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ABSTRACT

In modern ultrasound imaging systems, the spatial resolution is severely limited due to the effects of both the
finite aperture and overall bandwidth of ultrasound transducers and the non-negligible width of the transmitted
ultrasound beams. This low spatial resolution remains the major limiting factor in the clinical usefulness of
medical ultrasound images. In order to recover clinically important image details, which are often masked due
to this resolution limitation, an image restoration procedure should be applied. To this end, an estimation of
the Point Spread Function (PSF) of the ultrasound imaging system is required. This paper introduces a novel,
original, reliable, and fast Maximum Likelihood (ML) approach for recovering the PSF of an ultrasound imaging
system. This new PSF estimation method assumes as a constraint that the PSF is of known parametric form.
Under this constraint, the parameter values of its associated Modulation Transfer Function (MTF) are then
efficiently estimated using a homomorphic filter, a denoising step, and an expectation-maximization (EM) based
clustering algorithm. Given this PSF estimate, a deconvolution can then be efficiently used in order to improve
the spatial resolution of an ultrasound image and to obtain an estimate (independent of the properties of the
imaging system) of the true tissue reflectivity function. The experiments reported in this paper demonstrate the
efficiency and illustrate all the potential of this new estimation and blind deconvolution approach.

Keywords: Restoration / deconvolution, Expectation-Maximization (EM), Point Spread Function (PSF) esti-
mation, ultrasound images.

1. INTRODUCTION

Contrary to other medical imaging techniques (e.g., X-rays, magnetic resonance imaging, and computerized
tomography), ultrasound imagery is currently considered to be a non-invasive, portable, non-expensive and safe
(for the patient and operator) visualization medical tool for investigating biological tissues of a body. However,
despite considerable advances in the technology of ultrasound imaging equipment over the last years, the primary
limitation of this imaging modality remains its poor image quality (i.e., low signal-to-noise ratio, low resolution
and contrast), and also the presence of artifacts due to the speckle noise effect that drastically deteriorates image
quality and sometimes makes imperceptible clinically important details within these images (such as contours of
anatomical structures).

In order to improve the quality of such ultrasound images, an image deconvolution/restoration procedure
could be efficiently applied and, to this end, given a PSF estimate, many deconvolution models exist.1 The
only requirement for such deconvolution algorithms consists, as a prerequisite first stage, of an estimation of the
PSF of the underlying ultrasound imaging system. This problem of estimating the PSF and restoring is called a
blind deconvolution process and an alternative approach to this above-mentioned estimation and deconvolution
(disjoint) procedures consists of the simultaneous (generally iterative) estimation of the undegraded original
image and the PSF (or its inverse).2–5
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Amongst the first blind deconvolution strategy for which estimating the PSF estimation and the restoration
process are two disjoint procedures, we can cite the PSF identification procedure based on frequency domain
zeros6 or the homomorphic filtering method which consists in low-pass filtering (also called liftering) in the
complex cepstral domain (the cepstrum being defined by the inverse Fourier transform of the log of the spectrum).
This low-pass filtering is commonly achieved either with an ideal low-pass filter7, 8 or by hard or a soft shrinkage
rule in the wavelet domain.9 It is also worth mentioning the estimation approach by means of local polynomial
approximation proposed by Adam and Michailovich,10 which can be viewed as a modification of homomorphic
estimation by using wavelet bases instead of the Fourier basis. Nevertheless, ideal low-pass filtering in the cepstral
domain or by other wavelet-based liftering procedures have several drawbacks. First, they are highly supervised
to adequately set the cutoff frequency parameter which is crucial and different for each ultrasound image because
of the spatial variability of the PSF (due to the presence of different interrogated tissues between the transducer
and the anatomical structure to be imaged). Second, these classical liftering methods are not robust enough to
give a good estimate of the PSF spectrum and often tend to produce artifacts in this estimation mainly due to
the ringing effect of such ideal low pass filter in the Fourier domain or due to the blocky effect inherent to the
wavelet based liftering procedure.

