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Abstract— Multimodal change detection in satellite images is
a challenging and complex problem mainly because the local
statistics of the images to be compared can be very different. In
this paper, we present a novel, reliable and simple change detec-
tion operator which is first based on a imaging modality-invariant
operator that detects the common specific high-frequency pattern
of each structural region existing in the two heterogeneous
satellite images. The resultant similarity map is then filtered out
by a superpixel-based spatially adaptive filter which increases
its reliability against noise. Second, in order to achieve more
robustness, changes are then identified, from this similarity map,
by combining the results of different automatic thresholding
algorithms with a weighted spatially regularized multi-criteria
decision analysis. Experimental results involving a mixture of
different types of imaging modalities confirm the robustness of
the proposed approach.
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I. INTRODUCTION

In remote sensing, multi-modal Change Detection (CD) is a

process whose purpose is to analyze two (or possibly several)

images generated by different sensors (or from different spec-

tral bands) of the same geographical area, at different times,

in order to identify any land cover changes that may have

occurred between them. It is a recent and challenging problem

which generalize the classical mono-modal CD problem since

it requires less restrictive condition about the origin of the data.

On the other hand, this technique has to be flexible enough to

adapt itself to any existing heterogeneous data types.

Multi-modal CD has recently attracted widespread interest

as it is particularly useful for dealing with the huge amount

of heterogeneous data we can now get from existing Earth

observing satellites or extracted from various archives.

Classical applications such as environmental monitoring, de-

forestation, urban planning, land or natural disaster/damage

monitoring and management to name a few can be solved [1].

Moreover, since multi-modal CD is adaptable to heterogeneous

data with different statistics, this multi-modal technique turns

out also more robust to natural variations in environmental

variables such as soil moisture or phenological states (such

as flowering, maturing, drying, senescence, harvesting, etc.)

or shading effects that cannot be avoided and well taken

into account and corrected in the preprocessing step of a

classical mono-modal CD approach. Finally, let us also stress

that this multi-modal approach may be useful and sometimes

indispensable in some emergency cases (e.g., an optical image

of a given area is provided by an available remote sensing

image archive data and only a new SAR image can be acquired

for technical reasons, lack of time, availability or atmospheric

conditions in an emergency situation for the same area) or in

some specific cases, such as forest monitoring in tropical or

boreal areas for which SAR, thanks to its ability to penetrate

heavy clouds and fog, is often used as a complement to optical

data (this complementarity between SAR and optical sensors

can also be exploited in the case of frequently snow-covered

regions of high altitudes since SAR is also able to penetrate

a thin snow layer).

Up to now, relatively few research works have been de-

veloped in heterogeneous CD. However, we can mention the

statistical approach proposed in [2] in which the dependence

between the two satellite images, in unchanged areas, is

modeled by a quantile regression applied according to the

copula theory and Kullkack-Leibler-based comparisons on

local statistical measures to generate a similarity map which

is then finally analyzed by thresholding, in order to detect

between change and no change areas. An interesting two-

step multivariate statistical approach has also been proposed

in [3], [4] whose the first step aims at estimating a physical

model, based on a mixture of multi-dimensional distributions

(both taking into the noise model, the relationships between

the sensor responses to the objects and their physical prop-

erties), with the expectation-maximization (EM) algorithm

[5]. Then, a statistical test based on this model allows to

estimate the changes. In the same spirit, the authors in [6]

also propose to first estimate a multi-dimensional distribution

mixture estimation based, in their application, on a new family

of multivariate distributions with different shape parameters

especially well suited for detecting changes in SAR images

acquired by different sensors having different numbers of

looks. Finally, [7] propose to use a technique closed to the co-

registration and based on the use of a combination of different

invariant similarity measures (such as correlation ratio, mutual

information, etc.) in order to estimate the correspondence

between the same points in the two images and finally to detect

eventual changes existing between the two data acquisitions.

