pro-
blem. In many situations, where the imaging system is assumed
to be linear and shift invariant, the transformation from x to y is
well described by the following additive linear degradation model,
y = h∗x+n, where y, x and n represent respectively, the degraded
or noisy and blurred observed image (of size N pixels), the undis-
torted true image and the corrupting additive and white Gaussian
noise with variance σ2. h is the Point Spread Function (PSF) of the
imaging system and ∗ is the linear convolution operator. We shall
assume throughout this paper that the degradation model (PSF and
variance of the white Gaussian noise) is known.

The simplest way to approach the restoration problem is to find
x in the Maximum Likelihood ML sense (arg maxx PY |X(y|x))
or equivalently to find the least squares estimation of x, defined
by arg minx ‖y−h∗x‖2 . This so-called inverse-filtering solution,
which best matches the probabilistic behavior of the data leads to
unacceptable restoration solutions. In fact, the problem of reco-
vering an original image from its degraded version is typical of
ill-posed inverse problems in the sense of Hadamard [1] : the per-
fect knowledge of the degradation model is not sufficient to deter-
mine a restoration result with acceptable accuracy. To circumvent
this difficulty, a conventional method is to regularize the solution
by introducing a priori constraints [2]. Expressed as a prior dis-
tribution PX(x) of the unknown image x or analytically encoded
through an energy function Ω(x) added to the likelihood term, this
prior or energy term aims at reflecting the knowledge or beliefs

concerning the types of images acceptable as estimates and regu-
larizes the optimization problem so that a unique solution always
exists [3].

Probably the simplest prior model used to regularize the solu-
tion is Ω(x)=‖x‖2 which yields to the so-called Tikhonov regula-
rization with the identity [4]. By using this prior, we penalize so-
lutions exhibiting large variance in its grey level distribution. Ano-
ther commonly used choice is the quadratic functional Ω(x) =
‖C∗x‖2 , where C is a PSF associated to a high-pass filter (gradient
or Laplacian). This penalty function penalizes solutions with large
high-frequency fluctuations and thus enforces smoothness on the
solution. Similar strategies, reinterpreted in the wavelet-domain
have been proposed in [5] and [6]. Nevertheless, these models are
homogeneous and assume that the original image to be recove-
red is smooth. However, this is a global requirement and therefore
not very effective in terms of local smoothness. A more efficient
image model assumes that only homogeneous regions are smooth,
and that edges must remain sharp. In other words, a good prior
model should adapt to the local characteristics and structure of the
image to enable the solution to be less noisy in constant area and
to exhibits sharper details in other regions.

In this way, an alternative approach to apply smoothness while
preserving discontinuities, is to apply a smoothness constraint only
on constant areas of the image to be recovered. This problem of
identifying constant regions in a given image is a low-level task in
image processing and is called a segmentation problem. A simple
and adaptive local quadratic smoothness term would then consist
in penalizing solutions exhibiting a luminance distribution with
large variance within each regions (i.e., the set of connected pixels
belonging to the same class). This regularization strategy, which
assume as prior model that the image is piecewise smooth over
pre-estimated regions is the one proposed in this paper. In order
to extract a reliable over-segmentation map (robust to the noise),
we have adopted a statistical framework allowing to estimate the
solution in the MAP sense on the restoration result given by an
iterative Wiener filter [7].

The paper is organized as follows. In Sections 2 and 3, we
detail the proposed adaptive restoration prior model with its esti-
mation procedure. Finally, section 4 presents experimental results
and comparisons with existing techniques.

2. ADAPTIVE PRIOR MODEL

In order to impose local smoothness on constant areas of the
image to be restored, we propose the following quadratic regulari-
zation term, based on a partition into regions, and whose goal is to



penalize solutions exhibiting a luminance distribution with large
variance within each region

Ω(x) = ‖ρ(x)‖2 = ‖x − Γ(x)‖2 (1)

Γ(xs) designates the operator that gives the mean of grey level
values of the region of belonging to the pixel at location s. In this
context, the restoration problem is thus defined as the search of the
global minima of the following energy function :

E(x) =
n

‖y − h ∗ x‖2 +
α

2
‖x − Γ(x)‖2

o

. (2)

