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ABSTRACT

In this paper, we propose a new multimodal change detec-
tion in remote sensing. The proposed method is based on a
projection of the two multisensor satellite images to a com-
mon feature space, in which the two heterogeneous images
share the same statistical properties and on which any clas-
sical monomodal change detection methods can be applied.
This transformation of the before and after images is mainly
based on a Multidimensional Scaling(MDS) representation
which can be also viewed as a de-texturing approach of the
two multisource images. Experimental results involving dif-
ferent types of imaging techniques confirm the reliability of
the proposed approach.

1. INTRODUCTION

Multimodal Change Detection (CD) consists in identifying
any land cover changes/uses that may have occurred be-
tween two satellite images acquired on the same geographical
area, at different times, by two different kinds of imaging
techniques. It is a recent and challenging task in the area
of remote sensing, also called multi-sensor data fusion, that
actually generalizes the classical monomodal CD issue [1–3]
already used for solving the environmental monitoring, geo-
logical resources surveys and disaster detection/localization
and quantification to name a few. The combination of im-
ages acquired by different sensor types (e.g. active and
passive) or the finding of reliable imaging modality-invariant
features, coming from different data sources is a difficult
task. However, this difficulty is widely compensated by the
numerous practical and technical advantages of such mul-
timodal analysis procedure. Indeed, with the development
of satellite and remote sensing imaging technology, a huge
amount of heterogeneous data are acquired every day and
stored in data archives for later use. By this fact, it can
happen that, for example, an optical image of an area, pro-
vided by an archive, have to be necessarily combined with
a new SAR image (of the same area) for technical reasons,
lack of time, availability or atmospheric conditions in an
emergency situation (SAR sensors can operate regardless of
weather or thermal conditions, even at night, i.e. with less

1Acknowledgements: we would like to acknowledge the Com-
puter Research Institute of Montreal (CRIM) and the Ministry
of Economic Science and Innovation (MESI) of the Government
of Québec to have supported this work.

restrictive conditions compared to optical imaging). It is
also worth mentioning that, since a multimodal CD analysis
processes heterogeneous data with different statistics, this
new technique may be more robust to natural variations in
environmental variables such as soil moisture or phenological
states or shading effects which should not be detected as
major land cover changes.
Until now, among the few research works that have been
devoted to heterogeneous CD problem, we can identify four
main categories. Namely; parametric models, non-parametric
or learning machine based methods, algorithms based on op-
erators using spatial and temporal similarity measures with
invariance according to the imaging modality or finally, pro-
cedures mainly based on a transformation or projection of the
two multimodal images to a common feature space, in which
the two heterogeneous images share the same statistical prop-
erties and on which classical monomodal CD methods can
then be applied.
In parametric models, a mixture or a set of parametric mul-
tidimensional distributions are generally used to model the
joint statistics or the dependencies between the two imaging
modalities [4, 5]. Sometimes, these models take also into ac-
count the noise characteristics and the relationships between
the sensor responses to the objects and their physical proper-
ties [6, 7]. The main problems related with these parametric
models are that they have been especially designed with spe-
cific distribution laws related to a type of multimodal sensors
and are not easily generalizable for another pair of different
sensors. In addition, these methods require a Maximum
Likelihood (ML) parameter estimation step of the considered
distribution, which can be complex and computationally ex-
pensive. Sometimes, these models are also semi-supervised
and rely on a training set to fit the parametric model.
Among nonparametric methods, an energy minimization
model has been specifically designed and solved in the least-
squares sense in [8] for satisfying an overdetermined set of
constraints, expressed for each pair of pixels existing in the
before-and-after satellite images acquired through different
modalities. Deep learning methods through conditional ad-
versarial networks [9] or convolutional coupling networks [10]
have also been proposed and turn out to be valuable for the
multimodal CD problem. In fact, these nonparametric meth-
ods have the ability to adapt to a wide variety of different
imaging modalities (with possibly different noise types and
levels) but are also generally less accurate than a parametric
model dealing with a specific type of multimodality repre-



