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ABSTRACT

3D Brain SPECT imagery is a well established functional imaging
method which has become a great help to physicians in the diagno-
sis of several neurological and cerebrovascular diseases. However,
mainly due to the effects of attenuation and the scattering of emit-
ted photons, inherent to this imaging process, 3D SPECT images are
generally blurred and exhibit poor spatial resolution. This leads to
substantial errors in measurements of regional brain blood flow, and
therefore in the estimations of brain activity. In order to improve the
resolution of these images and then to facilitate their interpretation,
we herein propose an original extension of the NAS-RIF (Recursive
Inverse Filtering) deconvolution technique proposed by Kundur and
Hatzinakos [1]. The proposed extension allows to efficiently inte-
grate, in the deconvolution process, a set of soft constraints given
by a probabilistic MRI atlas containing experts’s prior knowledge
about the spatial localization of the different brain structures (or tis-
sue classes). This extension has three interesting properties ; first it
allows to exploit (or fuse) reliable anatomical and (high resolution)
geometrical information extracted from a probabilistic 3D MRI at-
las. Second, it allows to incorporate, into the NAS-RIF method, a
regularization term which efficiently stabilizes the inverse solution.
Third and contrary to multi-modal restoration techniques, it does not
require a MRI scan of the patient. This method has been successfully
tested on numerous real brain SPECT images (of different patients
suffering from epilepsy), yielding promising restoration results.

Index Terms : SPECT imagery, MR imagery, 3D blind decon-
volution, probabilistic MRI atlas, 3D/3D registration, image resto-
ration, information fusion.

1. INTRODUCTION

The poor spatial resolution of SPECT images considerably li-
mits the potential diagnostic of functional brain SPECT scans ; for
instance, it may be difficult to distinguish between low tracer uptake
due to a functional deficit, where brain tissue still exists, from low
uptake generated by focal atrophy, where tissue is lost and replaced
by CerebroSpinal Fluid (CSF). In pathologies where both pheno-
mena occur the interpretation of SPECT images may be problema-
tic.

Up to now, several methods have been proposed to improve the
spatial resolution of SPECT images. These methods can be split into
two major classes, namely methods using restoration techniques du-
ring or after the reconstruction process from projections. In this pa-
per, we are describing a post-tomographic reconstruction process, an

approach which has the advantage of being essentially independent
from the physical features of the scanner.

In our previous work [2], we have shown that the NAS-RIF
deconvolution algorithm [1] could take into account (high resolu-
tion) anatomical MRI information (from the same patient) to better
constrain the deconvolution process. More precisely, the unsupervi-
sed Markovian segmentation of this (previously registered) MRI vo-
lume allowed to easily define an edge-preserving regularization term
for the iterative NAS-RIF deconvolution procedure. This regulariza-
tion term consisted in applying, over pre-detected and segmented
anatomical regions of common tissue type, a piecewise smoothness
constraint on the functional SPECT image to be restored. However,
this latter restoration technique remains closely related to the accu-
racy of the segmented anatomical image. Besides, the very idea of
boundaries (between tissue classes) is not always clear for a functio-
nal image. At the level of resolution of a SPECT image the anato-
mical boundaries are rarely distinct. For instance, the transition from
one tissue type to another may not be highly localized and may be
progressive. Consequently, the above-mentioned model is not very
well suited to take into account the partial volume effect and thus
can not be particularly efficient in order to permit accurate recovery
of small structures.

In order to take into account the above-mentioned problems, an
alternative strategy, proposed in this paper consist in considering a
soft region-based anatomical constraint given by a MRI probabilistic
atlas [3]. Each voxel of this atlas is associated with a K-dimensional
vector which probabilistically contains the membership of this voxel
to each anatomical tissue class. This fuzzy modeling allows each
pixel to belong to several classes simultaneously (and therefore to
take also into account the partial volume effect).

