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ABSTRACT

This paper presents a differential optical flow method which ac-
counts for two typical motion-estimation problems : (1) flow re-
gularization within regions of uniform motion while (2) preserving
sharp edges near motion discontinuities i.e., where motion is mul-
timodal by nature. The method proposed is a modified version of
the well known Lucas Kanade (LK) algorithm. Based on documen-
ted assumptions, our method computes motion with a classical least-
square fit on a local neighborhood shifted away from where motion
is likely to be multimodal. This edge-avoidance procedure is based
on the non-parametric mean-shift algorithm which shifts the LK in-
tegration window away from local sharp edges. Our method also lo-
cally regularizes motion by performing a fusion of local motion esti-
mates. Our method is compared with other edge-preserving methods
on image sequences representing different challenges.

Index Terms— Image motion analysis

1. INTRODUCTION

In the past 25 years, a countless number of solutions have been
proposed to solve the optical flow problem [1, 2, 3]. As underlined
by Barron et al. [3], optical flow techniques can be divided into fami-
lies among which are the phase-based [4], spectral-based [5], energy-
based [6, 7, 8], Markovian [9, 10, 11]), and the differential methods
[12, 13, 14, 15, 16, 17, 25]. Most of these methods are expressed
as an optimization problem involving a data conservation constraint
likelihood term and a spatial coherence constraint prior term [18].
Unfortunately, these competing constraints often ignore the multi-
modal nature of motion around moving edges. As a result, motion is
often imprecise and blurry in these areas.

To gain more accuracy around motion discontinuities, a modi-
fication to the well known Lucas-Kanade (LK) algorithm [13] is
proposed. The objective of our method is twofold : (1) minimize
uncertainties (often caused by noise and lack of texture) by stron-
gly constraining the flow within regions of uniform movement while
(2) preserving flow discontinuities around moving objects. Since our
method is based on a least-square fit (and thus is sensitive to mul-
timodal motion), the key idea is to avoid computing flow in areas
where motion is likely to be multimodal. Assuming that motion boun-
daries corresponds to intensity edges, in areas near strong intensity
gradient, the algorithm computes motion with a neighborhood win-
dow shifted away from the nearest intensity edge. Our least-square
fitting algorithm can thus preserve sharp motion boundaries by avoi-
ding to deal with multiple motions. To our knowledge, such avoi-
dance procedure has never been investigated before.

The remainder of this paper is organized as follows. Because
our method is a modified version of LK, an introduction of the LK
method [13] is first presented in Section 2. Section 3 then presents
our modifications to LK which includes a covariance filter and the

edge-avoidance procedure based on the mean-shift algorithm [19].
Section 4 then presents results obtained on various sequences and
concludes.

2. LUCAS-KANADE MOTION ESTIMATION

Let
� � � � � 	 �  � � � � � � �  � �  � � � �   � "

denote a 2D lat-
tice of size

� $  
and & 	 �  ) �

the intensity of the site
�

at time)
. Considering the brightness constancy assumption, LK looks for a

vector field * � � -. 0 � � � � "
that minimizes the residual quadratic

error 4 	 -. 0 � � 8 9 : ; < � & 	 =  ) � > & 	 = @ -. 0  ) @ B � D F  H � � �
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is a neighborhood window of size M $ M around site
�
. By approxi-

mating 4 	 -. 0 �
with its first order Taylor serie, the error is minimized

by forcing the first derivative to zero : N O P QR SN QR � �
[20], which can be

formulated asT U 8 9 & FV 8 9 & V & W8 9 & V & W 8 9 & FW Y -. 0 @ U 8 9 & [ & V8 9 & [ & W Y ] � �
(1)

where & V , & W and & [ are respectively the spatial and temporal de-
rivatives over site

=
at time

)
[21, 20]. It is common to add a weigh-

ting factor ^ ` to give more influence to those site
=

that a closer to�
. This is mathematically expressed asT U 8 9 ^ 9 & FV 8 9 ^ 9 & V & W8 9 ^ 9 & V & W 8 9 ^ 9 & FW Y -. 0 @ U 8 9 ^ 9 & [ & V8 9 ^ 9 & [ & W Y ]

where ^ typically contains Gaussian isotropic values. To simplify
the notation, it is common to rewrite this equation as b 0 -. 0 @ -c 0 ��

from which the least-square solution can be obtained by simply
computing -. 0 � > b e f0 c 0 g (2)

Of course, LK provides a solution to those sites
� � �

for which b 0
isn’t singular. To make b 0 invertible everywhere, a small random
white noise is added to images & V and & W . Since the magnitude of
the noise is low, no significant error is induced by it.

