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ABSTRACT

Despite the advent of sophisticated image analysis algorithms, most SPECT (Single Photon Emission Comput-
erized Tomography) cerebral perfusion studies are assessed visually, leading to unavoidable and significant inter
and intra-observer variability. Here, we present an automatic method for evaluating SPECT studies based on
a computerized atlas of normal regional cerebral blood flow (rCBF). To generate the atlas, normal (screened
volunteers) brain SPECT studies are registered with an affine transformation to one of them arbitrarily selected
as reference to remove any size and orientation variations that are assumed irrelevant for our analysis. Then a
smooth non-linear registration is performed to reveal the local activity pattern displacement among the normal
subjects. By computing and applying the mean displacement to the reference SPECT image, one obtain the
atlas that is the normal mean distribution of the rCBF (up to an affine transformation difference). To complete
the atlas we add the intensity variance with the displacement mean and variance of the activity pattern. To
investigate a patient’s condition, we proceed similarly to the atlas construction phase. We first register the pa-
tient’s SPECT volume to the atlas with an affine transformation. Then the algorithm computes the non-linear
3D displacement of each voxel needed for an almost perfect shape (but not intensity) fit with the atlas. For
each brain voxel, if the intensity difference between the atlas and the registered patient is higher than normal
differences then this voxel is counted as ”abnormal” and similarly if the 3D motion necessary to move the voxel
to its registered position is not within the normal displacements. Our hypothesis is that this number of abnormal
voxels discriminates between normal and abnormal studies. A Markovian segmentation algorithm that we have
presented elsewhere is also used to identify the white and gray matters for regional analysis. We validated this
approach using 23 SPECT perfusion studies (99mTc ECD) selected visually for clear diffuse anomalies (a much
more stringent test than ”easy” focal lesions detection) and 21 normal studies. A leave-one-out strategy was
used to test our approach to avoid any bias. Based on the number of ”abnormal” voxels, two simple supervised
classifiers were tested: (1) minimum distance-to-mean and (2) Bayesian. A voxel was considered ”abnormal”
if its P value with respect to the atlas was lower that 0.01 (1%). The results show that for the whole brain, a
combination of the number of intensity and displacement ”abnormal” voxel is a powerful discriminant with a
91% classification rate. If we focus only on the voxels in the segmented gray matter the rates are slighty higher.
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1. INTRODUCTION

The close coupling generally observed between local cerebral metabolic activity, reflecting mostly synaptic
activity, and regional cerebral blood flow (rCBF), make the study of the later a potential approach to that of
the former. This became particularly interesting in the mid 1980’s with the advent of widespread availability of
clinically applicable cerebral perfusion studies, based on the intravenous injection of Technetium-99m labeled
tracers (e.g. 99mTc HMPAO or 99mTc ECD) which show a cerebral distribution reasonably well correlated with
that of perfusion.1 This distribution is then assessed with Single Photon Emission Computed Tomography
(SPECT), which generates a three dimensional image of the distribution of activity, which is then assimilated
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to the distribution of cerebral blood flow. This technique has made it possible for all clinical nuclear medicine
department to perform rCBF studies which were previously limited to a few centers with access to highly
specialized SPECT 133Xe dynamic scanners, Positron Emission Tomography (PET) or functional Magnetic
Resonance Imaging (fMRI).

Despite the advent of sophisticated image analysis algorithms, most clinical assessments of the normality,
or deviation from it, of the distribution of rCBF in SPECT, are currently done by visual observation of the
studies, searching for side-to-side asymmetries or other ”abnormalities” (highly subjective evaluations of the
”homogeneity” of distribution, etc.) as referred to what could be observed in normal cases. In fact, most centers
did not even use a true normal bank of data, but rather a more or less informed hypothetical mental construct
of what normal studies should look like.

Different methods have been described to compare accurately the acquired volume of data within a reference
one, thereby ensuring identification of regions with modified accumulation of the rCBF tracer. This implies
more or less sophisticated registration algorithms. Once positioning is performed, numerous techniques have
been developed to analyze, based on predefined ”statistical” criteria, variations in the distribution of activity
of the brain between patients and normal or from one study condition to another. For example, SPM, a very
nice and powerful package is offered to the scientific community by the Methodology Group at the Wellcome
Department of Cognitive Neurology, UK, under the supervision of Karl Friston2,3 . SPM stands for Statistical
Parametric Mapping.

Most of the work in this field has been applied to PET and fMRI studies at this time, but several problems
are essentially the same in SPECT, and the principles applied to one type of imaging can often be applied to the
other. However, applications in SPECT remain scarce and are not generally available to clinicians, moreover,
no consensus exists as to the optimal techniques to be employed.

