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ABSTRACT
In this paper, we propose a light and fast pixel-based statistical
motion detection method based on a background subtraction pro-
cedure. The statistical representation of the background relies on
its spatial color distributions herein modeled by a mixture of Gaus-
sians. The Gaussian parameters are obtained after segmenting one
reference frame with an unsupervised Bayesian approach whose
parameter estimation step is ensured by the � -Means and the It-
erated Conditional Estimation (ICE) algorithms. Since the motion
detection function only depends on a global mixture of � Gaus-
sians, only a few bits per pixel need to be stored in memory. Our
method achieves real-time performances, especially when look up
tables are used to store pre-calculated data. Results have been ob-
tained on synthetic and real video sequences and compared with
other statistical methods.

Index Terms— Image motion analysis, Object detection

1. INTRODUCTION

Although the definition of motion detection can vary from one ap-
proach to another, we define it as being the task of labeling moving
objects shot in front of a background that has little or no move-
ment. This is typically the case for applications using a fixed cam-
era such as video surveillance or traffic monitoring.

Most motion detection methods based on a background sub-
traction criterion can be classified into two large categories, namely:
(1) pixel-based methods which segment independently each pixel
and (2) spatial methods which use regional constraints. The fastest
motion detection methods often fall into the first category of pixel-
based methods1.

Probably the most intuitive and fast pixel-based methods are
the ones comparing intensity changes between frames. The inten-
sity difference is usually computed between two successive frames
or between a frame and a reference image containing no mov-
ing objects [1, 2, 3]. The intensity difference is then thresholded
with predetermined global threshold. Although adaptive thresh-
olds [4, 5] can be used, these methods are sensitive to phenomena
that violate the basic assumptions of motion detection. Thus, to
better account for noise, Wren et al. [6] used a statistical back-
ground model to detect and track people. Based on the assumption
that the temporal noise is uncorrelated and can be modeled by a
zero-mean Gaussian distribution, their model uses one Gaussian
function per pixel to model the temporal local color level distribu-
tion. The Gaussian parameters are learned on a sequence of frames

1Since the body of literature addressing motion detection is signifi cant,
we will only focus on the methods close to ours.

exhibiting a static background while motion detection is performed
by finding the set of pixels (at each frame) whose probability value
of its color level is below a predetermined threshold.

For many outdoor applications, natural events such as wind
shaking trees, animated water, snow or other natural phenomena,
the background cannot be assumed to be static. For those applica-
tions, the color distribution at each pixel is often multimodal and
can hardly be modeled by one single Gaussian. In this way, a di-
rect extension of the single Gaussian method, involving a mixture
of Gaussians, has demonstrated a good deal of robustness [7, 8].
Friedman and Russel [7] argue that when monitoring highway traf-
fic, a single pixel can cover more than one object over time. For
this reason, they model the color distribution of each pixel by a
mixture of three Gaussians. The Gaussian mixture parameters
are learned on a sequence of frames with an Expectation Maxi-
mization (EM) algorithm. Similarly, Stauffer and Grimson [8] use
a mixture of Gaussians to perform real-time tracking. For both
methods, the Gaussians are weighted by the frequency with which
they account for the background. A more general method is pre-
sented by Mittal and Huttenlocher [9] who use Gaussian mixtures
to model the pixels of a panorama (obtained by stitching images
obtained with a pivoting camera).

Among the non-parametric models used to represent the pixel
color distribution, we can cite the ones using kernel density esti-
mators (also called Parzen Windows in some communities [10]).
Such method was used by Elgammal et al. [11] and more recently
by Mittal and Paragios [12] who came up with a variable band-
width formulation. In [13], Toyama et al. use a Wiener filter to
predict the color value of each pixel based on the history of recent
values. Another linear predictor based on Kalman filter has been
proposed by Koller et al [14]. More recently, Zong and Sclaroff
[15] proposed a Kalman-based generative model to represent dy-
namic backgrounds. All these linear predictors have the advantage
to learn repetitive patterns and thus detect moving object sharing a
similar grayscale distribution with the background.

