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ABSTRACT
This paper investigatesthe useof the Bayesianinferencefor de-
vising an example-basedrendering procedure. As prior modelof
this Bayesianinference, weexploit themultiscalenon-parametric
modelrecentlyproposed by Wei et al. for texture synthesis.This
modelappears to beinterestingto alsocapture somecharacteris-
tics of a renderingstylefroman artistic illustration example. Ob-
tainedresults,with a prior modelcapturingtherenderingstyleof
drawingsamplesor trainedwith syntheticandreal input textures,
are presented. Our resultsindicate that the proposedmethodal-
lows to simulateautomaticsynthesisof variousillustration style.
More generally, theproposedschemeis ableto re-renderan input
imagein thestyleof anotherimageallowing, in thisway, to create
a verybroadrange of artistic andvisualeffects.

1. INTRODUCTION

In the pastfew years,therehasbeena greatdeal of research
work in creatingartisticstylesby computer. This field of research
is known as Non-Photorealistic Rendering(NPR).Thesemethods
refer to any imageprocessingtechniqueswhich cantransforman
imageinto a specificartisticstyles(or morepreciselythatsuggest
an artistic style) suchasink painting,pointillist style,engraving,
stylizedhalftoning,charcoaldrawing, etc.,or, moregenerally, in a
styleotherthanrealism.All of themethodsproposedby thecom-
putergraphicscommunityaregenerally specificallytailoredto a
particularrenderingstyleand/orarepurelyalgorithmictechniques
(see[1] for aexcellentreview of existing NPRtechniques).

Recently, Efrosetal. have proposedaninterestingnonparame-
tric modelto synthesizeatextureof arbitrarysizefrom agiventex-
turesample.Contraryto classicalparametricmodels(oftenbased
on Markov Random Field (MRF) Models), theirapproach, impro-
ved by a multiscalesamplingtechniqueintroducedby Wei et al.
[2], is simple,intuitiveandworkssurprisinglywell evenfor awide
variety of complex textures.The synthesizedtextures(cf. Fig. 1)
remainvisually similar to theoriginal andseemto comefrom the
same(underlying) generative processastheoriginal inputsample.
This model allows to efficiently capturethe local andglobal vi-
sualcharacteristicsof acomplex input textureandthusseemsalso
well suitedto capturesomecharacteristicsof aparticularrendering
stylefrom anartisticillustrationexample.

Subjectto finding a probabilistic formulationfor theWei’smo-
del and to expressit as a prior knowledge, Bayesianstatistical
theory is a convenient tool to take this a priori knowledge into
considerationfor a renderingprocedure. Applied with success,to
imagesegmentation, restoration[3], surfacereconstruction[4], vi-

sual motion analysis[5], etc., the Bayesianmethodology allows
to efficiently combinea prior modelthat expressesthe prior cha-
racteristicsof the solution to be estimated(i.e., the imageto be
re-renderedin our application)with a statisticalmodeldescribing
theinteractionsbetweenthissolutionandaninput observation (or
a drawing sample).This Bayesianmethodology appearsthus to
bewell suitedto re-renderan input imagein thestyleof another
image.

This paper is organizedasfollows. In Section2, we provide a
brief overview of themodelintroducedby Efrosetal. andwe find
a probabilistic formulationto their samplingprocedure.Section3
and4 exploit this modelasprior model in a Bayesianrendering
procedureandpresentthecoarse-to-finerecursive energy minimi-
zationproblemrelatedto this technique respectively. Finally, ob-
tainedresults,with a prior modelcapturingthe output rendering
style of drawing samplesor learnedon texture samples,arepre-
sented.

2. PREVIOUS WORK AND PRIOR MODEL

RecentlyEfros al. [6] have proposeda non parametricmodel
to synthesizean output imagefrom a given input texture sample.
Their approach works surprisinglywell for a wide rangeof tex-
tures.Their algorithmconsistsof thefollowing steps;� The output imageis initialized with a randomnoisewhose
histogramis equalizedwith respectto theoneof theinput sample.� For eachpixel in the output image, in scan-lineorder, the
already-synthesizedvaluesin neighborhoodof currentpixel � of a
specific(fixed)size(

��� ��� ) is consideredandis comparedwith all
possibleneighborhoods

���	� � from inputsample.Thevalueof the
input pixel

�
with themostsimilar

���	� � is thenassignedto � .
The similarity of the two consideredneighborhoodsis compu-

tedaccordingto the 
�� norm.In orderto obtaingoodsynthesisre-
sults,thesizeof theneighborhoodmustbelargeenoughto capture
thescaleof thetextureelementsof theinputsample.Althoughthis
searchingprocessis deterministic,therandomaspectof eachsyn-
thesizedtexture is ensuredby the initial randomnoise(first cau-
sing the boundary pixels to be assignedsemi-stochasticallyand
thenusingthesefirst assignments asa seed).In this method,the
input texture is modeledasa MRF. This assumesthat the Proba-
bility Distribution Function(PDF)of brightnessvaluesfor a pixel
dependsonly of thebrightnessvaluesof its spatialneighbors.Ba-
sedon this MRF model,a stochasticsamplingwould consistin
constructing an approximation of  � ��� ��� ����� for a given