In this paper, we present and test a method for evaluating SPECT studies based on a computerized atlas
of normal regional cerebral blood flow (rCBF). The methodology stems from our previous work on anatomical
atlas construction.4 In that work we have described a completely automatic procedure to build a ”stable”
average anatomical model of the human brain using a set of magnetic resonance (MR) images. This model or
atlas contains two important features: an average intensity (with the its normal variations for each voxel) and
an average shape (with the normal shape deformation as a x, y, z covariance matrix for each voxel). In SPECT
imaging the atlas will contain for each voxel, both the normal rCBF (mean intensity and variance) and the
extent of possible displacement of the activity pattern (as the displacement magnitude mean and variance).

2. METHOD

Two main steps are needed in our strategy to detect abnormal diffuse perfusion in SPECT. The first step is the
construction of an atlas of the normal brain in SPECT and the second step is to classify a patient as normal or
abnormal by comparing his SPECT study with the atlas. An additional step that could be useful is presented
to isolate a particular region of interest in the brain such as the gray matter.

2.1. Atlas construction

The atlas construction involves several normal SPECT studies that must be gathered into a unique reference
volume. For this purpose we must first normalize the intensity to take into account different acquisition param-
eters. Then the SPECT volumes must be registered using a linear transformation to make all brains comparable
in size and orientation. Finally the third step computes the individual SPECT pattern shape differences that
will be incorporated in the atlas with the mean intensity and variance. These atlas construction steps are
described below.

2.1.1. Intensity normalization

The registration algorithm assumes the same intensity for corresponding brain structures in the two images to
be aligned. For miscellaneous reasons, such as acquisition parameters or pre- and post-processing, this may not
be the case. To rectify these intensity differences, a linear correction is evaluated. Assuming an initial rough
registration of the two brain images, a joint histogram is computed. The slope of a linear regression through



this histogram gives the multiplication factor to compensate for the overall intensity difference. If necessary
this evaluation can be done iteratively during the registration procedure to improve its accuracy.

(a) image 1 (b) image 2 (c) joint histogram (d) image 2 normalized

Figure 1. Image Normalization in MRI, adapted from4

2.1.2. Linear registration

A 3D image sequence (of two or more images) can be mathematically described as a function I(x, y, z, t) where
I is the image intensity at time t and position (x, y, z). Using the chain rule for derivatives, one obtains the
basic constraint of optical flow.5
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The partial derivatives can be estimated directly from two SPECT images to be registered. The four
remaining variables dx/dt, dy/dt, dz/dt and dI/dt represent respectively the motion (velocity) along the x, y
and z axes and the object (brain) brightness changes. This equation lays down a first constraint to determine
the motion (registration) between two SPECT images. The linearity condition provides another constraint:
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where
−→
T and M are translation vector and 3 × 3 matrix respectively. A last constraint is used to model

the behavior of the brightness changes dI/dt. One usual option is to set dI/dt to 0, which means no change in
object (brain) intensities.5 Overall, this constraint is correct when the brain SPECT images are first intensity
normalized as described in the previous section.

The overdetermined system obtained by writing down the basic optical flow equation using the linearity and
dI/dt constraints for each voxel, can be solved using a least square fit. In this way, one obtains the linear field
transformation needed to align both brain SPECT volumes and to give them the same size and orientation.
If necessary this approach can be used iteratively by keeping track of intermediate results6,7 to improve the
results when the two brains are far from being aligned in the original images.

2.1.3. Non-linear registration

To compute the non-linear residual transformation to better register both volumes, we adapt the Horn and
Schunk algorithm.5 The algorithm initially computes the x, y and z motions U = dx/dt, V = dy/dt and
W = dz/dt using the optical flow brightness constraint (eq. 1) to get an initial solution (motion component
perpendicular to the gray-level isocontours):



U = −∂I

∂x

∂I
∂t

||∇I||2 + α2
V = −∂I

∂y

∂I
∂t

||∇I||2 + α2
W = −∂I

∂z

∂I
∂t

||∇I||2 + α2
(3)

then iteratively the optical flow (U, V,W ) is smoothed (local average) and at that point updated to the
nearest solution of the brightness constraint equation:
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where the bar over U
k
represent local average (using a 3 × 3 × 3 mean filter) at the kth iteration. The

α2 term is used to avoid unreliable results introduced by low value ||∇I|| and also to give precedence of high
value ||∇I|| in the iterative process; this means that high contrast contours will drive the non-linear warping,
otherwise any small inter-patient brightness changes would affect (inaccurately) the warping process. In this
study, we found after several tests that α = 100 was a good choice to insure good separability of the normal and
abnormal classes (see below). The resulting non-linear field is smooth and allows a better registration of both
SPECT volume; however it cannot be use without a prior linear registration otherwise the spatial and temporal
derivatives risk to become unreliable.

2.1.4. Atlas Construction Principles

After linear volume registration and intensity correction of all normal brains to be incorporated into the atlas,
its construction can begin as illustrated in the figure 2 scheme.