In this paper, we propose a statistical background subtraction
method based on the spatial distribution of its color-scale values.
The main objective of our method is to be fast and light at the same
time in such a way that it could eventually be implemented on an
architecture having limited hardware (PDA, cell phone, etc.). Un-
der the assumption that neighboring pixels often share a similar
color and a similar temporal noise distribution, our method mod-
els the spatial background with a global mixture of � Gaussian
distributions. Modeling the entire background with � Gaussians
requires much less memory than, say, one (or many) Gaussian per
pixel [6, 8]. Our method also needs only one training frame as
opposed to a sequence of frames. Although our method uses a
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global statistical model, the results obtained are similar to the ones
obtained by methods using local statistics.

The rest of the paper is organized as follows. In Section 2, the
overall framework of our method is presented. Then, the Marko-
vian framework and the motion detection criteria of our method
are explicitly formulated. Section 3 shows how our method can be
adapted to take care of problems such as illumination variation or
the lack of training frames absent of foreground movement. Sec-
tion 4 then shows some results before Section 5 concludes.

2. PROPOSED METHOD

Let � � � � �� � �  � �  � � � and � � � � �� � �  � �  � � � be random
fields at time � defined on an �  " orthogonal lattice � . � �
represents the background at time � and � � is a single frame con-
taining � � with moving objects in front of it. For implementation
purposes, �� � �  � and �� � �  � take a value between $ and % ' ' for
grayscale sequences and between � $ + $ + $ � and � % ' ' + % ' ' + % ' ' � for
color sequences.

The method we propose is based on two assumptions. The
first one stipulates that the background distribution is temporally
stationary, i.e. 0 � �� 3 �  � � is independent of 5 in such a way that0 � �� 6 �  � � 7 0 � �� 9 �  � � 7 0 � �� : �  � � < < < (illumination variation
will be addressed in Section 3). The second assumption supposes
that the background is piecewise temporal ergodic i.e., composed
of piecewise constant regions for which spatial average color equals
its temporal and also its ensemble average [16]. With these two as-
sumptions, the background spatial color-scale distribution is used
to represent temporal color distribution. Modeling of the back-
ground is done with a Gaussian mixture of the form 0 � �� REF �  � � �> @ B 9C D 6 0 � �� REF �  � � E C + �F C � 0 � E C � where E C is a class label, �F C �� �I C + J C � is the parameter vector (to be estimated) of the K th Gaus-
sian distribution, 0 � E L � is the prior probability of class E L , and� REF is the reference background frame on which the mixture is
estimated [10].

This being said, � REF can be segmented into regions of uni-
form color (or grayscale) by estimating a label field M for whichN is a realization and N �  � takes a value in � E 0 + < < < + E M-1 � . In this
way, a region assigned to class E L means that the pixels contained
in that region have a color that follow the Gaussian distribution
determined by the parameter vector �F Q R

. Since the color of a back-
ground pixel  is assumed to be constant in time (more or less a
noise factor), its class label N �  � is also assumed to be constant
in time too. Therefore, the probability of observing color �� S �  �
at time U is well approximated by 0 � �� REF �  � � N �  � + �F L � . In other
words, our two assumptions allow us to say that the spatial statis-
tics observed on frame � REF can be used to represent the color dis-
tribution of each pixel in time. In this way, our method can model
the background with � Gaussians as opposed to �  " Gaussians
[6] or �  "  � Gaussians [8].

2.1. Parameter Estimation

Since our method is unsupervised, the Gaussian mixture parame-
ters

F � � � �I C + J C � � Y K � \ $ + � \ � and the label field M are both
initially unknown. In order to obtain a reliable estimate for

F
andM simultaneously, we resort to Pieczynski’s Iterative Conditional

Estimation (ICE) algorithm [17] that we outline as follows:

1. [Initialization Step] The parameters ^F [0] and the label field^N [0] are initialized with the � -Means [18] algorithm.

_ � $ .

2. [Stochastic Step] With a Gibbs sampler, a label field ^N [p] is
generated according to the posterior distribution 0 � ^N [p] � � REF + ^F [p] � .

3. [Estimation Step] With a maximum likelihood estimator,^F [p+1] is recomputed based on ^N and � REF. In our imple-
mentation, �I [p+1]C and J [p+1]C are computed with a classical
empirical mean and variance-covariance estimator for each
class.

4. If � � �I [p] a �I [p+1] � � b c where c is a fixed threshold then
Stop. Else, _ � _ d f and go back to Stochastic Step.

