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Abstract—Recently, there has been renewed interest in the fu-
sion of image segmentation. However, previous relevant research
has been impeded by the lack of an appropriate single segmenta-
tion criterion, which yields an improved final segmentation result.
This paper proposes a new framework to tackle this problem.
It is based on multi-objective optimization strategy, followed
by a decision making technique called: technique for order
performance by similarity to ideal solution (TOPSIS). This new
fusion framework aims to overcome the limits caused by using
a single criterion by combining and optimizing, simultaneously,
two different and complementary segmentation criteria; namely,
the global consistency error (GCE) (region-based criterion) and
the F-measure (edge-based criterion). This new multi-criterion
fusion framework is validated on the Berkeley image dataset and
compared to different segmentation algorithms (with or without
fusion strategy). Experiments show that the results of our new
multi-objective approach improve the state of the art in terms of
popular indices.

I. INTRODUCTION

Image segmentation is a classic problem in the image
processing field. In recent years, there has been a surge of
interest in the combining of several different segmentations of
the same textured natural image to achieve a final consensus
segmentation. In this strategy, these initial segmentations may
be generated by different parameter settings applied to the
same algorithm or by various segmentation algorithms.

Following this combination approach, the first relevant
contribution has been introduced in [1] respecting a practical
constraint, which restricts the fusion step by specifying that
all input segmentations (to be fused) must be composed of
the same region’s number. To date, other fusion segmentation
approaches have been proposed without this constraint and
have been formulated in the sense of different criteria, such
as: the probabilistic version of the well-known Rand index
[2] (PRI [3]), the evidence accumulation [5], the variation of
information (VoI) [4], the precision-recall [6], the maximum-
margin hyperplane (between classes) sense [7], the within-
point scatter of the cluster instances [8] or the information
theory criterion [9]. Another line of research is to focus on the
segmentation research space, in this context, authors in [10]
proposed an algorithm which builds a binary partition tree in
a collaborative fashion, from different images, thus allowing
the achievement of an unified hierarchical segmentation space.

Although extensive research has been carried out on seg-
mentation fusion, all existing studies treat it with a single cri-
terion (objective). However, the major problem with this kind
of approach (mono-criterion approach) is that it can provide a

limited performance (bad and eventually weak result), firstly,
because the segmentation is inherently an ill-posed problem
related to the large number of possible partitioning for any
image, and secondly, by the fact that the optimization process
can instantiate research in a specific zone (related to the defined
criterion) into the search space.

To cope with these aforementioned problems, in this paper,
we propose a new fusion model called the multi-objective
optimization based fusion model (MOBFM). The potential aim
of this model is to take advantage of the complementarity of
two different objectives, namely the global consistency error
(GCE) (region-based criterion) and the F-Measure (edge-based
criterion). In order to optimize these criteria we use a faster
search technique called iterative conditional modes (ICM),
proposed by Besag [11]. To this end, we have incorporated, in
the ICM-based optimization strategy the dominance concept.
This strategy, allows us to find a Pareto set of solutions, i.e., an
ensemble of non-dominated segmentation (related to these two
criteria). To select one best solution (consensus segmentation)
from the generated ensemble, we resort to a useful decision
making technique called the technique for order performance
by similarity to ideal solution (TOPSIS).

The rest of the paper is organized as follows. In Section II,
we introduce basic concepts of the multi-objective optimiza-
tion. Then, we define used segmentation criteria in Section
III. We present the proposed fusion model in Section IV.
Experimental results are given in Section V. The paper ends
with conclusions in Section VI.

II. APPROACHES BASED MULTIPLE OBJECTIVES

The resolution of a multi-objective problem consists of
minimizing k objective functions without degradation of the
optimal values obtained compared with those obtained from a
mono-objective optimization, performed one by one. Following
this logic, there are three general types of methods [12].
The first is a priori preference method, which aims to assign
a numerical weight to each objective and then, combines
multiple objectives (by adding or multiplying all the weighted
criteria) into a single composite function [13]. The second
is called the progressive preference method, where the user
refines his choice of the compromise during the progress of
the optimization. The last type is called a posteriori preference
method; instead of transforming a multi-objective problem into
a mono-objective problem, we define a dominance relationship,
where the overarching goal is to find the best compromise
between objectives. Hence, several dominance relationships
have already been proposed, but the most famous and the
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most commonly used is the Pareto dominance (or the Pareto
Approach [PTA]). This domination concept will be used in our
study, and it is defined as follows:

Definition 1: The solution x(i) ∈ S is said to dominate
another solution x(j) ∈ S, denoted x(i) ≺ x(j) (in case of
minimization), if and only if: fl(x

(i)) ≤ fl(x
(j)) for all l

∈ {1, 2, .., k} and, fl(x
(i)) < fl(x

(j)) for some l ∈ {1, 2, .., k}.

where S denotes the search space and fl(.) represents the l-th
objective function.