sented by a particular distribution whose shape is clearly
theoretically determined.
In the third family of methods relying on similarity measures
with invariance according to the imaging modality, Alberga et

al. [11] propose to use a technique closed to the co-registration
and based on the use of a combination of different invariant
similarity measures (such as correlation ratio, mutual infor-
mation, etc.). Also, authors in [12] presented a CD method
to quantify the damages caused by an earthquake to each
individual building from a pre-event optical and post-event
SAR images. In this work, simulation is used to predict the
expected SAR signature of each building from the optical
image which is then compared to the actual SAR scene to
quantify the damages caused to each building. In [13], an
imaging modality-invariant operator that detects the com-
mon specific high-frequency pattern of each structural region
existing in the two heterogeneous satellite images is proposed.
Finally, in the last category in which the bitemporal image
data is projected to a common feature space for comparison
convenience, [14] proposes also a representation, especially
designed to highlight the changes. Another representation
which turn out to be invariant to imaging modality is given by
a classical segmentation. In this way, Liu et al. in [15] propose
a general multidimensional evidential reasoning approach for
estimating the segmentation map of the two satellite images
which are then easily and subsequently compared.
In this work, we propose a new multimodal CD method be-
longing to the last category and based on a common feature
space thus making possible the direct comparison between
the two input images. This transformation of the before and
after images can be viewed as a de-texturing approach [16] of
each satellite image.

2. PROPOSED CHANGE DETECTION MODEL

Imaging Modality Invariant Projection: This step
aims at finding a common feature space in which the pixels
of the two satellite image should ideally have the same sta-
tistical properties. This task is not trivial, especially when
the SAR imaging modality has to be combined with the
optical imaging technique because the textural properties of
the two images are radically different; For the SAR image,
the inherent multiplicative speckle noise creates for each land
cover class, a kind of macro-texture with grainy patterns
(related to the back-scattered intensity of the different object
surfaces ). For the optical image, the noise is additive and
degrades either piece-wise uniform areas or micro-textured
and structured regions (representing in fact the reflection
intensity of objects).
A solution consists in de-texturing the two satellite images,
i.e., to create a new (grey level) mapping in which two tex-
tured areas (around pixels at distant locations) gives, in the
transformed image, two pixels whose grey-level intensity dif-
ference is proportional to a distance measure between these
two textures. Otherwise said, in this new mapping, two
non-adjacent or distant pixels with the same local texture
(around the pixel) should have the same (grey-level) intensity.

To this end, a de-texturing approach, close to the one pro-
posed in [16], is applied respectively on the first and second
input satellite images. To this end, each pixel of an image is
characterized by a feature vector gathering the values of the

coarsely quantized grey level histogram followed by the val-
ues of the coarsely quantized gradient magnitude histograms
in the four directions (respectively vertical, horizontal, right
diagonal and left diagonal). These two histograms are com-
puted over the set of pixels existing in an overlapping squared
fixed-size (Nw) neighborhood centered around the pixel to be
characterized. In our application, this local histogram is re-
spectively quantized with ql and qg equidistant binnings for
the grey level space and for each of the four gradient magni-
tude histograms. This simple texture feature extraction step
thus yields to a D = ql + 4 qg-dimensional feature vector for
each pixel. This local feature descriptor turn out to be both
discriminant to characterize the different grainy patterns of
a SAR image or the different textural patterns specific of an-
other imaging modality.
Once this set of feature vector are extracted for each pixel,
we reduce the dimensionality of this set of feature vectors to
one dimension with a Multidimensional Scaling (MDS) tech-
nique [17, 18]. This allows us to project each textured image
on a one-dimensional representation or concretely as a new
grey-level transformed image. The interest of the MDS over
other dimensionality reduction methods lies in the fact that
this technique has the particularity of being able to estimate
(optimally, in the least-squares sense) an embedding from the
set of feature vectors in the high dimensional space (dim=D)
such that the distances are faithfully preserved in the low di-
mensional (dim=1) target space and thus to ensure that two
distant pixels (in the transformed image) will necessarily have
a grey-level intensity difference proportional to a L2 (in our
application) distance between the two corresponding texture
descriptors extracted on the input satellite image. Never-
theless, for computationally reasons, the originally proposed
MDS algorithm (called metric MDS is not appropriate in our
application and more generally for all large scale applications)
because this algorithm requires a complexity of O(N2) (N be-
ing the number of pixels). Instead, we have herein used a fast
alternative, called FastMap [19] whose main advantage is its
linear complexity (at the price of a slightly less good approx-
imation in the least- squares sense).