In this work, we propose a new, simple and effective change



detector which first allows us to generate a robust similarity

feature map, especially well suited to estimate the differences

existing in the land cover change between heterogeneous

images coming from different sensors (and thus exhibiting

different image statistics). The proposed change detector can

also be viewed as a local similarity measure which proves to

be fairly invariant to the different types of modalities involved

in remote sensing imagery. Once a similarity feature map is

estimated by this modality-invariant change detector, changed

and unchanged areas are then finally identified by fusing the

results of different automatic thresholding algorithms.

The remainder of this paper is organized as follows: sec-

tion II presents the different stages of the proposed change

detection method. Section III shows a variety of experimen-

tation and comparisons with other existing state-of- the-art

multi-modal change detection methods recently proposed in

the literature.

II. PROPOSED MULTIMODAL CHANGE DETECTION MODEL

The proposed model is based on a four-step procedure,

namely;

A. Similarity Map Estimation

Let us consider two (previously co-registered) bi-temporal

remote sensing (N pixel size) images, yt1 and yt2 acquired

at two times (before and after a given event), in the same

geographical area, from different sensors (or from the same

sensor but with different spectral bands).

In the classical mono-modal (or homogeneous) CD case,

the two coregistred temporal images at two different times are

usually first compared pixel by pixel in order to generate a

difference image by differencing (with a simple subtraction or

a temporal gradient operator) or (log-)rationing (i.e., with a

log temporal gradient). This latter difference image is such

that the pixels associated with land-cover changes present

gray-level values significantly larger from those of pixels

associated with unchanged areas. A binary segmentation is

then finally achieved on this temporal gradient image to

distinguish between the changed and no changed areas.

In the heterogeneous or multi-modal case, this temporal

gradient is not effective. Indeed, the gray or color value of

each pixel is not a useful information since the texture of a

same region, before and after a given event, may be different

according to a given imaging modality and, consequently,

the mean value of a same region may also be different.

Conversely, two distinct regions, at two different times, may be

locally coded with the same value since two different textures

may have the same mean or similar local intensity/color

value. Consequently, the classical temporal (or log temporal)

gradient operator is thus irrelevant in the heterogeneous case

for estimating an accurate difference image which will be

subsequently used for identifying land cover change.

Nevertheless, for the same region, represented by two different

textures (or two different imaging modalities), there is a

feature, which remains relatively invariant between different

types of imaging and thus that can be herein efficiently

exploited. This feature is the magnitude and orientation of the

spatial edges and/or contours existing in the considered region.

Indeed, each specific homogeneous region generally exhibits

a unique geometric high-frequency pattern. For example an

urban region exhibits a specific directional edge or gradient

magnitude distribution (due to the presence of rectangular

regions defined by the roads/streets, building roofs, parking

lots, electric field lines etc.) which is, more or less, well

preserved in the two imaging modalities in the high spatial

frequencies of the texture pattern. It is also the case of an

agricultural region where the intrinsic regular location of

crops produces edges and contours which are also fairly well

conserved in the two kinds of imagery. This remains true

for the other homogeneous regions in satellite image, even

for the water region where the absence or the presence of

waves (or wavelets at a finer spatial scale) can be detected and

localized in the two different heterogeneous modalities by a

high-frequency filter or a simple edge detection algorithm for

texture.

Consequently, since the edge at different spatial scales or

more precisely, the specific high-frequency pattern of each

textural region is fairly well preserved in spite of the difference

in the modality between the two heterogeneous temporal

images, we propose to base the estimation of our difference

image yD by a temporal gradient applied on a local spatial

gradient (see Figure 3). In our case, this spatial temporal

gradient is approximated using a first-order temporal and

spatial finite difference approximation (in the L1 norm). More

precisely, the similarity map yD is computed by estimating at

each pixel site s by:
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where the summation is done over all pairs of pixels < s, t >

contained in a Nn × Nn squared window Wn including the

central pixel located at site s. This summation allows us both

to render this temporal-spatial gradient operator invariant to

rotation and also less sensitive to noise (due to the averaging

process). In addition, since we want to compute a spatial

gradient for a (possible) texture region, the difference yt1
s −y

t1
t

is achieved by considering ys as being a vector obtained by

gathering together all the grey (or color) values contained in

a Nt × Nt squared window Wt centered on pixel s. Finally

this temporal-spatial local finite differences between these two

(feature) vectors are computed in the L1 norm sense. Let us

note that, instead of gathering the pixel values in the vector

ys, we could also compute local statistics estimated from the

values contained around s. In our application, Nn = 7 and

Nt = 3.