III. SEGMENTATION FUSION CRITERIA

A. The F-measure (precision-recall) Criterion

In information retrieval, precision is interpreted as the
fraction of retrieved instances that are relevant, while recall
is represented as the fraction of relevant instances that are
retrieved. Similarly, in the (edge-based) image segmentation
case, these two scores represent, respectively, the fraction of
detections that are true boundaries and the fraction of true
boundaries detected [6].

Formally, let ST = {R1

T
, R2

T
, . . . , RNbT

T
} & SM =

{R1

M
, R2

M
, . . . , RNbM

M
} be, respectively, the segmentation test

result to be measured and the manually segmented image with
NbT being the number of segments or regions (R) in ST and
NbM the number of regions in SM. Let now B(RT) be the set
of pixels that belongs to the boundary of the segments RT in
the segmentation ST and let us also assume that B(RM) is the
set of pixels belonging to the boundary of the segments RM

in the ground truth segmentation SM. The precision (Pr) and
recall (Re) are then respectively defined as:

Pr =
|B(RT) ∩B(RM)|

|B(RT)|
, Re =

|B(RT) ∩B(RM)|

|B(RM)|
(1)

where ∩ denotes the intersection operator and |X | denotes
the cardinality of the set of pixel X . Thus, precision assesses
the amount of noise in the output of a detector, while recall
evaluates the amount of ground-truth detected. A combined
measure that estimates a compromise between the precision
and recall is called the F-measure and a particular application
can define a new cost (denoted as α) related to these two
quantities, which controls a harmony between Pr and Re [14].
Therefore, the F-measure between the segmentations ST and SM

can be computed as:

Fα(ST, SM) =
Pr ×Re

α×Re+ (1− α)× Pr
with α ∈ [0, 1] (2)

Since the Fα is in the interval of [0, 1], the value of 1 proves
fully similar edges (or boundaries) between two segmentations
(in the opposite case, a value of 0 identifies fully dissimilar
edges).

B. The Global Consistency Error Criterion

The global consistency error (GCE) criterion is derived
from the so-called local refinement error (LRE) which mea-
sures the degree of refinement between two segmentations.
In this sense, segmentations are considered to be consistent,
since they could represent the same natural image segmented
at different scales (or level of details) [15].

Formally, let n be the number of pixels within the
image and let ST = {R1

T
, R2

T
. . . , RNbT

T
} & SM =

{R1

M
, R2

M
, . . . , RNbM} be, respectively, the segmentation test

result to be measured and the manually segmented image
and NbT being the number of segments or regions (R) in
ST and NbM the number of regions in SM. Let now pi be
a particular pixel and the couple (R

<pi>
T ,R

<pi>
M ) be the two

segments including this pixel (respectively in ST and SM). The
local refinement error (LRE) can be expressed at pixel pi as:

LRE(ST, SM, pi) =
|R<pi>

T \R<pi>
M |

|R<pi>
T |

(3)

where \ denotes the operator of difference and |R| the cardi-
nality of the set of pixels R. Thus, a measure of 0 expresses
that the pixel is practically included in the refinement area,
and an error of 1 means that the two regions overlap in an
inconsistent manner [16].

However, the one major drawback of this segmentation
measure is that it encodes a measure of refinement in only
one direction (i.e, not symmetric) [16]. To address this issue,
an interesting and straightforward way is to combine the LRE
at each pixel into a measure for the whole image and for each
sense. The combining result is the so-called global consistency
error (GCE)1, which forces all local refinement to be in the
same direction; in this case, every pixel pi must be computed
twice, once in each sense, in the following manner:

GCE⋆(ST, SM) =

1

2n

{

n
∑

i=1

LRE(ST, SM, pi) +

n
∑

i=1

LRE(SM, ST, pi)

}

(4)

Since the GCE⋆ ranges in the interval of [0, 1], the value of 0
expresses a perfect match (or good correspondence) between
the two segmentations to be compared (on the contrary, a
value of 1 represents a maximum difference between the two
segmentations).