Probabilistic atlases are commonly used to give a priori infor-
mation on the location and variability of the anatomy, which is then
used as an initialization or to improve a segmentation procedure
[4, 5, 6, 7, 8]. In another application, Chen et al. [10] achieved im-
provement in their registration method by incorporating probabilistic
information on the intensity and geometric variations. To the best of
our knowledge, this work remains the first to exploit a probabilis-
tic atlas for a restoration problem. The probabilistic atlas will allow
us to perform a SPECT restoration without the need of the patient’s
MRI scan to get the additional high resolution information and ne-
cessary constraints required for the regularisation of our ill-posed
restoration problem.

This paper is organized as follows. Section 2 briefly describes
the proposed 3D extended version of the NAS-RIF deconvolution
technique. In Section 3, we describe the generation of the 3D MRI
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atlas and Section 4 the 3D/3D registration algorithm between the
MRI and SPECT data volume. In Sections 5 and 6, we show some
SPECT images restoration results and conclude.

2. 3-D DECONVOLUTIONMETHOD

2.1. 3D extended version of the NAS-RIF

In our application, and as proposed in [11], we will assume that
3D SPECT images are degraded by the following, classical linear
model

g(x, y, z) = f(x, y, z) ∗ h(x, y, z) + n(x, y, z) (1)

in which g(x, y, z), f(x, y, z), and h(x, y, z), denote respectively
the degraded 3D image, the true image and the point spread function
(PSF). n(x, y, z) represents the additive noise and ∗ designates the
3D discrete linear convolution operator. The 3D blind deconvolution
problem consists in determining f(x, y, z) and h(x, y, z) (or its in-
verse) given the blurred observation g(x, y, z). In the 3D extended
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Fig. 1. Three-dimensional extension of the NAS-RIF deconvolution
algorithm using an anatomical (MRI) atlas-based constrain.

version of the NAS-RIF deconvolution strategy (cf. Fig. 1), the out-
put of the FIR filter u(x, y, z) of dimension Nxu×Nyu×Nzu gives
an estimate of the true image f̂(x, y, z). Each resulting estimation is
passed through a nonlinear filter which expresses the fact that the
image is assumed to be non-negative within a known support (i.e.,
the organ). The difference between this projected image f̂NL and f̂ is
used as the error signal to update the variable filter u(x, y, z). In the
3D context, the cost function used in the deconvolution procedure of
the 3D image is defined as :

J(u) = J1(u) + J2(u) + γ J3(u) (2)

with,

J1(u) =
X

(x,y,z)∈D

f̂
2(x, y, z)

„
1− sgn(f̂(x, y, z))

2

«

J2(u) =
X

(x,y,z)∈D

`
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´2

J3(u) =
“ X
∀(x,y,z)

u(x, y, z)− 1
”2

where f̂(x, y, z) = g(x, y, z) ∗u(x, y, z), and sgn(f)=−1 if f <0
and sgn(f)=1 if f≥0. D is the set of all pixels of g(x, y, z) inside
the region of support (i.e., inside the brain), and D is the set of all
pixels outside the region of support.

The first term, J1(u), is used to penalize the negative voxels
in the support in order to keep the image estimate non-negative.
The second term J2(u) penalizes voxels located outside the support
which show values which deviate significantly from the background
average LB. When the background of the true image is black, i.e.,
LB = 0, the third term, J3(u), is used to avoid a trivial all-zero
minimum solution (γ being a positive constant).

2.2. Atlas-Based Anatomical Constraint 3D NAS-RIF

The major shortcoming of the NAS-RIF technique is its noise
amplification at low SNR [12]. This is due to the high pass pro-
perty of the inverse filter u(x, y, z) which amplifies high frequency
noise. As a result, the solution at convergence may not be the best
estimate of the original image in the presence of noise. In order to
solve this problem, a solution, suggested by Kundur and Hatzinakos
[12], consists in halting the iterative restoration process through vi-
sual inspection. In practice, this requires a strong supervision and,
even in this case, it is not so easy to determine which is the optimal
iteration for termination (different parts of the image may converge
at different rates, making this method unreliable).

