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Abstract

In this paper, we present a statistical model for linking
edgels, which yields two models for edgel clustering. The
first model favors large clusters, whereas the second one
favors small sub-clusters. We show how the first model can
significantly help localizing a shape in an image. The sec-
ond model might be useful for other applications, such as
clustering edgels into objects.

1. Introduction
Partitioning edgels into clusters that represent objects in an
image is a hard problem which is still open as of now.

Following [7], we observe that grouping edgels into clus-
ters is equivalent to segmenting the set of pairs of edgels
into two classes: ”off” and ”on”. Indeed, this segmentation
defines uniquely an adjacency matrix for a graph having the
set of edgels as set of nodes. The clusters are then defined
as the connected components of that graph.

In this paper, we present a statistical model for a fea-
ture closely related to the one presented in [7]. This feature
indicates whether two edgels should be linked or not. We
present two models for the marginal distribution of this fea-
ture on the classes ”off” and ”on”. The first model favors
large clusters, whereas the second one favors small sub-
clusters. The actual segmentation is based on a threshold
which is optimal in the sense of the Maximum Likelihood
(ML) for the two marginal distributions. We can then use
the centroids of the main clusters to initialize the procedure
for localizing shapes presented in [4]. This strategy seems
to improve significantly that procedure.

In Section 2, we present a method for pre-segmenting the
contours of an image into edgels. In Section 3, we explain
how to remove the long background edgels from the set of
edgels. Section 4 is devoted to the statistical model for the
linking feature. In Section 5, we describe in details the SEM
algorithm [2] for the estimation of the statistical parameters.
The segmentation method is presented in Section 6. The ap-
plication of the clustering method to localization of shapes

is explained in Section 7. Finally, we present experimental
results in Section 8, and a brief conclusion in Section 9.

2. Pre-segmentation of the contours
into edgels

Given an image, we use the statistical method described in
[3] to detect the contours. Next, we remove the isolated
points of the contours and decompose the resulting set into
a family

���������
	
of disjoint non-empty paths with the

property that each path is maximal (no two distinct paths
have adjacent end points). Such, a decomposition is not
unique, but we fix one. We then compute a polygonal ap-
proximation of each path

�
, from which we obtain a set of

disjoint edgels � . The length of an edgel � is denoted by�� ��� , and the average length of all edgels is denoted by


.

A segmentation of the set � of pairs of edgels into the
classes ”off” and ”on” defines uniquely an adjacency matrix
for a graph � having the set of edgels � as set of nodes.
The clusters are then defined as the connected components
of that graph.

3. Statistical model for removing long
edgels

We have observed that the random variable �� given by
�� ���

follows an exponential law. See Figure 1 and Table 1 for an
example. We consider the set ��� of relatively long edgels
� defined by

�� �������  . Note that the probability that an
edgel belongs to ��� is equal to � �"! according to the expo-
nential law. Our hypothesis is that the edgels in �#� belong
to the background rather than to objects. We thus substract
�$� from the set of edgels � , and re-estimate the average
length


.
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Figure 1: Empirical density function for the length of edgels
and the estimated distribution for Image 3 (see Figure 6).

4. Statistical model for linking edgels
We adopt a modified version of the feature considered in
[7]. Given a pair of edgels

� ��� � � � , we define ����� �	� to be the
distance between the two nearest end-points of � and � � , and
� ��� � � to be the minimum of

�� ��� , �� � � � , and


. We also con-
sider the angle � ��� � � between the two edgels (the angle is
normalized between ������ and ���� ). We then define the
normalized feature

� ��� � � � ����� � � � ��� � �
����� ����������� � � ��� �	��� �"!
The feature � ��� � � is an indicator for linking the edgels �

and � � in the graph � (to be constructed), a higher value
being in favor of linking the two edgels. This feature is
invariant under rotations, translations, and scaling of the set
of edgels, and is symmetric in � and � � . Note that in our
setting, � ��� � � is not a probability, but rather a normalization
between # and $ .

We have observed a concentration of the feature values
around # . In fact, in our tests, more than %�&�' of the pairs
of edgels are less than twice the average value of the fea-
ture (which is around #(! #)#�� � ). This empirical delta Dirac
prevents from estimating the remaining relevant data. Thus,
we remove the subset �+* of � formed by the pairs of edgels� ��� � � � for which � ��� � � is less than twice the average feature.
We then consider only pairs of edgels in the set �-, � �/. �+* .
If
� ����� � �10 �2* , the edgels � and � � are not linked in the graph

� .
We consider three classes of pairs of edgels in � , : the

class � , of pairs of edgels that should definitely not be
linked in the graph � , the class �43 of pairs of edgels that

number of average length
edgels of edgels
&)5)6 ��! %)&7$8#��

number of average length
short edgels of short edgels

&�6�9 67! %��):)#)6
Table 1: Removal of long edgels for Image 3 (see Figure 6).

should definitely be linked in the graph � , and an interme-
diate class � � .