IV. PROPOSED FUSION MODEL

A. Multi-Objective Function Based Fusion Model

These two criteria (presented in section III), namely the
F-measure (edge-based) and the GCE (region-based) can be
used directly as two members of a multi-objective function in
a fusion segmentation model. Formally, let us suppose that we
have a set of J segmentations {Sj}j≤J = {S1, S2, . . . , SJ}
(associated with a same scene) to be combined in order
to obtain a final improved segmentation result, and let also
SI be a selected segmentation map belonging to the set
{Sj}j≤J . Then, this multi-objective function is simultaneously
maximizing the mean F-measure and minimizing the mean
GCE between SI and the set of segmentation maps {Sj}j≤J

1The original version of the GCE measure is defined as follows:

GCE(ST, SM) =
1

n

{

∑n
i=1

LRE(ST, SM, pi) +
∑n

i=1
LRE(SM, ST, pi)

}

with this representation we can find two degenerate segmentation cases; one
pixel per region and one region per image (GCE=0). In order to avoid these
two problems we propose the new measure GCE⋆.
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Fig. 1. Examples of segmentation set and final fusion results generated by our MOBFM algorithm. From top to bottom; Three first rows: K-means clustering
results for the segmentation model described in Section V-A. Forth row: Input natural image from the Berkeley image database and final segmentation map
(output of our fusion model).

as follows:

MOBJ
(

SI , {Sj}j≤J

)

=







argmaxFα

(

SI , {Sj}j≤J

)

⋂

argminGCE
⋆(

SI , {Sj}j≤J

)

(5)

with X
(

SI , {Sj}j≤J

)

= 1

J

∑J

j=1
X (SI , Sj).

In order to improve the accuracy of our segmentation
result, we have proposed a modification in the multi-objective
function (as proposed in [6]) allowing us to penalize outliers,
by weighting the importance of each segmentation of {Sj}j≤J ,
for the first member (F-measure criterion), by a coefficient
zj proportional to its mean F-measure Fα

(

SI , {Sj}j≤J

)

. This
coefficient is defined as:

zj =
1

H
exp

(

Fα

(

SI , {Sj}j≤J

)

d

)

(6)

where d is a parameter controlling the decay of the weights,
and H is a normalizing constant ensuring

∑

j zj = J . This
modification allows us to ensure the robustness of our model
when facing a possible bad segmentation map belonging to
{Sj}j≤J (far away from the fused segmentation result). In ad-
dition, for the second member (GCE criterion), we have added
a regularization term, allowing the incorporation of knowledge
concerning the types of resulting fused segmentation, a priori
defined as acceptable solutions. This term is defined as:

TReg

(

Sj

)

=

∣

∣

∣

∣

−

Nbj
∑

k=1

[

|Rk
j |

n
log

|Rk
j |

n

]

−Q

∣

∣

∣

∣

(7)

with Sj = {Rk
j }k≤Nbj and Nbj is the number of regions in

the segmentation map Sj and where Q is an internal parameter
of our regularization term that represents the mean entropy of
the a priori defined acceptable segmentation solutions. Thus, if
the current segmentation solution has an entropy lower than Q,
this TReg term favors splitting. On the contrary, if the current

segmentation solution has an entropy greater than Q, TReg

favors merging. Also, we have added a parameter γ = 0.01
to allow for weighting the relative contribution of the region
splitting/merging term. Finally, with these two modifications

in the multi-objective function, a penalized likelihood solution
of our fusion model is thus given by the resolution of this
following function: MOBJ

(

SI , {Sj}j≤J

)

=














argmax
{

Fα (SI , {zj}, {Sj}j≤J)
}

⋂

argmin
{

GCE
⋆(

SI , {Sj}j≤J

)

+ γ TReg(SI)
}

(8)

B. Pareto Domination-Based Optimization

In an attempt to optimize our fusion model of multiple
segmentations in the bi-criteria sense (F-measure and GCE),
we used the iterative conditional modes (ICM) algorithm
proposed by Besag [11]. In the single objective case, the
purpose of ICM is to accept a new segmentation label (for
each pixel) if this one is “better” (or decrease the energy
function) than the current one. Meanwhile in our case, we
are facing a multi-objective problem (resulting in a complex
energy function). Therefore, we have incorporated into the
ICM a domination function (defined in section II); In each
iteration the modified ICM practically accepts a new solution
to enter the list of non-dominated solution (LNDS) only if it is
not dominated by any solution in the (LNDS). Finally, when
the maximum number of iteration (Tmax) is achieved and all
solutions have been explored, the algorithm stops in a Pareto
local optimum.