B. Superpixel-Based Filtering Step

Once the similarity map yD is estimated thanks to our

above-presented rotation-invariant temporal-spatial gradient

operator for texture (see Eq. (1)), we decide to filter yD with

an original superpixel-based filtering strategy in order to make

yD less noisy and thus to make its subsequent binarization (see

Section II-C) more robust.

A superpixel is a perceptually meaningful collection of

pixels, obtained from some low-level grouping process. Fun-

damentally, it is the result of an oversegmentation in which the

pixels inside of each superpixel form a consistent, perceptually

meaningful, unit or atomic region e.g., in terms of color,

texture, intensity and so on. In addition to estimate a set

of homogeneous regions (of nearly similar size) allowing

to preserve the important structures in the image, this low-

level process is also representationally and computationally

efficient. By replacing the rigid structure of the pixel grid, it

reduces the complexity of images from hundreds of thousands

of pixels to only a few hundred superpixels. Recently, an

interesting superpixel algorithm called simple linear iterative

clustering (SLIC) [8] has been proposed, which, compared

to the state-of-the-art superpixel methods, turns out to be

superior for both efficiency and boundary preservation. SLIC

is a two step procedure which first estimates superpixels by

grouping pixels with a local k-means clustering method and

second, exploit a connected components algorithm to remove

the generated small isolated regions by merging them into the

nearest large superpixels.

In our application, SLIC is applied on yt1 and yt2 in order

to detect the different consistent structural regions (land uses)

existing in these images. The intersection between these two

SLIC segmented images allows us to define a third over-

segmented map yS (with thus smaller superpixels) in which

the set of pixels inside each new superpixel has the appealing

property to both exhibit homogeneous structural regions (in

terms of land uses) in the before and after images (see

Figure 3). At this stage, a possible strategy is to exploit the

collection of superpixels belonging to yS (and {yt1 , yt2} or

yD) to individually classify each superpixel into changed or

no-changed class. Another strategy, used in this work, is to

average each pixel value of yD, inside each superpixel of

yS , between them. Conceptually, this later strategy can be

interpreted as a segmentation-based spatially adaptive filter

which averages the values given by our CD operator (see

Eq. (1)) within each individual homogeneous changed or no-

changed small region previously estimated.

C. Binarization of the Filtered Similarity Map

In this step, three (T = 3) different unsupervised threshold-

ing algorithms are applied on the previously estimated filtered

similarity map yD (namely [9], [10], [11]) to automatically

identify the changed vs no-changed areas. The results of these

T = 3 binarizations will be then fused together (see Section

II-D) to further increase the robustness and reliability of our

final classification/detection scheme.

D. Weighted Fusion of Binarization Results

Let us stress that the similarity map yD to be binarized

may have different statistics according to the different types

of mixture of (possible) imaging modalities involved in our

heterogeneous CD problem. Because of this variability, it is

difficult to find a binarizer that is reliable in all cases. An

alternative consists in designing a self-adjusting weighted-

criteria binarization process which selects and appropriately

combines the different binary results or equivalently, which

self-adjusts each criterion’s influence in the final binarization

process. Experimentally, this strategy turned out to be robust in

our application because each binarizer is optimal for a specific

imaging modality.

This strategy, based on the concept of combining classifiers

(in our case binarizers), has already been used in [12]. Let us

mention that, in this context, Dietterich [13] have provided an

accessible and informal reasoning, from statistical, computa-

tional and representational viewpoints, of why combination

of classifiers (also called a committee machine, ensemble

classifiers, or mixture of experts in machine learning) can

improve results. In our application, this binary fusion process

is a two-step procedure, namely:

1) Weighting of Each Binarization: In our multi-criteria

binarization process, we first estimate, for each binarization

map, a confidence measure which will be then used as weight-

ing parameter in our final weighted-criteria fusion process.