Based on empirical results, we model the distribution of
the random variable ; ��� � � conditional to setting the linking
label to ��, by an exponential distribution

< � � ��� � ��= �> , ��!
On the other hand, we model the distribution of the random
variable ;?��� � � conditional to setting the linking label to each
class �A@ , with B � ���C: , by a Gaussian distribution

D � � ��� � � = �> @)� �E �@ �
where we expect �> ,GF �> � F �> 3 .

Figure 2 shows an example of the empirical distributions
and the estimated distributions. The corresponding esti-
mated parameters are presented in Table 2.
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Figure 2: Empirical density functions of the feature for link-
ing edgels and the distributions estimated by the SEM pro-
cedure for Image 3 (see Figure 6). From Top to Bottom:
pairs of edgels in class � , , in class � � , and in class � 3 .

class 2H �> H �E H� , #(! 5 �)&�9)946 #7! #�� �)&���%7$
� � #(!I�)�)#�94:7$ #(!J$8&�#)# � #7! #�&�6�& ��&���%)6
� 3 #(!J$K�)#�6�% � #(! ��5)&�� �($ #7!�$K5)&L9���$K%)57$

Table 2: Values of the parameters estimated by the SEM
algorithm for Image 3 (see Figure 6).
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5. Estimation of parameters
In order to estimate the vector of parameters � �
� �> , � �> � � �E � � �> 3�� �E 3 � , we resort to the SEM algorithm [2].
We assume that the random variables ; ��� � � are i.i.d. and fol-
low a same law �; . We consider a hidden random variable
�� taking its values in the set

� �),K� � � ��� 3
	
. The aim of the

algorithm is to obtain a decomposition of the form

���� � �� � � 3�
H��-, 2H

�	���
 �� � �� � �KH �

with
�	�� 
 �� � �� � � H�� as in Section 4, which is optimal in the

sense of the least square. The procedure can be summarized
as follows in our context:

 Initial segmentation: We consider only the pairs of
edgels

� ��� � � � in � , . We use the � -means algorithm de-
scribed in [1], with � ��� �	� as only attribute. The class with
smallest mean is labeled � , , the class with greatest mean is
labeled � 3 , and the remaining one � � .

Repeat until the current estimation of the parameter vec-
tor is close to the previous one:

 Estimation step: We use the ML estimator for an ex-
ponential distribution on the class � , ; namely, > , is given
by the mean of the feature. For the Gaussian distributions,
we use the usual ML estimators on each class. Finally, we
estimate  H by the proportion of pairs of edgels having label
� H . This gives the current estimation of the parameter vector
� .

 Stochastic step: For each pair of edgels
� ��� � � � 0 � , ,

one realization of �� is simulated according to the proba-
bilities

� �H � ?H �	�� 
 �� � � � � � � � �KH�� , with � � $�� ��� : , using the
current estimation of the parameter vector � . We place � ��� �	�
in class � H with probability

� H � � �H � � � � ,�� � �
� � � �3 � .

6. Segmentation of edgels into clusters
We now consider the disconnected graph with set of
nodes � , . We define the observed random field ; �
� ;?��� � � � � ��� � � � 0 � , 	 , with each random variable ;2��� � � as in
Section 4, and the label random field

� � ��� ��� � � � � ��� � � � 0
� , 	 , with each hidden random variable

� ��� � � taking its val-
ues in the set

��� , � “off” � � � � “on”
	
.

We consider two models. In the first model, the class
“off” is formed of � , , and the class “on” is formed of � �
and � 3 . This model favors large clusters. We then obtain
the distributions

� ����� � � 
 ����� � � � � � � � � � � , � � ���� 
 �� � � ��� � � � ��, �
� ����� � � 
 ����� � � � � � � � � � � � ���

3�
@ � �

(@ �	�� 
 �� � � ��� � � � �A@ �"!

In the second model, the class � � belongs to the class
“off”, thus favoring small sub-clusters. This model yields
the distributions

� � ��� � � 
 � ��� � � � � ��� � � � � , ��� ��
@ ��, �@

�	�� 
 �� � � ��� � � � �A@ �
� � ��� � � 
 � ��� � � � � ��� �	� � � � �

� �	���
 �� � � ��� �	� � � 3 �"!
See Figure 3 for a comparison between the two models.

We then model the likelihood by the distribution

� � 
 � � � ���"� � �
� ��� �	��� �"!$#

� �%��� � � 
 ����� � � � � ��� �	� ��� � � �	� ��!

In either case, we view the clustering problem as find-
ing the optimal segmentation � in the sense of the ML; i.e.,
which maximizes the likelihood

� � 
 � � � ����� . The optimal
solution is obtained by setting �2��� � � to the class

� H that max-
imizes

� ����� � � 
 ����� � � � � ��� � � � � H � .
For the localization of shapes, we have adopted the first

model in order to obtain a few large clusters. The second
model could be useful for other applications, in which one
would group together sub-clusters into objects. See Figures
5, 6, and 7 for examples of clustering using the first model,
and Figure 8 for two examples of clustering according to
the second model.
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Figure 3: Left: estimated distributions with the class “on”
composed of � � and � 3 . Right: estimated distributions with
the class “off” composed of � , and � � .