The choice of ICM is motivated by its simplicity and its
good performance on various energy-based models in image
processing. A detailed description of each step of our improved
MOBFM fusion model is shown in Algorithm 1.

C. Decision Making with TOPSIS

After generating the Pareto frontier (i.e., the output of the
Algorithm 1), it is necessary to select one segmentation (see
Fig. 2); therefore, it is clear that we are facing a multi-criteria
decision making (MCDM) problem. To solve this problem, we
resort to a useful and efficient method called the technique for
order performance by similarity to ideal solution (TOPSIS)
[17]. The TOPSIS technique is based on the selection of the
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A lgorithm 1 MO-Based Fusion Model algorithm

Mathematical notation:
GCE

⋆

γ Penalized mean GCE

Fα Mean F-measure

{Sj}j≤J Set of J segmentations to be fused

{zj}j≤J Set of weights

{bj} Set of superpixels ∈ {Sj}j≤J
2

E Set of region labels in {Sj}j≤J

LNDS List of non-dominated segmentations

(Pareto set of solutions)

Tmax Maximal number of iterations (=11)

γ Regularization parameter

α F-measure compromise parameter

Input: {Sj}j≤J

Output: LNDS

A . Initialization:

1:

Ŝ
[0]
I = arg min

S∈{Sj}j≤J

GCE
⋆

γ (S, {Sj}j≤J )

B. Steepest L ocal Energy Descent:

2: while p < Tmax do

3: for each bj superpixel ∈ {Sj}j≤J do

4: Draw a new label x according to the uniform distribution

in the set E
5: Let Ŝ

[p],new

I the new segmentation map including bj with

the region label x

6: Compute GCE
⋆

γ (SI , {Sj}j≤J ) on Ŝ
[p],new

I

7: Compute Fα (SI , {zj}, {Sj}j≤J) on Ŝ
[p],new

I

8: if Ŝ
[p],new

I dominates Ŝ
[p]
I (see Defintion 1) then

9: GCE
⋆

γ = GCE
⋆,new

γ

10: Fα = F
new

α

11: Ŝ
[p]
I = Ŝ

[p],new

I

12: Update LNDS

13: else if Ŝ
[p],new

I N ot dominates Ŝ
[p]
I and Ŝ

[p]
I N ot domi-

nates Ŝ
[p],new

I then

14: Update LNDS

15: end if

16: end for

17: p←p + 1
18: end while

alternative (solution) that is the closest to the ideal solution
and the farthest from the negative ideal solution (see Fig. 3).
This technique has solved many real problems in the research
operation field (see [18] for more examples) and one of its
advantages is the simple competition process.

V. EXPERIMENTS

A. Initial Tests Setup

To generate the initial segmentation set (which will be
combined by our fusion framework) we resort to the useful
k-means-based segmentation technique (with the Manhattan
similarity distance). We have adopted this choice for two
principal reasons; firstly, to ensure a reduced computational
time and cost for this important step, and secondly, to achieve
more variability in this initial ensemble, since the use of three
different values of the number of classes K associated with
two different values of bins number NB1 = 43 and NB2 = 53

2The set of superpixels {bj} are the regions or segments given by each
individual segmentations Sj to be combined (generated by the k-means
algorithm).

Fig. 2. First row; a natural image (n0134052) from the BSDS300. Second
row; the Pareto frontier generated by the MOBFM algorithm (cf, Algorithm
1).

Fig. 3. From top to bottom; Graphical representation of TOPSIS method, the
best solution (the segmentation marked in the red box) chosen automatically
by TOPSIS among different solutions founded on the Pareto frontier (cf, Fig.
2).

for each local requantized color histogram3, applied over 12
different color spaces, which are; YCbCr, TSL, YIQ, XYZ,
h123, P1P2, HSL, LAB, RGB, HSV, i123, LUV, gives us, as
a result, a total of 60 different input segmentations (12×[3+2]).
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TABLE I. REGION BENCHMARKS ON THE BSDS300. RESULTS FOR

DIVERSE SEGMENTATION ALGORITHMS (WITH OR WITHOUT A FUSION

MODEL STRATEGY). SHOWN ARE THE VOI, GCE (THE LOWER VALUE IS

THE BETTER) AND THE PRI (THE HIGHER VALUE IS THE BETTER).