This confidence factor aims at measuring the quality of each

binary clustering of yD. To this end, a commendable goal in

clustering consists in minimizing the within-class variation or

inertia (or within-class variance) in order to have homogeneous

clusters, while maximizing the between-class inertia (i.e., the

separation between the two clusters) so that these clusters

are as different as possible. This is achieved by estimating

the inertia ratio (used in the linear discriminant analysis of

Fisher [14]) which is the ratio of between-class and within-

class variation:

ρ =

∑C

c=1
Pc

∑nc

j=1
(yc j −mc)

2

∑C

c=1
Pc (mc −m)2

(2)

where C = 2 refers to the two classes (or clusters changed

and no-changed areas) and Pc to the probability (proportion)

of the c-th class. nc denotes the number of samples in the c-th

class and yc j represents the j-th sample (i.e. its grey level) in

the c-th class. mc and m refer respectively to the mean of the

c-th class and the mean of all samples.

Since the inertia ratio (Eq. 2) is low for a good binarization

result, a strategy to convert this inertia ratio into a confi-

dence measure is to consider ρ−1. Nevertheless, the different

confidence measures obtained with this strategy are not very

different and leads to very close weighting factors. Another

possibility, adopted in this work, consists in considering ρ

as a distance and to favour more heavily low distances with



the procedure described in [15] in order to get dissimilar and

reliable weighting factors.

2) Weighted Majority Vote Filter: In our application, this

binary fusion process is simply achieved by using a weighted

majority vote filter using a three dimensional window W ×
W × T whose the first two dimensions are spatial and the

third dimension indexes the different binary thresholded maps

to be fused. In our application, this majority vote is achieved

with a 3D window which is spatially centered on the pixel to

be classified, and that collects the weighted (with the weights

previously estimated in Section II-D.1) binary class labels of

the different binary thresholded maps and finally by assigning

to that central pixel, the class label that has the majority vote.

This strategy has the advantage to ensure both the spatial

regularization of the final fused (detection) map result and

also to provide a reliable weighted decision fusion between

results obtained by different thresholding techniques weighted

by the confidence measures provided in Section II-D.1.

III. EXPERIMENTAL RESULTS

To validate our approach, we present in this section a series

of tests conducted on different real heterogeneous datasets,

chosen to reflect the three possible change detection condi-

tions in multimodal case; Namely, two heterogeneous optical

images, heterogeneous SAR images, one optical and one SAR

images. This allows us to compare the performance of the

proposed method with different state-of-the-art multi-modal

change detection algorithms recently proposed in this field [3],

[16] [4] [6] [2] in different CD conditions. We also compare

the obtained results with other change detector traditionally

proposed in mono-modal case and provided by the ORFEO

Toolbox [17] on the first and second data set.

A. Dataset Description

• The first data set is a pair of satellite images (Gloucester,

UK) (size 2325× 4135 pixels with a resolution of 7.3 meters)

composed of one optical image given from a Google Earth

VHR satellite (December 2006 before a flooding), and one

SAR image captured by the TerraSAR-X satellite in July 2007

(after the flooding). The change mask was provided by a photo

interpreter [4]. The optical image was re-sampled [4] to have

the same resolution of the SAR image.

• The second dataset shows two Heterogeneous optical

images acquired in Toulouse (Fr) area by different sensor

specifications (size 2000×2000 pixels with a resolution of 0.5
meter). The before image is acquired by the Pleiades sensor in

May 2012 before the beginning of the construction work, and

the after image is from a Google Earth VHR satellite in July

2013 after the construction of a building. The change mask

was provided by a photo interpreter [4]. The Google Earth

image was re-sampled [4] to have the same resolution of the

Pleiades image.

Fig. 1. Optical VHR satellite/TSX data set. From lexicographic order; image
t1, t2, ground truth, filtered similarity map, final weighted binary fusion.

• The third data set [6] shows a pair of heterogeneous

satellite images (size 400 × 800 pixels and resolution of 10
meters) acquired over the Democratic Republic of the Congo

before and after the eruption of the Nyiragongo volcano

(January 2002). It consists of two SAR images captured by

the RADARSAT satellite with different numbers of looks. The

number of looks for the image before and after change is 3-

looks and 5-looks. The change mask was provided by a photo

interpreter [6].