��� ���
(e.g., by using histogrammingtechnique over the input textural



sample)andthensamplefrom it with a Gibbsor Metropolis sam-
pler [3]. Due to the exponential growth of amount of datarequi-
redto empiricallyestimatea d-dimensional PDFwhen � (number
of neighbors) increases,this estimationtechnique is not possible
in the caseof an input sampleof small size.Unlike MRF-based
stochasticsampling,Efros’salgorithmis completelydeterministic
and avoids explicit conditionalprobability constructionand sto-
chasticsampling.By usingadequatelysizedneighborhood,theal-
gorithmproducessurprisinglygoodresultsbut remainsvery slow
sincea full searchof the input image is requiredto synthesize
every pixel. Thiscomputationalloadis all themoreimportantthat
theinitial texturecontainslargescalestructureandwe have to use
largeneighborhoods.

To copewith theseproblems,Wei et al. [2] have proposeda
multiscalesynthesis schemeinvolving a pyramidal structureof
synthesizedimagesanda multiresolution(Gaussian)pyramid for
the set of input images.From coarseto fine, eachlevel of the
pyramid is synthesizedas in Efros’s algorithm, except that the
consideredneighborhood usesspatialadjacent sitesandsitesbe-
longing to the coarserscale.This method,combinedwith a tree-
structuredvectorquantizationto acceleratethesearchfor thenea-
restneighbor, allows to usesmallerneighborhoodand thus dra-
matically increasesthe speedof the synthesisprocess.This mo-
del is similar to the ScaleCausalMultigrid modelwe have pro-
posedin [7] [8] for the sonarimagesegmentationissue.Never-
theless,thetechnique introducedin [7] involveda parametricmo-
del in which theconditionalPDFwasexpressed within anenergy
functionwhich consistsof asumof local interactionpotentials in-
volving a few parameters(calledcliqueparameters).Wei’s model
is non-parametric and offers the opportunity to capturevery ef-
ficiently the largerscalecharacteristicsof a given texturesample.
Exampleof thissynthesis algorithmonacomplex textureis shown
in Fig.1.Thesynthesizedtextureis verysimilarto theoriginaland
seemsto comefrom the same(underlying)stochasticprocessas
theinput textural sample.

FIG. 1 – Wei etal.’s texturesynthesisalgorithm.Theresultingtex-
ture (right) is synthesizedat twice the sizeof the original input
sample(left) (see[2] for more examples).

Let us now find a probabilistic formulation to the Wei’s sam-
pling procedure. To this end, let us consider, at full resolution,
a coupleof randomfields

�	����� � , with
���������������! #"

and�$�%�&�'�����(�) #"
, thesetof variablesassociatedto the

�
pixels

of the input and output texture imagesrespectively and located
on a lattice

 
of
�

sites
�
. Eachof the

�*�
and

�+�
take their

value in , �-�/.0�2131414��5�6768"
(i.e., the set of grey levels). A par-

ticular configurationfor
�

(the synthesizedtexture) is given as

���:9:� � 94�213141;���#<(� � <=" which is abbreviated to � �>�?� � � " � for
convenience.All possibleoutput images � are containedwithin
theconfigurationspace@ � ,#A . Let �B0C�D � ��� � � thedistribution
measureon @ andlet usdefine,

 B0CED � ��� � � �GF�+HJI3K0LNM+OQP�SR8TNUWVYX[Z\ R�TJ] �W�^�	� \ � �E��� � � �`_�a � (1)

where ] �`1 � is the 
b� distanceand
� H

is a normalizingconstant
(depending on

�
only). Fromdistribution (1), we cansynthesizea

texture or a particularrealizationof � by a StochasticRelaxation
(SR) procedure [9]. This is done by startingwith any imageand
iteratively updatingpixels in the imagewith respectto the Local
Conditional PDF(LCPDF),

+B0cEC Aed Bfc�g � � � � ��� � � ��� � F�#hiI3K0Lkj=O VYX;Z\ R8T ] �W���	� \ � �E��� � � � _0l �
where

�+h
is the local partition function anddependenceon

�
is omitted for convenience.A well-known SR algorithm is the
Gibbs sampler[9] proposedby Gemanet al. An alternative ap-
proachto thisstochastic(andthuscomputationally expensive)pro-
cedureis theIterativeConditional Modes(ICM) introducedby Be-
sag[3]. Using (1), this methodconsistsin finding for eachsite,
and until convergence is achieved, the value � � that maximizes � � � � �^� � � ��� . Fromanalgorithmicpoint of view, this procedure
is similar to theWei et al. procedure,exceptthattheICM process
has to be repeateduntil convergenceis achieved (and generally
more than one pass).This shows that Eq. (1) provides an inter-
estingprobabilisticformulationof a non parametricprior model.
Thisprior modelwill beexploitedin thefollowing, via aBayesian
inference,in our renderingprocedure.