This search of the global minima is simply performed, in our appli-
cation, by a steepest descent procedure which moves the estimates
iteratively in the negative gradient direction, as follows :

x̂[n+1] = x̂[n] − γ∇E(x) (3)

where γ is the step size. A large step size γ is needed for fast
convergence, but a too large value may destabilize the iterative
algorithm. ∇E(x) with E(x) defined by Eq. (2) can be easily
defined and allows to obtain the following iterative procedure of
restoration

x̂[n+1] = x̂[n] +γ
“

h#∗ (y−h∗x[n])−α ρ′(x̂[n]) ρ(x̂[n])
”

(4)

where h#(i, j) = h(−i,−j) (the coordinates (i, j) represents the
discrete pixel locations and for h symmetric, we have h# = h),
∗ is the linear convolution operator, and, in this form of notation,
the multiplication (between ρ′ and ρ) is done point-by-point (or
pixel-by-pixel). Let us now find an analytical expression for ρ′. If
µ denotes the mean of the grey level values of the region to which
the pixel at location s belongs, we have,

∂ρ(x)

∂xs

= lim
ε→0

ρ(xs + ε) − ρ(xs)

ε
= 1 −

1

N
(5)

where N is the number of pixels of the region of belonging to
pixel at location s. The successive approximation of the solution
according to the minimization of the cost function expressed in (2)
results in initializing x̂[0] with the restoration result given by the
Iterative Wiener filter, and by using the iterative process defined in
Eq. (4) (with the use of Eq. (5)) until some convergence criterion
is met.

3. PARAMETER ESTIMATION STEP OF PRIOR MODEL

Iterative Wiener Filter
The proposed restoration algorithm assumes knowledge of an

oversegmentation of the original image x into homogeneous re-
gions. Since this image (before degradation) is unknown, the first
step of our algorithm consists of obtaining an approximation of the
true image x, with an unsupervised iterative Wiener filtering [7].
Depending on the degradation model, this iterative Wiener filter
yields restorations in which discontinuities are smoothed out and
which suffer from spurious oscillations or ripples. This so-called
Gibbs phenomenon is, in fact, due to the underlying Fourier ba-
sis elements whose support is over the entire spatial domain. Fig.
1c displays an example of restoration obtained with this procedure
on a noisy and blurred cameraman image (uniform blur of size
9 × 9, and white Gaussian noise variance of σ2 = 0.308 ensuring
a BSNR=40 dB). Nevertheless, the quality of the restored image
by this procedure is sufficient to automatically estimate a Marko-
vian segmentation that will be used in our restoration model.

Unsupervised Markovian Segmentation

To this end, we have adopted the monoscale version of the
Markovian segmentation model described in [8], and already suc-
cessfully applied to noisy sonar images, with Gaussian law, as de-
gradation model to describe the luminance distribution within each
class. In this approach, the unsupervised MRF-based segmentation
problem consists in having a two-step process. First, a parameter
estimation step is conducted to infer the noise model parameters,
thanks to an iterative method called Iterative Conditional Estima-
tion (ICE) [9], [10], [11], [12] which gives the best estimation of
the likelihood distributions in the least-squares sense. This ICE
procedure is initialized by a K-means clustering procedure [13] as
proposed in [8]. Then, a second step is devoted to the segmentation
itself based on the values of estimated parameters. To this end, we
use a classical iterative local update strategy called Iterated Condi-
tional Modes (ICM) [14] algorithm. For the initialization of this
iterative algorithm, we exploit the segmentation map obtained in
a ML sense. In our application, we take K = 20 classes. Fig. 1d
displays an example of unsupervised twenty-class segmentation,
exploiting MRF parameters estimated with the ICE procedure.

Partition Into Regions

We now exploit this over-segmentation in order to get a re-
liable partition R̂ of the image into homogeneous regions. To this
end, we simply search the set of disjoint regions (i.e., the set of
connected pixels belonging to the same class). In order to limit
regions with a large number of pixels, which could produce an
undesirable “staircase” or quantization effects by our regulariza-
tion/prior term which tends to favor piecewise smooth restorations,
we subdivide all the regions with more than 100 pixel size. Fig. 1e
display an example of region partition of the cameraman image
given by our procedure (in this example, 4834 regions have been
found with variable sizes, 1 to 99 pixels, and an average size of
13.6 pixels size).