In this procedure, the posterior distribution is modeled after
Bayes theorem [10]: 0 � ^N [p] � � REF + ^F [p] � h 0 � � REF � ^N [p] + ^F [p] � 0 � ^N [p] � .
Assuming independence of each random variables �� REF �  � given^N [p] �  � and ^F i j k

, it can be stated that0 � ^N [p] � � REF + ^F [p] � h l m 0 � �� REF �  � � ^N [p] �  � + ^F [p] � 0 � ^N [p] �  � � o m �
where, in our implementation, 0 � �� REF �  � � ^N [p] �  � + ^F [p] � is a Gaus-
sian distribution with the shape p � �� REF �  � q �I [p]rs t m u + J [p]rs t m u � with �I s t m u
and J s t m u taken from ^F [p]. As for 0 � ^N [p] �  � � o m � , we use the sim-
ple Ising model [19] based on a Gibbs distribution of the formw x y \ a { | � ^N [p] �  � + o m � ~ where { is a constant and | � ^N [p] �  � + o m � is
a function that counts the number of sites in the neighborhood o m
with a label different than ^N [p] �  � . In our implementation, we use
binary cliques linking site  to its eight spatial neighbors [20].

2.2. Detecting Motion

Once ICE has converged, we have in hand both the � -class Gaus-
sian mixture parameters modeling the background and the label
field “ N ” indicating to which class each pixel has been assigned.
Like most previous motion detection methods, we assume that the
color distribution of the moving objects is different from the back-
ground. In this way, since each pixel  is modeled by a global
Gaussian distribution with parameters �F s t m u , we can expect that0 � �� � �  � � N �  � + F � � � 0 � �� REF �  � � N �  � + F � when pixel  in image � �
is part of the background and 0 � �� � �  � � N �  � + F � �� 0 � �� REF �  � � N �  � + F �
when pixel  is covered by a moving object. In this way, consid-
ering � � � � � � �  � �  � � � as being the to-be-estimated binary
motion label field, a detection criterion may be formulated as

� � �  � � � f if 0 � �� � �  � � N �  � + F � � 0 � �� REF �  � � N �  � + F � b c �$ otherwise
(1)

or, for computational reasons, the Mahalanobis distance [6] can
also be used as follows

� � �  � � � f if � � � �� � �  � + F s t m u � a � � �� REF �  � + F s t m u � � � c � �$ otherwise.
(2)

where � � �� � �  � + F s t m u � � � �� � �  � a �I s t m u � � J B 9s t m u � �� � �  � a �I s t m u � .
To further reduce processing times, as suggested by [8], the variance-
covariance matrix J C is assumed to be diagonal. Also, � � �� REF �  � + F s t m u �
is precalculated and kept in memory in a look-up table. Since� � �� REF �  � + F s t m u � rarely goes above f � , four bits per pixel are
used to store it in memory.

3. MAKING OUR METHOD ROBUST

To account for illumination variation (such as when a cloud oc-
cludes the sun for instance) the background pixels may have their
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statistics updated at each frame with the following strategy [6, 7]

�� � � � � � � � �� � 	 � �
� �

�
� � �� 	 � �  � �

� � 
 � � � � � � � �� � � � � (3)

� � � � � � � � � � 	 � �
� �

�
� � �� 	 � �  � �

� � 
 � � � � � � � � �� � � � � � �� � � �
(4)

where � is a forgetting constant [7] and
� � is the number of pixels

assigned to class � � and detected as being part of the background
at time � . Also, in case of local illumination variations, the label
field 
 may be re-updated (once every few minutes or so), prior to
compute equations (3) and (4).

Another issue often addressed in the literature is when no train-
ing period absent of foreground objects is available. This is a
fundamental issue since the Gaussian mixture parameters

�
and

the label field 
 need a background image � REF to be estimated.
However, since our method requires only one training frame, for
applications for which no background frame is available (such as
traffic monitoring for instance), � REF can be estimated by applying
a median filter to a sequence of � frames, i.e.

� REF � � � � Median � ! � # � $ � � � � � # � � � � � � & & & � � # � � � � � ( � & (5)

Such a median filter was used on the two sequences of Fig.3.

4. EXPERIMENTAL RESULTS

Our method is tested on synthetic and real image sequences. In
both cases, our method is compared with three statistical methods
which model each background pixel with either one Gaussian, a
mixture of

�
Gaussians and a non-parametric kernel summation.

Each of these methods is trained on * + to , + frames depending on
the sequence. As for our method, the number of classes � is set
between � and � + . Notice that every methods has been tuned to
produce the best possible results and that a simple � . � median
filter was used to smooth out / � . The four methods are compared
with respect to precision, speed and the amount of memory they
use to model the background.