In this work, we propose an alternative regularization approach
for the NAS-RIF algorithm which can also be viewed as an elegant
way to fuse geometrical information extracted from a probabilistic
3D MRI atlas with the SPECT data to be restored. The proposed
regularization term also allows stabilization of the inverse solution
of the NAS-RIF procedure (by preventing noise amplification), does
not require supervision (parameter tuning or stopping criterion) and
is capable of introducing better constraints on the solution of our
restoration problem. This strategy consists in applying, a set of soft
constraints given by a probabilistic MRI atlas (previously registered
with the SPECT image) containing prior knowledge about the spatial
localization of the different tissue classes. More precisely, this MRI
atlas-based constraint is taken into account via a new additional re-
gularization term J4(u) which consists in applying, a soft piecewise
smoothness constraint, probabilistically weighted according to the
membership of each voxel to each anatomical tissue class.

In our model, the new cost function related to the deconvolution
of the 3D image can be written as

J(u) = J1(u) + J2(u) + γ J3(u) + δ J4(u) (3)

with :

J4(u) =

3X
i=1

X
(x,y,z)∈ri

Pi(x, y, z)
“
f̂(x, y, z)−ri

”2

(4)

The first summation is made on the three main anatomical tissue
regions (ri) found in the brain, i.e., white matter (r1), grey matter
(r2), and cerebro-spinal fluid (r3), Pri

(x, y, z) is the probability gi-
ven by the registered MRI atlas for a voxel at location (x, y, z) to
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belong to the anatomical tissue class ri, ri designates the mean, in
grey level, of the ith region and δ is a weighting factor between this
soft anatomical constraint and the remaining hard constraints of the
NAS-RIF procedure. In this context, D designates the brain support
(D = r1∪r2∪r3) and ri (i ∈ {1, 2, 3}) is updated at each iteration
of the NAS-RIF deconvolution procedure by the expectation of the
empirical mean estimator

ri =
1

Ni

X
(x,y,z)∈ri

Pi(x, y, z) f̂(x, y, z) (5)

where Ni is the cardinal of the region ri.
J4(u) is thus proportional to the sum of variances of each ana-

tomical region (using the fuzzy empirical mean and variance estima-
tors) of the SPECT image. This term expresses that, according to our
belief in the belonging of each tissue class (given by Pri

(x, y, z)),
voxels in the functional SPECT image should tend to have similar
grey level values. This regularization term is edge-preserving since
it allows to apply a smoothness constraint, while preserving (ana-
tomical) discontinuities. Besides, this fuzzy modeling, where each
voxel can belong to several classes simultaneously, allows to take
also into account the partial volume effect (the boundary between
two or three structures of interest can fall in the middle of a voxel).
Consequently, this strategy can be particularly well suited in order to
recover small structures.

Furthermore, the introduction of the regularization term J4 does
not affect the convexity of the NAS-RIF cost function, and therefore
a unique solution to the problem is still guaranteed. A gradient-based
iterative restoration algorithm or its conjugate version can be effi-
ciently applied to minimize this new convex cost function (Eq. (3)).
In addition, since the proposed criterion is quadratic, many other op-
timization methods can be used.

3. GENERATION OF THE 3D MRI ATLAS

The database of MRI volumes used for building a probabilistic
atlas of human neuro-anatomy were acquired as part of the ICBM
project [3]. This database contains 152 young, normal subjects (86
males ; 66 females ; age 23.4 ± 4.1). and was scanned on a Phi-
lips Gyroscan ACS 1.5 Tesla system at the Montreal Neurological
Institute using a T1-weighted 3D spoiled gradient echo acquisition
with sagittal volume excitation (TR= 18, TE= 10, flip angle = 30˚,
140− 180 sagittal slices).

When image volumes are transformed into a common stereo-
taxic space and re-sampled on the same voxel grid such that all
brains have the same orientation and size, voxel-by-voxel compa-
risons across data volumes from different populations are possible,
since each voxel (i, j, k) corresponds to the same (x, y, z) point in
the brain-based coordinate system.