B. Results & Evaluation

In order to discuss and compare obtained results, a quanti-

tative study is conducted by computing the classification rate

accuracy that measure the percentage of the correct changed

and unchanged pixels:

PCC =
TP+TN

TP+TN+FN+FP
(3)

Where TP is the true positive value that corresponds to the

number of pixels that are detected as the changed area in

both the ground truth image and the obtained results. TN is

the true negative value that corresponds to the pixel number

belonging to the intersection of the unchanged area in both the

reference image and the obtained results. FN represents the

false negative value that refers to the number of the missed

changed pixels in the obtained results and FP represents the

false positive corresponding to the unchanged pixels wrongly

classified as changed.



Table 1. Accuracy rate of change detection on the three heterogeneous datasets obtained by the proposed method and the state-of-the-art multi-modal change

detectors (first upper part of each table) and mono-modal change detectors (second lower part of each table).

Optical VHR sat. / TSX Accuracy

Proposed method 0.932

Prendes et al. [4], [18] 0.918

Prendes et al. [3] 0.854

Copulas [2], [3] 0.760

Correlation [2], [3] 0.688

Mutual Inf. [2], [3] 0.768

Pixel Dif. [17], [3] 0.782

Pixel Ratio [17], [3] 0.813

Pleiades / other optical VHR sat. Accuracy

Proposed method 0.870

Prendes et al. [16], [18] 0.844

Correlation [16], [18] 0.679

Mutual Inf. [16], [18] 0.759

Pixel Dif. [17], [18] 0.708

Pixel Ratio [17], [18] 0.661

SAR 3-looks / SAR 5-looks Accuracy

Proposed method 0.808

Chatelain et al. [6] 0.749

Correlation [6] 0.713

Ratio edge [6] 0.737

Fig. 2. Pleiades/other optical VHR satellite data set. From lexicographic
order; image t1, t2, ground truth, filtered similarity map, final weighted binary
fusion.

A comparison with different state of the art approaches [3],

[16] [4] [6] [2] is summarized in Table 1. We can see that the

rate accuracy of our method outperforms to the other state-of-

the-art approaches and shows the strength of our method to

process a wide variety of multi modal image change detection

conditions (see Figures 1, 2, and 4). We can also notice

that the performance of the mono-modal methods are closely

dependent on the images satellite modality i.e., is affected by

the sensor type using different change detection conditions,

contrary to the proposed method which performs well on

different multi-modal change detection conditions without ap-

plying any image preprocessing as noise reduction, radiometric

correction or normalization step of the two multitemporal

heterogeneous satellite image inputs. Besides, in our approach,

the time complexity for the similarity map estimation (image

difference) from the two heteregeneous images, remains linear

with a small constant in the number of pixels, since we need to

compute a temporal gradient applied on a local spatial gradient

from any pixel at site s to no more than Nn × Nn pairs of

pixels < s, t > given in a squared window Wn and the number

of iterations is constant.

Fig. 3. SAR 3-looks/SAR 5-looks data set. From lexicographic order; contour
superpixel image on t1 and t2, similarity map, filtered similarity map.

IV. CONCLUSION

In this paper, we have proposed a novel multi-modal

change detection approach based first on an imaging modality-

invariant temporal-spatial textural gradient operator that de-

tects the common specific high-frequency pattern of each

structural region existing in the two heterogeneous satellite

images in order to distinguish between the significant changed

and no changed areas. The resultant similarity map is then

filtered out by a SLIC-based spatially adaptive filter and finally

binarized with a multi-criteria fusion system based on dif-



Fig. 4. SAR 3-looks/SAR 5-looks data set. From lexicographic order; image
t1, t2, ground truth, filtered similarity map, final weighted binary fusion.

ferent binarization schemes. Experimental results demonstrate

that the proposed change detection method consistently per-

forms well, without any image preprocessing and outperforms

some complex state-of-the-art multi modal change detection

methods on different types of input satellite images (CD

conditions), degraded with possibly different types of noise

or different levels of noise, and showing different kinds of

changes due to a major urban construction and/or changes due

to different types of natural phenomenon.
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