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ABSTRACT

This paper is concerned with hierarchical Markov Random
Field (MRF) models and with their application to sonar
image segmentation. We present a novel unsupervised hier-
archical MRF model involving a pyramidal label field and
a scale-causal and spatial neighborhood structure. This al-
lows us to more precisely model the local and global char-
acteristics of image content for different scales. Such con-
nections lead to efficiently propagate interactions and this
approach seems to be well suited for the segmentation of
very noisy sonar images. The MRF prior model parameters
are estimated in an accurate and fast way simultaneously
to the segmentation process by generalizing the estimation
method proposed by Derin et al. Experiments with real
images indicate that the proposed SCM algorithm (Scale
Causal Multigrid) performs better than other hierarchical
schemes for sonar image segmentation.

1. INTRODUCTION

In sonar imagery, a low-level step of segmentation in two
classes, i.e. shadow (corresponding to a lack of acoustic re-
verberation) and sea-bottom reverberation, is necessary to
detect and then classify elements located on the sea floor
as wrecks, ridges, pebbles, man-made objects ... In this ap-
plication, contextual information is important to be taken
into account to face speckle noise. MRF are appropriate
models to specify spatial dependency by means of a priori
label field distribution [1][2]. Nevertheless, purely spatial
MRF models have a limited ability to describe properties
on large scale, and may be not sufficient to ensure the regu-
larization process of the set of labels when the sonar image
contains strong speckle noise. Such a model can be im-
proved by using a larger neighborhood for each pixel, but
this rapidly increases the complexity of the segmentation
algorithms and the parameter estimation procedure.

To circumvent this difficulty, a multiresolution scheme
has been proposed [1]. A multiresolution image transform
is then used to decompose the image data over a pyrami-
dal structure, and reduced similar MRF models are then
defined at each resolution level. An other way to ensure an
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efficient segmentation is to use a hierarchical MRF model.
Several approaches to multigrid image modeling have been
proposed. Bouman et al. use a multiscale MRF model
where each scale is causally dependent on the preceding
coarser grid field [3]. On one hand, this scheme is not iter-
ative; on the other hand, the neighborhood structure does
not completely capture some aspects of local image prop-
erties, since a disadvantage of this quadtree model is that
spatially adjacent pixels may not have common neighbors
at the next coarser scale.

In [4], Kato et al. proposed a novel hierarchical model:
they introduce a pyramidal structure with a three dimen-
sional (3D) neighborhood system and a 3D label field. How-
ever, the system uses a first order neighborhood structure
with two cliques and an isotropic model. This model may
be well suited for SAR images, but too simple to be used
for our application. Scenes are very different in our case:
sea floor with pebbles, dunes, ridges, sand, tires or various
objects ... Moreover, the segmentation and the estimation
with such a priori model, using simulated annealing, require
a lot of computing time.

Herein, we propose an unsupervised hierarchical seg-
mentation algorithm using an appropriate multiscale model.
This model involves a local connection between spatially
adjacent sites, and to the father site belonging to the pixel
grid at the lower resolution level. We have also developed
a computationally efficient method for the unsupervised es-
timation of the model parameters. This scheme takes into
account the variety of the laws in the distribution mixture
of a sonar image, estimates the parameters of each noise
distribution, and the parameters of the a priori model. We
use a maximum likelihood estimation technique concerning
the noise model parameters. In order to estimate the MRF
prior model, our approach consists in extending the method
proposed by Derin et al. [5]. The MRF prior parameters
are estimated jointly to the segmentation process and are
optimal in the least squares sense. Finally, we compare
the results obtained on real sonar images with respectively,
our scheme, the multigrid model defined in [6], the SMAP
algorithm [3], and a multiresolution approach [1] .

This paper is organized as follows. In Section 2, we
define the notation and the proposed hierarchical model.
Section 3 details the parameter estimation step, and more
precisely, the MRF prior model estimator. Experimental
results on real scenes are presented in Section 4.



2. SONAR IMAGERY AND HIERARCHICAL
MARKOVIAN MODELING

We propose a multiscale model called SCM (Scale Causal
Multigrid) which consists of a label field pyramid associated
to a single observation level. We consider a scale-causal
and spatial neighborhood system. A site s interacts with
spatially adjacent sites at a given scale and with its father
at the upper coarser level (i.e a causal neighborhood in
scale). Figure 1. depicts the pyramidal structure and the
used neighborhood system. The base of our approach is
the multiscale model introduced in [6]. The observation
field remains at the finest resolution, only the MRF model
will be hierarchically defined. Starting from an original full
resolution energy model, the energy function is rewritten at
each scale as a coarser MRF model.
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Figure 1: Neighborhood system and the multiscale structure

2.1. Monoresolution model

Let Z = (X,Y) be a couple of random fields, with ¥ =
{Y:,s € S} the field of observations located on a lattice S
of N sites s, and X = {X.,s € S} the label field. Each
of the Y, takes its value in Aos = {0,...,255} and each
X, in {e0 = shadow, e1 = sea bottom reverberation}. The
distribution of (X,Y) is defined, firstly, by Px(z), the dis-
tribution of X supposed to be stationary and Markovian,
and secondly, by the site-wise likelihoods Py, /x, (ys/z:). In
this work, these conditional likelihoods depend on the class
label z.. ®; and ®, are the parameter vectors associated
to the distributions Px(z) and Py, ;x, (y</%.) respectively.
The corresponding posterior energy is:

Zﬁqtl— CL‘e,-Tt +Z‘Ij x*vy)

<s,t>

where we adopt a 8-connexity spatial neighbourhood and

Bst = B1, B2, B3 or B4 if clique < s, t> is horizontal, vertical,

right and left diagonal respectively. ¥, = —In Py, /x_(ys/2:)
and § is the Kronecker delta function.