Healthy Brain

Reference Brain

Average Brain (Atlas)

Optical Flow Registration

Figure 2. Atlas Construction

We start by selecting a brain in the group of normal brains as a reference (black square in fig. 2). Then we
register the rest of normal brains (white squares) on this reference one with the non-linear optical flow procedure
described in the previous section. Then the mean intensity and its variance can be computed. However since
the reference brain has not necessarily the (true) average brain shape, the mean displacement of all the normal
brains is calculated and subtracted from the reference brain to obtain the average brain shape and intensity
(gray square). The final atlas consists of this average with the intensity variance as well as the normal local
displacement (variance of the displacement magnitude) of the activity pattern.



2.2. Classification

To investigate a patient condition, we proceed similarly to the atlas construction phase. We first register the
patient’s SPECT volume to the atlas (average brain intensity and shape) with an affine transformation with the
procedure described in section 2.1.2. Then the algorithm computes the non-linear 3D displacement of each voxel
needed for an almost perfect shape (but not intensity) fit with the atlas (section 2.1.3). For each patient’s brain
voxel we are then able to compare the intensity and non-linear displacement with their normal values in the
reference system of the atlas. However this represents a huge amount of data (attributes) for any classification
algorithm. To reduce the dimensionality of the problem, we use the following procedure.

For each brain voxel, if the intensity difference between the atlas and the registered patient is higher than
normal differences than this voxel is counted as ”abnormal” and similarly if the 3D motion amplitude necessary
to move the voxel to its registered position is not within the normal displacements. Our hypothesis is that
this number of abnormal voxels discriminates between normal and abnormal studies. Assuming a Gaussian
probability density function (pdf) for the intensity and motion attributes, if the voxel attribute value probability
is less than 1%, this pixel is considered an outlier (abnormal).

With the reduction of dimensionality, we now consider only the number of outliers for intensity and the
number of outliers for displacement as the two new attributes for classification. Obviously we expect normal
individuals to show relatively small numbers of outliers while the reverse is true for patients suffering from brain
diffuse perfusion disorders. To classify between normal and abnormal brain we tested two very simple classifiers.
The first one is the minimal distance classifier where one simply counts the number of outliers and choose the
class with the nearest mean number of outliers. Another slightly more complex classifier, the Bayes classifier,
was tested and assigns the most likely class assuming a Gaussian pdf model for each class.

2.3. Region of interest (ROI) segmentation

The computation of brain voxel attributes requires first to identify the brain itself. In SPECT imaging this can
generally be done quite easily by choosing a threshold of say 30% of the maximum number of counts (or gray
level) sometimes with some more processing. However one could be interested in investigating the attributes
in a particular region of interest (ROI) of the brain. For instance, since we are considering abnormal diffuse
perfusions that typically occur in the gray matter, we believe that its identification could be useful. A threshold
approach will not be efficient here because too much voxels in the gray matter share the same gray levels as
the white matter. To solve this problem we use a Markovian segmentation algorithm that we have presented
elsewhere8,9 that will both identify the whole brain and its gray matter.

Markovian segmentation is quite complex because the estimation of pdf model parameters for each ROI is
required before the segmentation could take place while this segmentation is necessary to estimate the param-
eters. This is clearly a chicken and egg problem. One way to solve this problem is to manually identify region
of voxels in each region for parameter assessment but this would add an important burden to the clinician and
could lead to inter- and intra- observer variability.

To overcome this problem we proposed a two step process. First, an automatic parameter estimation
step in which we estimate the parameters of the gray level statistical distribution associated to each ROI in
the SPECT volume. Here we assume that the CSF (CerebroSpinal Fluid) and background activities follow
the same exponential probability distribution law in order to take into account the Poisson noise inherent to
SPECT imaging. As for the gray values in the white and gray matters, they are modelled with two different
Gaussian distributions. To fit those distributions to the data histogram, we use the ICE (Iterative Conditional
Estimation) algorithm8,9 . An estimation example is illustrated in figure 3 and table 1.

π µ σ2

CSF 0.52 11 —
White matter 0.26 100 648
Grey matter 0.22 172 283

Table 1. Intensity Estimation Values.
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Figure 3. Intensity Estimation Histogram.