3. BAYESIAN INFERENCE

Let now
�

representsthesetof hiddenvariables(the imageto
be synthesizedwith renderingeffect in our application),and m ,
theobservationvariables(theinput imageto bere-rendered).The
general Bayesianinferencedefinedby Besag[3] consistsof the
successivestagesoutlinedbelow ;� Constructof aprior PDF;  B � ��� whichrepresentsour initial

prior knowledgeon thesolution.� Combinetheobservationvariableswith theabovementioned
prior modelthrougha conditionalPDF; on C`B �	p �/��� .� Computetheposteriordensity BfC n � ��� p � fromtheprior and
theconditional probability by Bayestheorem; BfC n � ��� p ��qr B � ���+kn CsB �	p �/��� .

Finally, chooseacriterionbasedon thisposteriorprobability , in
orderto definethe“best” � given

p
. In Bayesiananalysis,all kinds

of inferenceare madefrom oBfC n � �8� p � . Finding the Maximum
A Posteriori(MAP) estimatei.e., the occurrenceof � that is the
mostlikely, is oneof themostfrequentlyusedchoiceof inference.
For  B0C n � �8� p �eq I3K0L � Out � � �sp ��� and for some“energy” func-
tion t , this MAP estimationproblemis equivalent to an energy
functionminimizationproblem; v� MAP

�xw&yEz VYX;Zf{ R8| t � � �Ep � 1 The
energy function t � � �`p � involves two components.One arising
from  B � ��� , which encodesconstraintson the desiredsolution.
It is thea priori energy term.In ourBayesianrenderingmodel,we
canefficiently exploit the prior modelexpressedby Eq. (1). The
other one,stemmingfrom Nn C`B �	p ���8� , expresses the interaction
betweenthehiddenvariablesandtheobserveddata.In our appli-
cation,we candefine,for this (so-called)likelihoodenergy term,



a likelihoodmeasureof visualdifferencebetweentheobservation
andthe image � to besynthesizedby constraints.More precisely,
we usethe following differencemetricbetweenpixel valuesof �
and

p
,

 n C`B �	p �/��� � F�e} I3K0L M Ou~ P�SR8T �	p8� O � � � � a �
� F�e} I3K0L M Oe� P�SR8T U ] �W���	p7� � �E��� � � � _ a �
� F�e} I3K0L M Oe� P�SR�T VYX;Z\ R8T U ] �W���	p7� � �E�^�	� \ � _�a 1

(2)

with � � ~ �0� ���`1 �4� , � ���`1 �4� designatesthe numberof neighbors
and

� }
is a normalizingconstant. Using this likelihood and the

prior modelgiven by Eq. (1), we canexpressthe mostprobable
MAP configuration v� MAP knowing

p
and

�
; v� MAP

�?w/yEz V w K { R8| B0C n � �8� p � . Equivalently, the corresponding posteriorenergy to
beminimized,at full resolution,is,

t �	���`pi� ��� �
P��R�T VYX[Z\ R�T j ] �W���	� \ � �E�^� � � ���N� � ] �W���	� \ � �E�^�	p8� ��� l 1
4. COARSE-TO-FINE ESTIMATION

Dueto themultiscalestructureof themodelandthescalecausal
specificationof theneighborhood,we have in factto dealwith the
following coarse-to-finerecursive energy minimization problem
[8],

t h �	���spi� ��� �
P��R�T�� VYX;Z\ R�T � j ] �W�^�	� \ � ����� � � ���o� � ] �W�^�	� \ � �����	p8� ��� l � (3)

where
 h

definethesetof pixelsat resolutionlevel � . Eachof the
associatedenergy canbeefficiently solvedwith anICM algorithm
[3]. Like for otherhierarchicalapproaches,theadvantagesof this
methodare twofold. From a modelingpoint of view, this hierar-
chicalstrategy offersanappealingability to capturea priori cha-
racteristicsof the (underlyinggenerative) stochasticprocesswi-
thin arangeof differentscales.Fromanalgorithmicpoint of view,
contextual informationis propagatedin a moreefficient way [8].
Besidesmultiscaleoptimization techniquehasshown to exhibit
fastconvergencepropertyandrobustnessagainstlocal minimafor
highly non-linear combinational problems(estimationresultsare
nearly comparableto thoseobtainedby stochasticoptimization
procedures)[5]. � is the factorthat providesa relative weighting
betweenthe two energy terms(for �*��� , we find theoptimiza-
tion problemrelatedto the multiscalesamplingtechniquepropo-
sedby Wei etal. in [2]).