At this level, it lacks one very important aspect of the
common feature space we search to build. Indeed, as already
said, the L2 distance between each textural feature vectors
(D<s,t>), at locations s and t, in the high dimensional space
(dim=D) and the distances between the grey level (ds,t) at
these same locations in the low dimensional (dim=1) target
space is preserved as faithfully as possible and thus the rela-
tion D

t1

<s,t> ≡ d
t1

<s,t> is true for the pre-event satellite image
(at time t1) and for the post-event image satellite (at time
t2) D

t2

<s,t> ≡ d
t2

<s,t> (for any < s, t >). Nevertheless, for
two distant pixels s and t belonging to the class label un-

changed area in satellite image t1 and t2, currently, nothing
ensures that the grey level at location s in the first (pre-event)
projected image and second (post-event) projected image are
similar. The MDS technique respects the monotonicity of the
grey level order (linear correlation) existing in an image, nev-
ertheless, a nonlinear monotonic scale factor between the two
transformed images could however exist. In order to correct
this, we resort to a double histogram matching method [20].
More precisely, let us consider the two bi-temporal remote
sensing images, yt1 and yt2 acquired before and after a given
event and ŷt1 and ŷt2 their MDS projection. ŷt1 is histogram
matched to the after image ŷt2 to give ŷ

t1

⋆
and ŷt2 is then



Fig. 1. First row: SAR/Optical dataset; before and after
images; Second row shows the before and after images af-
ter MDS projection; Third row represents the result of the
double Histogram matching on the images of the second row.
Fourth row: difference map; final segmentation result; Fifth
row: ground truth.

histogram matched to ŷt1

⋆
in order to finally obtain ŷt2

⋆
(see

Fig. 1).

Temporal Differentiation and Binarization: At this
level, we can apply any monomodal CD method. In our case,
we simply generate a difference image by subtracting ŷ

t1

⋆
to

ŷ
t2

⋆
and taking the absolute value to obtain the difference im-

age yD. Finally yD is then segmented into two classes to
distinguish changes of interest of the land cover. To this end,
in order to achieve more robustness, changes are then identi-
fied, from the difference image yD, by combining the results of
T = 3 different automatic thresholding algorithms ( [24–26]).
In this way, this strategy allows us to synergistically integrate
multiple different criteria, for which these binary segmenta-
tion algorithms have been designed to be optimal in order to
further increase the efficiency of our binarization scheme. In

Fig. 2. Optical(NIR)/Optical dataset. From lex. order;
image t1, t2; difference map; final segmentation result; ground
truth.

our application, this binary fusion process is simply achieved
by using a median filter using a three dimensional window
W × W × T whose the first two dimensions are spatial and
the third dimension indexes the different binary thresholded
maps to be fused.

3. EXPERIMENTAL RESULTS

In order to assess the efficiency of the proposed method to
detect different types of land cover changes and to show
the strength and the ability of the proposed multimodal
CD method to process different remote sensing modalities,
we conduct a series of tests on different real multi-source
remote sensing imagery data sets. These data sets reflect
the three possible change detection conditions in multimodal
case. We compare the performance of our method with differ-
ent state-of-the-art multimodal change detection algorithms
recently proposed [5, 21–23]. The different change masks
were provided by a photo interpreter.