Second, the 3D Markovian segmentation itself is formulated as an optimization problem in a Bayesian
framework through the use of the previous step parameters and an isotropic homogeneous Potts model with first
order neighborhood to account for the spatial dependencies between voxels. In equation 5, the first term of the
equation to be minimized involves the estimated distribution laws P (ys|xs) previously computed and the second
terms the Potts model for local homogeneity between the current voxel and its six neighbors. Segmentation
results are presented in figure 4 as well as the original SPECT slices8,9 .

argmin
x

∑
s∈S

− lnPYs|Xs
(ys|xs) +

∑
<s,t>

(1− δ(xs, xt)) (5)

(a) original image (b) segmented image

Figure 4. Brain Segmentation

3. RESULTS

3.1. Data sets

We validated this approach using 23 SPECT perfusion studies (99mTc ECD) selected visually for clear diffuse
anomalies. The detection of abnormal diffuse perfusion is typically a difficult task and is certainly much more
challenging than ”easy” focal lesions detection for instance. The atlas was constructed with 21 perfusion



studies from normal volunteers (residents and physicians). Care was taken to keep as much as possible the
same acquisition protocol (e.g. sampling, levels of statistics (counts), filtering, reconstruction and restoration
methodologies) for all studies. Each transversal slice is 64 x 64 pixels and there are typically around 40 slices
per individual. The number of count is rescaled for 8 bits pixels, that is 256 gray levels. The volume was padded
with additional slices to get a set of uniform dimension volumes, that is 64 × 64 × 64 voxels. The size of one
voxel is 4.2× 4.2× 4.2 millimiters.

3.2. Atlas construction

Figure 5 show the behavior of the registration process necessary for the atlas construction with image differences
and mosaics. In figure 5.a, the difference between corresponding transaxial slices of two different brains shows
clearly the misalignment (black, gray and white corresponding respectively to negative, no, and positive differ-
ences). After linear normalization for brain size and orientation (figure5.c), the difference falls considerably but
not completely. This was expected since some groups10,11 , have shown in MRI that linear models will leave
a residual RMS mis-match of 6-7 mm. Finally, figure 5.e presents the typical intensity differences that will be
kept in the atlas after non-linear registration. Figures 5.b 5.d 5.f display the same results as mosaics where 8 x
64 pixels strips of each image appear in turn to help assess the registration process.

Figure 6 exhibits the SPECT rCBF normal atlas with gray level images. It consists in four kinds of infor-
mation: (a) the intensity average, (b) the displacement magnitude average (c) the intensity variance (magnified
for display purposes) and (d) the displacement variance (also normalized to 256 gray levels).

3.3. Validation

Due to the small data set, a leave-one-out strategy was used to test our approach in order to avoid any bias (fig
7). Essentially this means that in turn, one perfusion study is used to test the algorithm while the other ones
are used for the atlas construction and classifier parameter estimation.

Table 2 shows the success rates for both classifiers using the number of intensity outliers, the number of
displacement outliers, and both attributes for classification. As expected the more sophisticated algorithm
(Bayes) gives the best results and in that case the use of both attributes is better.

Minimal Distance Classifier Bayes Classifier
Intensity 66.6% 88.8%
Pattern Displacement 80.0% 86.6%
Both 77.7% 91.1%

Table 2. Whole brain classification results.

Since we are considering abnormal diffuse perfusion that typically occurs in the gray matter, table 3 displays
the success rates when only this ROI is considered. Again the Bayes classifier shows better results although the
use of both attributes does not improve the success rate.

Minimal Distance Classifier Bayes Classifier
Intensity 73.3% 86.6%
Pattern Displacement 82.2% 93.3%
Both 88.8% 91.1%

Table 3. Gray matter only classification results.



(a) Image difference, no registration (b) Image mosaic, no registration

(c) Image difference, affine registration (d) Image mosaic, affine registration

(e) Image difference, non-linear registration (f) Image mosaic, non-linear registration

Figure 5. Registration process behavior

4. CONCLUSION

We have presented a method to successfully detect diffuse anomalies in SPECT imaging by using a normal
rCBF numerical atlas containing for each voxel, both the normal rCBF (mean intensity and variance) and the
extent of possible displacement of the activity pattern (as a displacement mean and variance). The reader can
appreciate in figure 6 the low noise, relatively high contrast (for nuclear medicine images) and high visual quality
of the mean intensity of the atlas.

We have then tested this atlas for detection of diffuse rCBF disorders with simple classification algorithms
after dimensionality reduction. To our knowledge there is no other simple and automatic method to carry such
a complex interpretation task (detection of diffuse anomalies in SPECT) with a success rate higher than 91%
as obtained in this work. Thus, we believe that this methodology could greatly reduce the burden of assessing



(a) Intensity average (b) non-linear Displacement average

(c) Intensity variance (magnified) (d) non-linear Displacement variance (magnified)

Figure 6. Atlas

Figure 7. Leave-one-out process

visually rCBF studies in nuclear medicine. Moreover such methodology could certainly be applied in several
other contexts in SPECT as well as in PET, fMRI and other imaging modalities where an atlas construction is
applicable.

Notice that the good success rates obtained in this work must nevertheless be taken with care since the
number of SPECT studies is rather limited. This is why we intend to test this approach on a larger number of
cases with different and more specific disorders in both SPECT and PET.
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