After preprocessing to correct for intensity non-uniformity, the
data are linearly registered into stereotaxic space and re-sampled
onto a 1mm isotropic grid. The resulting volume is automatically
classified into GM, WM, and CSF components and the cortical sur-
face is automatically extracted. The statistical probability anatomy
map is created with voxel-by-voxel averaging of label volumes from
tissue classified data from subjects to yield spatial priors that can be
used in classification procedures. At each voxel, the probability is
proportional to the number of voxels associated to label, divided by
the total number of subjects (i.e., the empirical proportion).(see Fig.
2).

4. 3D/3D REGISTRATION

The 3D registration method used in our application is based on
mutual information (MI) and is fully described in [13]. The MI regis-
tration criterion C(θ) between the input MRI and SPECT volumes
describes the amount of information in the joint histogram of the
images ; hence its maximization results in the best match of inten-
sity correspondences between the images for registration. The opti-
mal set of registration parameters θoptimal is then found by maxi-
mizing C(θ), where the vector θ is simply estimated by the Powell’s
method [14]. The images are smoothed slightly in order to make the
cost function C(θ) as smooth as possible to give faster convergence
and less chance of finding bad local minima (related to a wrong re-
gistration). The code used to register the MRI image to the SPECT
image is mainly inspired from the software package Statistical Para-
metric Mapping (SPM)1.

5. EXPERIMENTAL RESULTS

Restoration simulations were performed on thirty SPECT images
of different epileptic patients. The SPECT data set were acquired
with a triple-head γ-camera (Picker Prism, Marconi Irix, Cleveland,
OH) equipped with low-energy, high-resolution parallel-holes colli-
mators. 90 projections of 50 seconds each were obtained on 128 ×
128×N voxels with 1.85 mm isotropic voxels and N ∈ [69, 103].

The initial inverse FIR filter required by the NAS-RIF algorithm
is the Kronecker delta function [15] and the size of this inverse fil-
ter is 3×3×3 pixels. Besides, we have used γ = 0 because the
background of SPECT images is not completely black.

Figure 2 presents an axial cross-section of the MRI atlas with the
three statistical probability maps. Figure 3 shows examples of brain
SPECT image deconvolution obtained by our 3-D blind deconvolu-
tion approach.

(a) (b) (c)

Fig. 2. Cross-section of the MRI atlas showing the three statistical
probability maps. (a) CSF, (b) Gray matter, (c) White matter.

The MRI atlas and SPECT images are initially positioned such
that their centers coincide and that the corresponding scan axes of
both images are aligned and have the same orientation. We have
used the registration algorithm implemented in the software package
(SPM)1 to register the MRI atlas to the SPECT image. During the re-
gistration procedure, the grid points of the MRI atlas will not neces-
sarily coincide with the grid points of the SPECT image. Therefore,
we used cubic-spline interpolation.

1The software package SPM can be downloaded at
http ://www.fil.ion.ucl.ac.uk/spm/
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The proposed method allows to increase the resolution and contrast
of the SPECT images without amplifying too much the mottle into
the different pre-detected anatomical regions.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Restoration results. (a) (b) (c) SPECT original cross-sections.
(d) (e) (f) corresponding restored images.

6. CONCLUSION

In this paper, we have presented a fully automated 3D resto-
ration method of brain functional SPECT images (after tomographic
reconstruction). This method exploits a reliable (high resolution ana-
tomical) MRI atlas via a new regularization term which efficiently
stabilizes the inverse solution of the NAS-RIF restoration proce-
dure. Besides, this regularization term is convex, (and thus does not
affect the convexity of the original NAS-RIF cost function), edge-
preserving, take into account the partial volume effect and can thus
be particularly well suited to recover small structures in a SPECT
image. Finally, contrary to other multi-modal restoration techniques,
it does not require an additional MRI scan of the patient. This me-
thod has been tested on a number of SPECT images, demonstrating
its efficiency and robustness. This 3D blind restoration technique is
completely data driven, and could be implemented to automatically
process massive numbers of 3D SPECT studies.
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