BSDS300

VoI GCE PRI

-HUMANS- 1,10 0,08 0,87

-MOBFM- 1.98 0,20 0,80

-GCEBFM- [20] 2,10 0,19 0.80

-FMBFM- [6] 2,01 0,20 0.80

-VOIBFM- [4] 1,88 0,20 0.81

-PRIF- [3] 1,97 0,21 0.80

-FCR- [8] 2,30 0,21 0.79

-CTM- [15] 2,02 0,19 0.76

-CRKM- [21] 2,35 - 0.75

-Mean-Shift- [22] (in [15]) 2,48 0,26 0.75

-FH- [23] (in [15]) 2,66 0,19 0.78

-DGA-AMS- [24] 2,03 - 0.79

-LSI- [25] - - 0.80

Once the initial ensemble of segmentations is generated,
it is necessary to study the behavior of the full algorithm
with different values of its parameters. Indeed, after several
(trial and error) tests where applied to the problem affecting
each time new value, we have found that parameters Q and α
efficiently act as two regularization parameters of our model,
favoring over-segmentation for α close to 0 and a high value
of Q, and merging for value of α close to 1 and a low value
of Q. Finally, we can note that the best result is achieved with
the following values, Q = 4, 2 and α = 0, 86.

B. BSDS300 Experiments

To provide a basis of comparison for the MOBFM model,
we make use of different segmentation algorithms (with or
without a fusion model strategy) evaluated on 300 color
images from the Berkeley segmentation dataset (BSDS300).
The BSDS serves as ground-truth for both the boundary
and region quality measures, considering that human-drawn
boundaries are closed and are also segmentations [19]. In terms
of region performance measures, the obtained final scores
are: GCE=0.20, VoI=1.98 (for which a lower value is better)
and PRI=0.80 (this value means that, on average, 80 % of
pairs of pixel labels are correctly labeled (on average) in
the results of segmentation) on the BSDS300 (see Table I).
For the boundary performance measures, our MOBFM model
performs well, with an F-measure score at 0:68 (recall= 0.71,
precision= 0.65) and a BDE score at 8.25 on the BSDS300 (see
Table II). On average, our non-optimized code runs between
4 and 5 minutes, which is comparable to the state-of-the art
existing fusion segmentation methods. Also, the algorithm can
easily be parallelized, since both the generation of the different
segmentation step (by K-means) and the fusion step are purely
independent. These experiments confirmed the validity of our
fusion procedure and illustrate also that the performance scores
of the fusion model are perfectible if we combine different
(and complementary) segmentation criteria in the same system.
Finally, Fig 4 illustrates example results segmentation on the
BSDS300.

3To generate the feature vector (used by k-means algorithm), we computed
around each pixel to be estimated (on an overlapping squared fixed-size
(Nw = 7) neighborhood), a local requantized color histogram.

TABLE II. BOUNDARY BENCHMARKS ON THE BSDS300. RESULTS

FOR DIVERSE SEGMENTATION ALGORITHMS (WITH OR WITHOUT A FUSION

MODEL STRATEGY). SHOWN ARE THE BDE MEASURE (THE LOWER VALUE

IS THE BETTER) AND THE F-MEASURE (THE HIGHER VALUE IS THE

BETTER).

BSDS300

BDE F-measure

-HUMANS- 4,99 0.79

-MOBFM- 8,25 0.59

-GCEBFM- [20] 8,73 -

-FMBFM- [6] 8,49 0,62

-VOIBFM- [4] 9,30 -

-PRIF- [3] 8,45 0.64

-FCR- [8] 8,99 0.56

-CTM- [15] 9,90 0.58

-Mean-Shift- [22] (in [15]) 9,70 0.63

-FH- [23] (in [15]) 9,95 0.58

VI. CONCLUSION

We have presented a new fusion model based on multi-
objective optimization (MOBFM). Using two complementary
(edge and region) criteria of segmentation (the F-measure and
the GCE), this model aims to combine various segmentation
images to provide a final improved segmentation result. To
optimize our fusion model, we used a modified ICM algorithm,
including a dominance function that allows us to find a set of
non-dominated solutions (segmentation). Besides that, we have
used an efficient technique of decision making called TOPSIS,
allowing the finding of the most preferred solution from the
set of non-dominated solutions. Our model was validated by
different experiments on the Berkeley database, and in general,
the obtained performance was improved compared to the state
of the art algorithms.
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