4. EXPERIMENTAL RESULTS

In all the experiments, we have considered the gradient des-
cent iterative procedure defined in Eq. (4) (with the use of Eq. (5)
and with γ = 1). x̂[0] is given by the iterative Wiener filtering. The
number of iteration of the ICE procedure is set to 20 (ensuring the
stability of the ICE algorithm). The convergence criterion of the
proposed restoration procedure is the stability of the MAP energy,
i.e.,

E(x̂[n]) − E(x̂[n−1])

E(x̂[n])
≤ δ (6)

with δ is a threshold, typically set, in our application, to 10−5σ2.
The regularization parameter α, that controls the contribution of
the likelihood and prior terms is given by

α = ζ ·
‖y − h ∗ x̂[0]‖2

Γ(x̂[0])
(7)

where x̂[0] is the first restoration result given by the iterative Wie-
ner Filter.

We now present experimental results and comparisons illustra-
ting the performance of the proposed approach. We have taken for
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FIG. 1 – (a) Original image, (b) Noisy-blurred image with uniform blur of size 9 × 9, and white Gaussian noise variance of σ2 = 0.308
(BSNR=40 dB), (c) Iterative Wiener filter with additive correction term (ISNR=5.7 dB), (d) Unsupervised twenty-class segmentation,
exploiting parameters Φ̂ estimated with the ICE procedure, (e) Partition into regions of the segmentation presented in (d), (f) Restored
image using the proposed approach (ISNR=8.04 dB).

Blur σ2 BSNR
Exp1 9 × 9 uniform .308 40
Exp2 hij = (1 + i2 + j2) 2 32

i, j = −7, . . . , 7
Exp3 [1, 4, 6, 4, 1]t[1, 4, 6, 4, 1]/256 49 18

TAB. 1 – Blur, noise variance and BSNR (dB) for each experiment

all the following experiments K = 20 classes for the segmentation
step and ζ = 0.2 for the restoration step.

For the first three experiments, we have replicated the scena-
rios used in the evaluation of state-of-the-art methods described in
[15], [16], [17], [18], [19], with which we compare the proposed
approach. In these experiments, original images are cameraman
(Exps. 1, 2) and Lena (Exp. 3) both of size 256×256. Table 1 dis-
plays the blur, the noise and the resulting blurred signal to noise
ratio (BSNR) (i.e., the ratio between the variance of the noise and
the variance of blurred image without noise) for each of the four
experiments.

Table 2 shows the obtained ISNR (signal-to-noise improve-

ments) obtained by our approach compared to the algorithms des-
cribed in [15], [16], [17], [18], [19] for the three experiments. Figs.
1a and 2 show respectively the original image, the blurred noisy
image and the restored image using the proposed approach.

Our approach performs competitively, in several cases better
than the best existing methods in benchmark tests. Except for Exp3
which is not far from a pure denoising problem for which Wavelet-
based restoration procedure such as proposed in [15] give better
ISNR results.

5. CONCLUSION

In this paper, we have proposed an adaptive edge-preserving
Tikhonov regularization term for image restoration. This regula-
rization term, whose goal is to promote piecewise smooth over
pre-estimated homogeneous regions are based on an unsupervised
Markovian segmentation. Let us note that the proposed regulariza-
tion strategy is in fact the generalization (for K (number of classes)
6= 1) of the so-called Tikhonov regularization with the identity [4].
In this procedure this constraint is locally applied to pre-estimated
homogeneous regions. The proposed technique efficiently adapts
to local characteristics of the data and allows to obtain results



ISNR (dB)
Method Exp1 Exp2 Exp3
Proposed algorithm 8.04 7.23 1.34
Figueiredo &. Nowak [15] 7.59 6.93 2.94
Neelamani et al. [16] 7.30 - -
Banham & katsaggelos [17] 6.70 - -
Jalobeanu et al. [18] - 6.75 -
Liu & Moulin [19] - - 1.08

TAB. 2 – ISNR (dB) of the proposed algorithm and of the methods
[15], [16], [17], [18], [19] for the three experiments

which simultaneously exhibit no ringing or blocky artifacts, sharp
edges, correctly restored textures and very low noise in homoge-
neous areas. In comparison with state-of-the-art, the experiments
reported in this paper demonstrate that the discussed method per-
forms competitively, and sometimes better, than the best existing
state-of-the-art method in benchmark tests.
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