To gain more accuracy, some authors implement LK in a Newton-
Raphson-like iterative fashion [22]. Let

-. j0 be the motion vector
on site

�
after k -

B
iterations and l -. j0 the incremental motion vec-

tor computed during the k m n iteration. Here, the goal is to estimatel -. j0 that will best minimize the residual error
8 9 : ; < � & 	 = @ -. j0 @l -. j0  ) � > & 	 =  ) @ B � D g According to Eq. (2), the k m n motion incre-

ment can be computed by l -. j0 � > b e f0 -c j0 where-c j0 � U 8 9 ^ 9 & j[ & V8 9 ^ 9 & j[ & W Y& j[ � & 	 = @ -. j0  ) � > & 	 =  ) @ B � g
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After � iterations, the motion vector on site
�

is given by
�� � � �� �

�� �� 	 
 �� �� or equivalently
�� � � �� � �� �� � �  �� �� �� . As explained by

Bouguet [22], the iterative version of LK can be easily extended to
multiresolution.

3. OUR METHOD

It is widely accepted that LK suffers from two fundamental limi-
tations. First, as shown in the previous section, LK does not model
the inherent uncertainties caused by noise and low contrast regions
[20]. Also, the LK solution hardly deals with multiple motions and
thus generates blurry edges around moving objects.

In this contribution, to minimize the problem of uncertainties,
every vector

�� � are considered as being “estimates” that are to be
fused locally to yield a better result [16]. Assuming that

�� � has a� � �
covariance matrix � � proportional to the variance of the noise,

the vectors surrounding site
�

can be fused by a linear combination
[8, 16]
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� � 
 � �  �� �� � with

� � � � �
� � 
 � �  �� �  � (3)

where � � is a neighborhood window of size � � � around site�
and � � is computed as follows � � � � �

� � �
 � � � �� � � � � � � �

� � �
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where  � is a neighborhood window of size ! � ! around
�

and�� �
� � #

�
� � �

�
. This matrix is similar to the one proposed by Singh

[6]. The iterative LK procedure can be rewritten as

�� � � �� � � �� �
� � 
 � � � & (� � �� �� 	 �  ��

�� �� �
(5)

which highlights the fact that flow propagates from high-confidence
regions (regions with low covariance) to regions of low-confidence.

The way we handle multiple motions is based on the following
four assumptions :

1. moving objects are textured enough to have their motion cor-
rectly estimated by a differential method ;

2. motion boundaries are close to sharp intensity edges ;
3. in regions containing no sharp intensity edge, motion is lo-

cally uniform ;
4. motion estimated away from flow discontinuities is reasona-

bly accurate.

From these four assumptions (which are generally accepted in
the literature [18, 23]) a fundamental observation can be made : two
close sites, that are not separated by an intensity edge, tend to have
similar motion vectors. However, flow estimated with a least-square-
fit method close to a sharp intensity edge is likely to be corrupted
by multiple motions. Thus, with

�� � , a motion vector estimated by
the LK method and

�) � , the true motion vector on site
�
, it may be

inferred that :

1. when two neighbors
�

and * are not separated by an intensity
edge and

�
is closer than * to a motion boundary, then

  �� � �
�) �   ,   �� - � �) �   

;

2. when the distance between a site * and the closest motion
boundary is larger than " , then

�� - / �) - (a similar conclu-
sion was already proposed by Thompson in [23]).

Consequently, to fight against the influence of multiple motions and
thus keep sharp edges, Eq. (5) is rewritten as

�� � � �� � � �1 �
� � 
 3 � � & (� � �� �� 	 �  ��

�� �� �
(6)

where 4 � �
if the distance to the nearest intensity edge is larger

than " and 4 � * otherwise. Here, * is a neighbor of site
�

located
further away from the nearest edges (see Fig. 1). This can be unders-
tood as follows : when

�
is close to an intensity edge,

�� � estimated
with the standard LK approach is likely to be corrupted by multiple
motions. It is thus preferable to compute

�� � with a neighbor window
% - , shifted away from the nearest intensity edges. In this way,

�� �
is computed with a neighborhood that is more likely to contain an
unimodal motion.

The question now is, how can * be estimated ? From the previous
four assumptions, it may be derived that a good site * must respect
the following criteria

1. * must be a neighbor of site
�

with 5 � * � 7 5 � � �
(assump-

tions
�

and 8 ),

2.
  9 ( � * � * �   � .