7. Localization of shapes
A curve is represented as a sequence of points

& � � � , � � , �A!J!J!��'�)(�� � ( �
where the * points

� � ,�� � , �"�8!�!J!J� � � ( � � ( � are equally spaced
on the curve.

We consider rigid deformations given by translation�,+.- � +./ � , scaling 0 , and rotation 1 , applied point-wise to a
mean curve & * , as well as a vector of non-linear deforma-
tions 2 (see [4]) which is estimated thanks to the Probabilis-
tic Principal Component Analysis [9]. This yields a vector
of deformation

� � �3+.- � +./ �40)�'1 �'2 �"!
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The resulting curve is denoted &�� .
We view the localization of a shape & * in an image

as finding its deformation � that minimizes the statistical
Gibbs field

�
presented in [4] on the range

#�� + - ��� �
#�� + / ��� �

#7! ��*�� 0 � #(! 5 *7�
#�� 1 � �4

� :	� 2 H � :
where ��
�� is the size of the image. Our assumption
(and this seems to be the case) is that an optimal solution
for the function

�
is the desired deformation of the shape.

In order to solve that optimization problem, we resort to the
stochastic algorithm [5].

However, due to its complexity, the function
�

is rather
hard to optimize. Yet, it is likely that the object to be local-
ized in the image is among the main clusters (though per-
haps partially). Thus, in a first phase, we consider restricted
domains given by the clustering method. Namely, for each
of the main clusters, we take the restricted range

�.- �� ��5	� + - � � - � � ��5(�� / ��� ��5	� +./ � � / � � �457�
#7! ��*�� 0 � #(! 5 *7�

#�� 1 � �4
where * is the diameter of the image, and

� � - � � / � is the
centroid of the given cluster. Also, for that first phase, we
optimize the simpler function

� �
(similar to [8]) defined by

� � �,+ - � + / �40�� 1 � � � � ��
H�� * ����� ���

�A��� � � E * � 0 H � �
* � 0 H � �8$��

where * � 0 � is the distance from the point 0 to the set of
contour points � . One could also use the heuristic function
defined in [6].

Then, in a second phase, each of the � solutions found
previously (with � � : in our tests), is used to initialize the
same stochastic optimization algorithm, but applied to the
function

�
on the entire domain. If ever the object were

not among the main clusters, the second phase will allow
the localization of the shape (though at the expense of more
computations).

In [4], we would first optimize
� �

on the entire domain,
and then optimize

�
on a restricted domain given by the so-

lution found in the first phase. Note that an optimal solution
to
� �

might not be the desired deformation of the shape. So,
this strategy is not optimal, but this was the best we could
do without the clustering method. See Table 3 for a com-
parison between the two strategies.

8. Experimental Results
The results obtained with a simple example are presented
in this paper. The shape is a 20th century classical guitar.
The data base consists of $8# pictures. Each curve is repre-
sented by a template of 94# equally spaced points. The train-
ing phase yields a reduced dimension of � for the non-linear
deformations. We have tested the localization procedure on
five images [4] with 40 different seeds for the stochastic
optimization algorithm on each image. The percentage of
seeds yielding to a good result within a given number of
iterations for the first step and a fixed number of 500 iter-
ations for the second step is indicated in Table 3. One can
compare with the results obtained in [4]. We present two
examples of the localization method in Figure 9.

Our strategy, exploiting the knowledge of the centroid
of each object in the scene, allows to reduce significantly
the computational cost of the stochastic search, and/or to
increase the good localization rate. Moreover, the procedure
for clustering edgels takes only a few seconds (from 3 to 7
seconds on a PC workstation 400MHz for the images shown
in this paper).

9. Conclusion
In this paper, we have presented a statistical model for link-
ing edgels and two models for edgel clustering. The first
model produces large clusters, whereas the second one fa-
vors small sub-clusters. We have shown how the first model
can significantly help localizing a shape in an image. The
second model might be useful for other applications, such
as clustering edgels into objects.

Figure 4: Mean shape and its centroid.
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Figure 5: Example of a segmentation into clusters accord-
ing to the first model: the three main clusters and their cen-
troids for Image 1.

Image 2500 5000 10000 20000
iterations iterations iterations iterations

$ %L9L! ��' $8#)#L' $K#)#�' $8#�#�'
� 6�9L! ��' 5���! ��' &��(! ��' % ��'
: � ��' 94#�' &�#�' & ��'
6 %)#L' %L9L! ��' $K#)#�' $8#�#�'
� ��9L! ��' 5)#�' 5 ��' 5�9L! ��'

Image 2500 5000 10000 20000
iterations iterations iterations iterations

$ %)#L' %L9L! ��' $K#)#�' $8#�#�'
� 6 ��' ����! ��' &��(! ��' & ��'
: 9L! ��' 9�! ��' 9L! ��' 9L! ��'
6 %)#L' $8#)#L' $K#)#�' $8#�#�'
� ����! ��' ��9L! ��' :��(! ��' :�9L! ��'

Table 3: Proportion of the seeds for which convergence of
the optimization algorithm occurred within the indicated
number of iterations for each of the tested images. Top:
using the strategy presented in this paper. Bottom: using
the strategy presented in [4].
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