In this paper, we propose an original, simple, and fast PSF estimation strategy that remedies these above-
enumerated problems and which is based on an additional constraint, namely that the PSF to be estimated
is of known parametric form. With a homomorphic filtering approach and a denoising step, this constraint
amounts to estimating, in the low-pass-filtered cepstral domain, a mixture of two identical Gaussian distributions
whose parameters are automatically estimated, in a Maximum Likelihood sense, by an iterative expectation-
maximization (EM11) based clustering algorithm. Given this PSF estimate, we show that a deconvolution
algorithm can then be efficiently used, in a subsequent stage, in order to improve the spatial resolution of the
ultrasound images and to obtain an estimate of the true tissue reflectivity function which is then independent of
the properties of the ultrasound system.

2. PSF ESTIMATION BY HOMOMORPHIC TRANSFORMATION

2.1 General Concept

Assuming space invariance∗ and linearity, the resolution capabilities of an ultrasound imaging system can be
expressed in terms of the PSF, h(x, y), i.e., the image of a point reflector, by the following classical linear model:

g(x, y) = f(x, y) ∗ h(x, y) + n(x, y) (1)

where f(x, y) is the spatial reflectance distribution of internal organs of the human body to be imaged, g(x, y)
is the degraded ultrasound image of the object f(x, y), h(x, y) is the PSF function of the imaging system, which
counts for the finite aperture and bandwidth of the transducer, n(x, y) describes the additive quantization and
electronic noise and finally ∗ designates the 2D discrete linear convolution operator. Assuming that the noise
term n(x, y) is temporarily ignored for the sake of simplicity, Eq. (1) is more easily described in frequency domain
as a simple product and sum where the capital letters indicate the Fourier transforms of the corresponding spatial
functions:

G(u, ν) = F (u, ν)H(u, ν) (2)

An homomorphic transformation is simply the complex logarithmic transformation of both side of Eq. (2). The
real (Re) and the imaginary (Im) parts of the resultant relation are given correspondingly by:

Re : log |G(u, ν)| � log |F (u, ν)|+ log |H(u, ν)| (3)

Im : �G(u, ν) � �F (u, ν) + �H(u, ν) (4)

∗In ultrasound imaging, the PSF happens to exhibit spatial dependency due, among other things, to the non-uniformity
of focusing, the dispersive attenuation and the heterogeneity of the different interrogated tissues. Nevertheless, a relatively
low spatial variability of these phenomena makes it possible to divide the obtained acoustic image into a predefined number
of small enough (possible overlapping) images, for which we can consider the data within each one to be quasi-stationary,
with a different PSF.8 It is then assumed that, the entire image can be easily recovered by combining all the local results
obtained in this manner.9
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where the symbol |.| and � denote the amplitude and the phase of the complex functions respectively. The basis
idea for cepstrum-based methods of estimating the PSF spectrum H(u, ν) relies in the fact that log |H(u, v)|
is typically a much smoother function than log |F (u, ν)| and the same holds for the functions �H(u, ν) and
�F (u, ν). Consequently, in this context, the log-spectrum of the degraded ultrasound image (amplitude and
phase) is considered to be a noisy version of the complex log-spectrum of the PSF to be estimated7–9 and in this
setting, in which log |F (u, ν)| and �F (u, ν) are considered to be sources of noise to be rejected, the problem of
recovering log |H(u, ν)| and �H(u, ν) is thus essentially a denoising problem in the cepstral domain.

2.2 Denoising Stept

In order to ensure both an automatic procedure and also a reliable denoising step allowing a good estimate of the
PSF spectrum, H(u, ν), without (ringing or blocking) artifacts, we herein propose a two-stage denoising scheme;
namely a DCT-based denoising step using a hard thresholding rule followed by a EM-based regression model. In
addition, since our PSF model relies on an even function in x and y, the phase spectrum is assumed to be null.