(assumption : ),

where 5 � � �
is the distance between

�
and the nearest intensity edge.

From these criteria, we found that the mean-shift filtering procedure
[19] offers an appropriate strategy to determine * given

�
and ( � * �

.
Mean-shift is a simple iterative nonparametric estimator of density
gradient that was first introduced by Fukunaga and Hosteler [24] and
adapted to imagery by Comaniciu and Meer [19].

When using mean-shift to filter an image, the iterative proce-
dure is applied on data ; = located in a so-called spatial-range do-
main. The spatial domain refers to the 2D space of lattice

1
while

the range domain refers to the pixel color level. In this case, each site� 2 1
corresponds to a point ; � in the d-dimensional spatial-range

domain ( > being ? for color images and : for gray-scale images).
After successive mean-shift iterations, the bounding volume initially
centered on ; � , is shifted from its initial location ; � to a final po-
sition ; - where * corresponds to a location where the density gra-
dient is null. We call mean-shift vector, the vector @ � linking site

�
to site * : * � � 	 @ � . By the very nature of mean-shift, * is al-
ways located further away from the nearest intensity edge than

�
and  9 B � ; - �   / .

. Also, in general, the stronger the intensity gradient
is around site

�
, the larger @ � will be. These are the reasons why we

consider that mean-shift meets the two criteria presented previously.
To make sure * is a neighbor of

�
, @ � is clamped to a maximum

length :
  @ �   � D F H �   @ �   � " �

. Fig. 1 shows a mean-shift vector

Mean shift vector (   )

s γ

NxN neighborhood

Γs

Zoom (see Fig.2)

Fig. 1. Zoom on a frame of CLAIRE sequence. Every vector shows
the estimated mean-shift displacement between a site

�
and a site * .
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field � with vectors linking site
�
to site � . As can be seen, the closer

to an edge a site
�

is, the larger the mean-shift displacement is. For
more details on mean-shift, please refer to [19].

4. RESULTS AND CONCLUSION

In this section, results obtained with our method and other dif-
ferential methods are presented. These results have been obtained
on synthetic and real sequences exhibiting clear motion discontinui-
ties. For our method, � � � � � � �

and the number of iterations
for the Newton-Raphson and the Mean shift procedures is set to four.
For every example, the size of the mean-shift bounding volume is set
to � in the spatial domain and to

� �
in the range domain. Also, our

method’s weighting factor � has been assigned to
� � � � � �

in order
to give more influence to regions highly texture. Notice that every
method has been implemented in a multiresolution fashion and that
all flow fields presented in this section have a density of

� � � �
.

Following Barron et al. [3], we implemented the average angular
error metric to evaluate the distance between the ground truth vector
field

�
and the estimated vector field �� , namely��

�
� � 	 � � � � 

arccos
� �� � � �� � � �

where
�� � and

�� � are normalized

3D vectors :
�� � � � � � � �  ��

� � 	 � � 	 
. The metric was also implemented

on vectors located at a distance lower or equal than
� �

pixels of a
motion edge, namely

�� �
�

� � 	 � � � 
 �� � �
� � arccos

� �� � � �� � � �
where

� � is the distance in pixel between site
�

and the nearest motion
edge. These metrics are used to evaluate how accurate the optical
flow algorithms are near flow discontinuities. The results are also
presented in terms of the standard deviation.

As shown in Fig. 2, we have executed our method (as well as five
other ones) over two synthetic sequences and two real sequences1.
These sequences were chosen because they exhibit sharp motion
discontinuities. The quantitative results are presented in Table 1.
We also obtained results on the well known Yosemite sequence to
illustrate how good our method was to estimate flow on a sequence
whose motion isn’t in the plane of the camera. These results illus-
trate visually and quantitatively how precise our method is on such
sequences.

Our method shows significant improvement, both around mo-
ving edges and on the entire scene. This can be explained by the fact
that while mean-shift preserves sharp motion boundaries, the cova-
riance filter smooth out the vector field and thus minimizes errors
due to lack of texture, occlusion and noise. Also, by its very nature,
our method can be implemented on a parallel architecture such as
a programmable graphics card for example. Such implementation is
possible because calculation over each site

� � �
(at every stage

of the algorithm) is independent of its neighbors’ processing. The
parallel implementation would thus be effective for the mean shift
calculation, the motion estimation, and the covariance filtering.
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