2.2. Scale causal multigrid model

We now deal with a hierarchy (z%,...,2°%) of label field,
where z' is defined on grid S* reduced by 2' in each direc-
tion. We first define:
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where 35 stands for the inter-level clique parameter. In our

approach, the segmentation of sonar images in two classes

is stated as a causal statistical labelling problem according

to a global Bayesian formulation in which we search for z',

the labelling at the resolution level I, such as:
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x

Now let ®%F (k < 1) be the “projection” from St to SF,

which associates by duplication a blockwise constant con-

figuration on S* to any configuration on S'. For | < L
we can define: P(z'/y,z'T!) o« exp{-U'(z',y,#'*")} with

Ul(z!, y, ') = U°(®"0 (21, y, @1 (#+1)). Simple com-
putations yield [6]:
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where b, is the 2¢ x 2" block of S corresponding to p € S°.
U! expresses the adequacy between observations and labels,
U} the energy of the a priori model and Uf the energy term
expressing the relation with the segmentation at the resolu-
tion level {4 1. Yot stands for the set of all the observations

of the block b! associated to site s. The parameters of the
Gibbs distribution, 8! = a!8;, are derived over scale in a
coherent mathematical way [6]. We easily obtain for our

application:
a; = [2'+202'-1)] ie{1,2}
ab = 1 i€ {3,4}
ozé = 4

At coarsest level, we define:
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with UL(JJL7 y) = U(<I>L’0 (mL, y))
We now have to deal with the coarse-to-fine recursive esti-
mation (1). In order to minimize the energy function as-
sociated with the MRF model at each scale, we use the
ICM algorithm [7] to get a faster and better estimate of &'
(I < L). The final estimate #'T! obtained at a given level is
interpolated as ®'*1!(#+1) to be used as an initialization
for the relaxation process at the next finer level (cf. Fig.2).
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Figure 2: ’coarse-to-fine’ minimization strategy

3. PARAMETER ESTIMATION

Segmenting an image into different classes in a complete
unsupervised way is not an easy task. The main difficulty
is that the parameter estimation is required for the segmen-
tation, while the segmentation is needed for the parameter
estimation. In sonar imagery, no explicit information about
the exact properties of the label field X is available since
scenes are variable from an image to another. Besides, the
noise on the pictures may vary. It is however possible to de-
termine the noise model and the spatial MRF prior model
parameters directly from the image data with the proce-
dure presented in [8]. This estimation scheme takes into
account the variety of the laws in the distribution mixture
of sonar images, and estimates the parameters of each noise
distribution. A Gaussian law AN (u, o) describes the lumi-
nance y within shadow regions, and a shifted Rayleigh law
R(min, a) takes into account the speckle noise phenomenon
of the sea bottom reverberation class [8]. This Estimation
Step allows us to obtain a preliminary multigrid segmen-
tation [6] from which the SCM model can be estimated.
This means that the segmentation process requires two full
passes composed of the following steps:

1. Perform an Estimation Step (to estimate the noise
model parameters @®, and the spatial MRF prior
model parameters with the procedure described in
[8]) and compute a first coarse-to-fine multigrid seg-
mentation [6] using the estimated parameters.

2. Estimate the SCM model ®,; and re-estimate ®,
based on the multigrid segmentation results.

3. Perform a final “coarse-to-fine” segmentation using
the estimated SCM model and the strategy described
in §2.
The parameter vector ®, = [81, B2, B3, B4, 3s5] which defines
the SCM model is estimated by generalizing the method
of estimation proposed by Derin et al. [5]. For the spatial
model defined in §2.1 (with ®, = [3; ... 84]), the method is:
let n; represent a possible label configuration of a generic
neighborhood, X, the set of labels assigned to the neigh-
bors of site s, and Px, x,_(e;,n:) the joint distribution of
the label X.=e; with the neighborhood X,, =n;. Assum-
ing they know some segmentation z, Derin et al. consider
the following overdetermined linear system:

Vi [©(co,m) — O(er, mi)]' @, =In [M] (2)

Px, x,, (€0, n:)

where @(xs,ni)t P, = Zteu Bet[l — 6(zs,2¢)]. The ra-
tio P(e1,ni) /P(eo,n:) can be estimated using simple his-
togramming (by counting the number of 3 x 3 blocks of type