The first data set consists of one SAR image and one RGB
optical image. It shows a piece of the Dongying City in China,
before and after a new building construction. The SAR image
is acquired by RADARSAT-2 (Jun. 2008) with spatial res-
olution of 8m. The optical image comes from Google Earth
image (Sept. 2012) and its a combination of aerial photogra-
phy imaging with a satellite imaging (produced respectively
by QuickBird and Landsat-7) with a spatial resolution of 4m.
After co-registration, they are of the same pixel-resolution
921 × 593 pixels.

The second dataset is composed of two heterogeneous
optical images. It shows the changes of the Mediterranean
in Sardinia area (Italy). This dataset is acquired by dif-
ferent sensor specifications, and consists of one TM image



Table 1. Accuracy rate of change detection on the fourth heterogeneous datasets obtained by the proposed method and the
state-of-the-art multimodal change detectors (supervised and unsupervised) and monomodal change detectors.

SAR/Optical Dataset (1) Accuracy

Proposed method 0.967

Liu et al. [21] 0.976

PCC [21] 0.821

Optical(NIR band)/Optical Dataset (2) Accuracy

Proposed method 0.942

Zhang et al. [22] 0.975
PCC [22] 0.882

SAR/Optical Dataset (3) Accuracy

Proposed method 0.878

Jorge et al. [23] 0.844

Correlation [23] 0.670
Mutual Inf. [23] 0.580

1-look SAR/5-look SAR Dataset (4) Accuracy

Proposed method 0.827

Chatelain et al. [5] 0.732

Correlation [5] 0.521
Ratio edge [5] 0.382

Fig. 3. TSX/Optical dataset. From lex. order; image t1, t2,
difference map; final segmentation result; ground truth.

Fig. 4. SAR 1-look/SAR 5-looks dataset. From lex. order;
image t1, t2; difference map; final segmentation result; ground
truth.

and one optical image. The TM image is the near-infrared
band of the Landsat-5 (Sept. 1995 with spatial resolution of
30m.). The optical image come from Google Earth (RGB,
Jul. 1996, Landsat-5) with the spatial resolution 4m. Af-

ter co-registration they are of same pixel-resolution 412×300
pixels.

The third heterogeneous data set consists of one optical
image and one SAR image. It shows the area of Toulouse
(FR), with a size of 4404 × 2604 pixels. The SAR image is
taken by the TerraSAR-X satellite on Feb. 2009 before a
building construction. The optical image is captured by the
Pleiades satellite on Jul. 2013 after the construction of a
building. The optical image have a resolution of 2m. The
TSX image was co-registered and re-sampled by [7] to match
the optical image resolution.

The fourth multimodal dataset is composed of two hetero-
geneous SAR images. It shows the area of Gloucester (UK)
before and after a flooding event, with a size of 762 × 292
pixels and with a pixel resolution of 40m. The before and
after images are captured by the RADARSAT satellite with
different number of looks. The numbers of looks for the be-
fore and after SAR image is one-look image (Sept. and Oct.
2000) and five-looks.

In all the experimental results, we have considered Nw =
7, qg = 10, ql = 40 and W = 7 (see Section 2).
Table 1 summarizes the different change detection accuracy
rates obtained by our approach with a comparison with other
state of the art approaches. We can see that the different
changed-unchanged detection binary map results match fairly
the different regions present in the ground truth, and that the
most changed regions for the different imagery modalities are
well recognized by our strategy (see Figs. 1-4).

4. CONCLUSION

In this work, the applicability of a new multimodal change de-
tection strategy, in remote sensing, is presented. This one is
based on an imaging modality-invariant transformation that
projects the two multisensor satellite images to a common fea-
ture space in which the bi-temporal images share the same sta-
tistical properties and thus on which any simple monomodal
change detection methods can be applied. Qualitative and
quantitative results show that the proposed method offers a
good compromise between simplicity of the implementation
and reliability. Indeed, this method consistently performs
well on different types of input satellite images and showing
different kind of changes.
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