2.3 DCT-based Denoising Step

Algorithmically, our iterative DCT-based denoising procedure (see Algorithm I and12) thus simply consists in
applying iteratively, until a maximal number of iterations is reached or until convergence is achieved, a frequential
filtering based on the DCT transform of each 8 × 8 sub-image extracted from the current version of the image
to be denoised (initially, this current image estimate is the noisy image itself). For the filtering operation in the
DCT domain, we have chosen the easily-implemented hard thresholding rule13 also classically used in wavelet
based denoising approaches, where ε is a threshold level and w is one of the coefficients obtained by the DCT
transform of the block (of size 8 × 8 pixels) extracted from the current image to be denoised. In order to
reduce blocky artifacts across block boundaries, we adopted a standard approach where this transform is made
translation-invariant, by using the DCT of all (circularly) translated version of each channel of the image (herein
assumed to be toroidal)14 (this implies computing a set of 8 horizontal shifts and 8 vertical shifts transformed
images) which will then be averaged at each step of this iterative denoising procedure. In order to speed up the
procedure, we use an overlap of three pixels for the sliding 8 × 8 window. This iterative denoising procedure is
applied on the noisy version of logH(u, ν), i.e., logG(u, ν) (amplitude and phase) and allows us to obtain a first
rough estimate of log Ĥ(u, ν) which will be refined in the next step.

2.4 EM-based Estimation Step

In order to refine the estimation given by the above-mentioned denoising step, our estimation method now relies
on an additional constraint, namely that the PSF to be estimated has the following parametric form:

h(x, y) = exp
[
−
( x2

2 σ2
x

+
y2

2 σ2
y

)]
cos(2πf0y) (5)

which is the PSF model used in,15 i.e. a symmetric (across the x-axis and y-axis) cosine modulated by a Gaussian
envelope whose the Fourier spectrum, i.e., its MTF (in fact a band-pass filter), namely H(u, ν) can be written
in the Fourier domain:

H(u, ν) = πσxσy exp
(−2π2σ2

xu
2
){

exp
{−2π2σ2

y (ν − f0)
2
}
+ exp

{−2π2σ2
y (ν + f0)

2
}}

Under this constraint, we can now consider the regression model that gives, for the set of amplitude values
of |Ĥ(u, ν)|, the best fit, in the least square sense, of two equally weighted Gaussian distributions (with the
constraints that these two distributions are centered at u = 0 and symmetric with respect to ν). In that prospect,
this latter regression model can be efficiently addressed by considering the parameter statistical estimation
problem of a (noisy) Gaussian distribution mixture of two (equally weighted) Gaussian component in R2 by
considering Nf 2-dimensional vectors v = (u, ν)t, v = {vi, 1≤ i≤Nf}, taking their values in R2 and whose

cardinality of each v is given by the amplitude value Ĥ(u, ν). Finally, we assume that v = v1, . . . ,vNF is a
realization in, IR2, of V whose density takes the form of the following 2-component mixture:

PV(v) =
2∑

k=1

pk PV/C(v/ck,Ψk). (6)
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Algorithm 1 : DCT-Based Denoising Step

I [n] Input image to be denoised at iteration n

Î [n] Denoised estimated image at iteration n

ε Threshold

for All (8 horiz. and 8 vert.) shifts of I [n] do

for All 8× 8 blocks extracted from I [n] do

1. DCT Transform

2. Threshold the obtained DCT coefficients w with the hard thresholding rule

whardε
=

{
0 if |w| ≤ ε
w otherwise

3. Inverse DCT of these thresholded coefficients

� Unshift the filtered image and store it

Î [n] ← Averaging of these 64 denoised images

in which, the 2 components PV/Ci
(v/ck,Ψk) are, in our application (see Eq. (5)) assumed to be two equally

weighted (p1 = p2 = 0.5) bi-variate Gaussian distributions with mean vector μk and identical covariance matrix
Σ (Ψk = (μk,Σ)), i.e.:

PV/Ci
(.)=

1

2π
|Σ | 12 exp

{
−1

2
(v−μk)

t Σ−1 (v−μk)
}
.

In this setting, the identification of the parameters of the PSF spectrum modulus H(u, ν) amounts to estimate the
parameters (Ψ1 and Ψ2 with the constraints that these two distributions are centered at u = 0 (μ1 = (u = 0, ν1)

t

and μ2 = (u = 0, ν2)) and ν1 and ν2 symmetric with respect to ν = 0, i.e., of opposite sign. This 2-component
Gaussian mixture model is estimated thanks to a EM-based clustering algorithm.11 whose the initial parameters
of this iterative procedure are given by the ML estimation on the partition given by a simple K-means clustering
procedure. The constrain of identical covariance matrix and mean vector centered at u = 0 are taken into
account at the end of this procedure by simply considering the average value of the two covariance matrices and
the average absolute value of ν1 and ν2.