To evaluate precision, a color and a grayscale synthetic se-
quence with known ground truth have been used (see Fig. 1).
These sequences –that we call statue and car on park– are made of
real images whose motion has been artificially simulated. To see
how robust our method is, some Gaussian noise has been added to
these sequences. The precision was evaluated by computing the
average percentage of false negatives and false positives over the
entire sequence. As can be seen in Table 1, although our method
uses global statistics, the error it produces is in the same order of
magnitude as the one produced by the other three methods.

To evaluate processing times, we ran the four methods on color
and grayscale sequences of different sizes. As can be seen in Table
2 (a), our method is significantly faster, especially for grayscale se-
quences for which look-up tables have been used to store 0 � �� � � � � � � 3 4 6 7 �
in memory. Notice that these processing rates include the � . �
median filtering. Also, as shown in Table 2 (b), the minimum
amount of memory required to model the background is signifi-
cantly smaller for our method than for the other ones. Every pro-
gram has been executed on a 2.2 Ghz AMD Athlon processor. We
also compared the four methods using a real sequence shown in Fig
2. Again, the visual quality of the results returned by our method
is similar to the other ones.

Car on Park sequence Statue sequence

Fig. 1. Snapshots of the synthetic sequences used.

Car on Park sequence
Methods StdDev=10 StdDev=20

Our Method � � 8 + & � � , 8 + & +  
One Gaussian � 8 + & + ! � * 8 + & + !

Mixture " 8 + & + � � , 8 + & + �
Kernel  8 + & + � � : 8 + & + �

Statue sequence
Methods StdDev=10 StdDev=20

Our Method , 8 + & * �  8 + & !
One Gaussian * 8 + & + " � , 8 + & + :

Mixture * 8 + & +  * � 8 + & + !
Kernel , 8 + & + : � : 8 + & �

Table 1. Percentage of false negatives/positives for two synthetic
sequences. Each sequence has been corrupted by random Gaussian
noise (with standard deviation of � + and * + ).

Frame rate (fps)
Grayscale sequence Color sequence

Methods # $ % ' # $ % % ) � ' ) + � # $ % ' # $ % % ) � ' ) + �
Our Method 240 44 136 26
One Gaussian 128 25 108 20

Mixture 23 5 12 3
(a) Kernel 10 4 9 2

Minimum memory to model the background (Kb)
Grayscale sequence Color sequence

Methods # $ % ' # $ % % ) � ' ) + � # $ % ' # $ % % ) � ' ) + �
Our Method 82 348 72 338
One Gaussian 128 600 384 1800

Mixture 256 1200 768 3600
(b) Kernel 1280 6000 3840 18000

Table 2. Tables showing respectively the frame rate and the mini-
mum amount of memory needed to model the background for each
statistical method.
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1 Gaussian Mixture of 2 Gaussians

Kernel Summation Our Method

Fig. 2. Real sequence on which our method was compared to three
other statistical methods.

We finally tested our method on real sequences having no
frames absent of moving objects (these sequences have been taken
from a database at the university of Karlshrue [21]). As mentioned
in Section 3, we obtained � REF by applying a median filter to a
series of frames. We compared our results with the ones returned
by a global thresholding procedure [7]. As shown in Figure 3,
our method seems more robust to noise (left column) and to small
camera jitter (right column).

Fig. 3. From top to bottom: two traffic sequences having no train-
ing frames absent of moving object, results obtained with a global
threshold and results obtained with our method.

5. CONCLUSION

In this paper, a light and fast motion detection method has been
presented. As opposed to most previous background subtraction
methods based on temporal statistics, our model uses spatial statis-
tics (a Gaussian mixture) to detect motion. Among other things,
this has the advantage of requiring only one training frame and
little memory to model the background. Also, since the motion
detection function is based on a simple Mahalanobis distance, the
processing times are low, especially when look-up tables are be-
ing used. Also, our method can be easily parallelized and could
fit architectures having limited hardware such as PDAs or cellu-
lar phones. The main limitation of our method is its sensitivity to
background motion. This situation is in part due to the assump-
tion that the temporal noise is unimodal (cf. Eq. (1)) which isn’t
true when the background moves. We are currently working on
a version that compensates background motion and large camera
jitter.
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