(e1,n:i) and dividing by the number of blocks of type (eq, n:)
over the label field). By substituting for each value of 7
in (2), we obtain 256 equations (2® possible neighborhood
configurations) in four unknowns. We obtain the parameter
values by applying the least squares error method to solve
this system. The extension of this method to estimate the
prior model parameters in Fig.1 is straightforward. The un-
known parameter vector to be estimated ®, can be found
by expressing (2) for each scale of the pyramidal structure

(cf. Fig. 1). Vn;:
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Where M! is a diagonal matrix defined as:
M' = diag (a1, a3, ..., a3)

M' . &, stands for the clique potentiel vector of the
Gibbs distribution at resolution level . The ratio Pl(el7 i)
/P'(eo,ni) of each expression in this system can be esti-
mated by counting the number of blocks of type (e1,n:)
and dividing by the number of blocks of type (eg,n:) over
the label field at resolution level I. For each expression in
this system, we obtain 512 = 2° equations by considering
all possible neighborhood configurations n;. A special com-
bination (ej;,n;) may not occur in the label fields. In this
case, we cannot obtain a linear equation because of the log-
arithm. Moreover, ©(eo, n:) = O(e1,n:) implies equations
of type 0 = C*'. Therefore we ignore these cases as well.
This overdetermined linear system of equations is solved
with the least squares method.

4. EXPERIMENTAL RESULTS

In this section, we compare the segmentation performance
of the proposed SCM algorithm with the multigrid strat-
egy described in [6], the SMAP algorithm on a quadtree
proposed by Bouman et al. [3], and a classical multiresolu-
tion approach (in our case, the data pyramid is built with
a low pass filter). All the segmentation results exploit the
Parameter Estimation Step presented in [8]. This Fstima-
tion Step is used to estimate the MRF prior model for the
multigrid strategy and for the first step of the proposed
SCM algorithm. The parameter associated with the prior
model of the SMAP algorithm is fixed a priori (the prob-
ability that the labelling will remain the same from scale
[l 4+ 1] to [I] is equal to 0.99). Three resolution levels are
considered in the multigrid and SCM algorithms and five
resolution levels for the SMAP algorithm. Figures 3,4 show
the segmentation results obtained with the different meth-
ods. The MRF prior model parameters ®, and the noise
model parameters @, obtained with our scheme are given in
Table 1. Experiments indicate that the SMAP requires less
computation than the multigrid or SCM algorithms but the
neighborhood structure is not complex enough to describe
local image properties. This model often produces blocky
segmentations at the boundaries of the shadows. Besides,
the multigrid, SMAP and the multiresolution approach do



not permit to decrease the number of false alarms (wrong
shadow detections) due to the speckle noise effect. SCM
performs better, exhibits a good robustness versus speckle
noise (false alarms have been eliminated), and allows us
to preserve the shadow shapes of little rocks. Manufac-
tured objects or rock shadows are better segmented with
our method than with the others (cf. Fig. 3,4).

5. CONCLUSION

In this paper, we have described a novel hierarchical unsu-
pervised segmentation algorithm based on multiscale model,
a scale-causal and spatial neighborhood, and a multigrid
strategy. The proposed algorithm presents several attrac-
tive features compared to other MRF models. The neigh-
borhood structure can more accurately describe image prop-
erties and can be estimated efficiently and fastly during the
segmentation process. Moreover, this approach seems to
be well adapted to sonar images with strong speckle noise.
This method has been validated on several real sonar im-
ages demonstrating the efficiency and robustness of this
scheme. The Markovian segmentation of sonar images in
three classes (shadow, sea-bottom reverberation, and echo)
will be the topic of our next research.

Fig. 3 SCM Algorithm
Pyiey) 0.07(r) 4w 23(52)
CI)y(el) 0.93(z) 12(min) 6060 42)

D, 2.5(8,) 243 —08(s —lis) 0205
Fig. 4 SCM Algorithm
(by(eo) 003(#) 32(#) 34(02)
(I)y(el) 0-97(7r) 38(,,“'") 1230(a2)

o, 2.1(5) 35 —L12(s) —1(5,) 0.6

Table 1: Estimated parameters. © stands for the proportion of
the two classes. p and o2 are the Gaussian parameters (shadow
area). min and o are the Rayleigh law parameters (sea floor re-
verberation) [8]. B:’s are the a priori parameters of the Markovian
SCM model.
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Figure 3: (a) Real sonar image. -Pebbly sea floor with a manu-
factured object. (b) SCM, (c) SMAP, (d) Multigrid segmentation.
The SMAP and the spatial multigrid algorithm do not permit to
totally eliminate the speckle noise effect (creating ’shadow’ misla-
belled isolated pizels).
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Figure 4: (a) Real sonar image. -Sandy sea floor with the
shadow of a man-made object. (b) SCM, (c) SMAP, (d) Mul-
tiresolution segmentation. Good results are obtained with the SCM
algorithm exhibiting a good robustness against the speckle noise
(which induces false small shadow areas for the SMAP or the mul-
tiresolution approach), and able to find a regular shadow shape
close to the expected one.