3. DECONVOLUTION

In order to improve the spatial resolution of the ultrasound images and to obtain an estimate of the true tissue
reflectivity function, we can now deconvolve out the ultrasound system’s point-spread function. In our applica-
tion, we have used an unsupervised Bayesian deconvolution approach16 (or a penalized likelihood framework)
exploiting a non-parametric adaptive prior distribution derived from the recent image model proposed by Buades
in.17 This prior expresses that acceptable deconvolved solutions are the images exhibiting a high degree of re-
dundancy. In this setting, the deconvolution of ultrasound images leads to the following cost function to be
optimized:

E(f) = ‖g − h ∗ f‖+ ρ‖f −Υ[g](f)‖ (7)

where the first term expresses the fidelity to the available data g and the second encodes the expected property of
the true undegraded image and Υ[g](f) designates the non-local means filter17 applied on f . ρ, the regularization
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parameter controlling the contribution of the two terms (which is crucial in the determination of the overall quality
of the final estimate), is estimated with the method proposed in.16

4. EXPERIMENTAL RESULTS

In all experiments, we have tested our PSF estimation approach and deconvolution on ultrasound images of
several bones acquired using a portable B-mode ultrasound imaging system (Titan, SonoSite, Bothell, WA,
USA). The echographic appearance of the various tissues ranges from dark (low-echoic) to bright (high-echoic),
depending on their acoustic impedance (see Fig. 1).

(a) (b)

Figure 1. Original ultrasound images of the distal femur. (a) Medial side, coronal plane. (b) Medial posterior condyle,
axial plane.

(a) (b)

Figure 2. Modulus of Ĥ(u, ν) after the DCT-based denoising step (see Section 2.3) for respectively : (a) Fig.1a, (b) Fig.1b.

Figure 2 shows the modulus of Ĥ(u, ν) after the DCT-based denoising step (see 2.3). We can notice that
two different pass-band filters, related to two different PSFs are visible on these images. We can also notice that
there is no aliasing error and this first denoising step allows us to obtain the expected shape of a band-pass filter
(see Eq. (5)) on which the learning step of our Gaussian mixture, exploiting the EM procedure will be achieved.
The Gaussian mixture, estimated from these two spectrum data by the EM algorithm (without our additional
constraint of symmetry) is shown in Figure 3. Two examples of PSF estimation with our approach are presented
in Figure 4; Finally, Figure 5 shows examples of deconvolution ultrasound images using the deconvolution scheme
presented at Section 3.
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(a) (b)

Figure 3. Surface plot of the point-spread function (PSF) defining a two-component mixture of bivariate Gaussian dis-
tributions for: (a) Fig.2a with μ = [54.18 134.21 ; 51.82 94.88] and σ = ([358.66 4.18 ; 4.18 151.00], [358.84 4.10 ; 4.10
149.45]), (b) Fig.2b with μ = [53.05 131.53 ; 52.94 97.40] and σ = ([368.94 -5.48 ; -5.48 97.40],[368.95 -5.47 ; -5.47 96.45]).

5. CONCLUSION

An original, simple, and fast PSF estimation strategy which is based on an additional constraint (i.e., the PSF
to be estimated is of known parametric form) has been presented. With this PSF estimate, our deconvolution
approach is efficiently used in order to improve the spatial resolution of the ultrasound images and to obtain
an estimate of the true tissue reflectivity function which is independent of the properties of the ultrasound
system. We have validated this approach with ultrasound images acquired with a portable ultrasound machine.
Greater resolution improvement of the deconvolved ultrasound images was observed with substantially improved
definition of the outer contour of the bone. This deconvolution method may become attractive for commercial
ultrasound application due to its spatial resolution improvement or as a prerequisite stage for the segmentation
and 3D reconstruction of ultrasound images.

(a) (b)

(c) (d)

Figure 4. Estimated spectrum of the point-spread function (PSF) corresponding to respectively: (a) Fig.1a, (b) Fig.1b,
(c) Fig.1a, (d) Fig.1b.
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(a) (b)

Figure 5. Deconvolved image corresponding to: (a) Fig.1a, (b) 1b.
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