5. EXPERIMENTAL RESULTS

In a preliminary step,we stretchthe histogramof the input
image

p
in order to get the sameminimal andmaximalgrey le-

vel valuesof the input texture sample
�

. Then, the input image
andthe texture samplearedecomposedinto multiple resolutions
by building two Gaussianpyramids. Eachlevel or imageof these
pyramidsis consideredasbeingtoroidal.This assumptionallows
to handleneighborhoodsnearthe imageboundaries.We convert

the input image
p

andthe input sample
�

in grey level valuesfor
theGaussianpyramidconstructions.Consequently, only grey level
valuesareusedfor thesearchingprocess.Color canbesimply re-
coveredby copying theR, G andB channelsat full resolutionfor
eachselectedpixel by the searchingprocess.We usethreelevels
of pyramid ( 
 �%� ). For thefirst coarse-tofine samplingprocess,
we usea �e�*� spatialandcausalneighborhoodin the fine level
with asymmetric

6 � 6 spatialneighborhoodin thecoarselevel. A
symmetric

6 � 6 neighborhoodin thefineandcoarselevelsarethen
usedfor theotherpassesof thealgorithm.

In order to eliminatethe differenceof contrastbetween
�

andp
, we use,insteadof ] �W���	� \ � �����	p � ��� in Eq. 3, the following

measure,

] U>� ���	� \ �N� � F O � � ���	� \ � �E�^�	p � � _ �
where

���	��� � designatesthemeanof pixel valuescontainedin the
neighborhoodof

� �
and � is a parameter(

��� .0� F3� ) allowing to
normalizethe local variancebetween

�
and

p
. Finally, we usean

Approximate-Nearest-Neighborsearchtechnique[10] to accele-
ratethesearchof theconditional modeof theICM procedure,i.e.,
the configurationcorresponding to the maximumof the LCPDF.
Finally, for eachcoarse-to-finepassof themultiscaleICM we re-
build thehierarchyof estimation v� 9 �414131[� v��� from v�7� with a Gaus-
sianpyramid.

Several examplesof Bayesianrenderingresultsare shown in
Figs 2 and3. In theseexamples,we try to transfersomeartistic
renderingstylesfrom adrawing imageto aninputrealphotograph.
In thesecases,the multiscaleprior model usedin our Bayesian
procedureallows to efficiently capturethe local andglobalvisual
characteristicsof the line drawing texture, the halftoningtexture,
thecharcoal penstyleor theink paintingeffect respectively of the
input sourcedrawing. We alsopresenttheresultsof our Bayesian
Renderingmethodwhenthe prior model is trainedwith an input
textural sample(cf. Figs4). Obtainedresultsshow thatthepropo-
sedmethodallow to constraintan input imagetowardsan image
with thesamelocal andglobalcharacteristicsof the input texture
sample.� allowsto controltheweightingbetweentheintrinsicvi-
sual characteristicsof the input imageand the characteristicsof
the texturesample.Thesamplingprocesstakesabout

5
hoursper

imageon a � .�. Mhz PCworkstation.In additionto a renderingor
a stylizeddepictionprocedure,theproposedtechniquemayeven-
tually beapplicableto a muchbroaderof application,suchastex-
tural morphing, texture mixing algorithmor in order to createa
very broadrangeof visualeffects.

6. CONCLUSION

In thispaper, wehavepresentedastatisticalmethodfor theren-
deringproblem.We have statedthis problemin theBayesianfra-
mework andexploitedthemultiscalenonparametricmodelpropo-
sedby Wey et al. asprior modelof this Bayesianinference.This
prior modelhasshown itself to bewell suitedto efficiently capture
the local andglobal visualcharacteristicsof a complex input tex-
tureor to capturesomecharacteristicsof arenderingstylegivenby
anartisticillustrationexample.Combinedwith alikelihoodmodel,
the resultingBayesianrenderingprocedure allows to constrainta
given imagewith the visual characteristicsor the (artistic repre-
sentation)styleof an otherimage,yielding a very broadrangeof
interestingvisualeffects.

1 � cf. Http :www.iro.umontreal.ca/� mignotte/ICPR02/for additionalexamples.



FIG. 2 – Drawingimage with respectivelythefollowing rendering
styles; hatching, pointillist, charcoal drawing. Real photograph
and Bayesianrenderingresults( � � F ) basedon each drawing
example� .

FIG. 3 – Drawingimagewith theink paintingstyle, original image
andBayesianrendering result � .

FIG. 4 – Texture sample(respectively: fire, water, clouds,satin).
Realphotograph.Bayesianrenderingresults( � ��� ) basedoneach
textural sample� .
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