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ABSTRACT

We use the Markov Random Field (MRF) model in order to segment sonar images, i.e. to localize the sea bottom areas
and the projected shadow areas corresponding to objects lying on seafloor. This model requires on one hand knowledges
about the statistical distributions relative to the different zones and on the other hand the estimation of the law parameters.
The Kolmogorov criterion or the x? criterion allow to estimate the distribution laws. The Estimation Maximization (EM)
algorithm or the Stochastic Estimation Maximization (SEM) algorithm are used to determine the maximum likelihood
estimate of the law parameters. Those algorithms are initialized with the Kmean algorithm. Results are showing on real
sonar pictures.

keywords: sonar images, Markov Random Field, parameter estimation, Estimation Maximization algorithm, Stochastic
Estimation Maximization algorithm.

1 INTRODUCTION

The subject of this study arises from the exploitation of sonar images to detect manufactured objects on the sea
bottom. The detection and then the classification is based on the extraction and the analysis of their projected shadow
shapes in sonar pictures. The extraction is obtained by a segmentation of sonar pictures using a Markov Random Field
(MRF) model. The use of this model in this context affords an innovative viewpoint. As it will be showing in section 3,
this method allows us to introduce prior knowledges about the shapes to be detected as well as to keep a link with the
observations field.

The MRF model requires accurate knowledges of the statistical repartition of sonar picture pixels. Under some assumptions
presented in section 2, on one hand the statistical distribution of the pixels relative to the bottom follows a Rayleigh law
and on the other hand, the pixels relative to the shadow are statistically described with a Gaussian law.

To determine the maximum likelihood estimate of all statistical law parameters, we compare two algorithms presented in
section 4: the Estimation Maximization (EM) algorithm and the Stochastic Estimation Maximization (SEM) algorithm.
We have applied these processes on numerous real high resolution sonar pictures. The results are shown in section 5 with
some conclusions in section 6.

2 PRINCIPLE OF SONAR IMAGERY

Sonar imagery is based on the sampling in elementary surfaces, called resolution cells, of an observed area. The
dimensions of the resolution cell depend on sonar aperture, duration of the emitted signal and inclination of the sonar.
It is necessary that the elementary surface dimensions are smaller than the dimensions of the object to be detected. We
suppose this condition satisfied. If the sonar beam intercept the object with a grazing angle §4 so it exists an area behind



it which does not receive any acoustical energy. The projected shadow on sonar picture corresponds to a lack of signal
(figure 1).
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FiGg. 1 — evolution of the reverberated signal.

If the minor lobes of the acoustical array are sufficiently weak, then the signal relative to the shadow area is essentially
electronic noise, emanating from the processing chain, and the signal amplitude A is noised with a Gaussian distribution
function:

G(A) = ! ex (A_H)Q
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Where p is the mean of the amplitude and o the standard deviation. If the minor lobes of the acoustical array are not
weak, the signal can be considered as coming from the sea bottom reverberation. Now we will see how to statistically
describe the signal reverberating by the seafloor.

When a surface constituted by a large number of elementary scatterers is illuminated by a monochromatic and coherent
source, then the amplitude A of the reflected wave is the sum of all scatterers contributions. The constructive and the
destructive interferences of those reflected waves produce a noise corruption called speckle noise. If the reflectors are
statistically independent and if the roughness is larger than the scale of the wave length, then for a large number of
scatterers in the resolution cell, the amplitude A of the reflected wave follows a Rayleigh probability function'®!!®
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R(A) = ﬁ €Xp _ﬁ

Where o = \/%u is the Rayleigh’s law specific parameter.

We have a set of sonar images for which the amplitude of the reflected wave, function of the covered distance and the
observation direction, is represented by a scale of grey level varying from 0 to 255. The histogram of merely bottom images
shows that the grey level distribution does not begin at the value zero but at a quantity min which differs from a picture
to another. The possible reasons to this shifted histogram are the different processes to establish the final sonar image:
automatic control of gain, coding, reduction of the dynamic, ...

To take those phenomena into account, we propose a modified model of the Rayleigh law. We introduce the parameter
min to shift the law. So the new expression of the probability function relative to the bottom reverberation is:

A—min (A—min)2

T exXp — 3 when A > min

R(A, min) =

0 elsewhere



The Markovian modeling presented in the next section requires the knowledge of the statistical distribution law of the
shadow area pixels. For that, we use the Kolmogorov criterion or the x? criterion.'® The Markovian modeling presented in
the next section requires the knowledge of the statistical distribution law of the shadow area pixels. For that, we use the
Kolmogorov criterion or the x? criterion.

3 SONAR IMAGERY AND MARKOVIAN MODELING

The originality of our work is to develop an unsupervised hierarchical MRF modeling in order to solve efficiently this
specific problem of shadow segmentation on sonar pictures. The segmentation of sonar images in two classes (label 0 for
shadow and label 1 for sea-bottom reverberation) is stated as a statistical labeling problem according to a global Bayesian

formulation. The aim of the MRF model is:

— to specify interactions between the sets of observationsy (sonar picture) to be considered and labels z (binary image)
to be determined ;

— to ensure the regularization of the set of labels by introducing generic a priori knowledge on objects of interest and
on the shape of their shadows.

The main interest of MRF modeling consists in an explicit link between observations field y and label field z. We have to
maximize, according to x, the following expression:

Pxy(z,y)
Py(y)

Under Markovian assumption, on one hand Px(z) is a Gibbs distribution (Hammersley-Clifford theorem):

Px;y(z/y) = o Py;x(y/z)Px(z)

Px(z) = %e‘Ulm with 7 =Y ™71

and on the other hand, Py,x(y/z) describes explicitly the link between observation field and label field. With noises
described by exponential probability distributions (Gaussian or Rayleigh laws), the maximization of the preceding formula
corresponds to the minimization of an energy function U(z,y), which is composed of two terms:

U(z,y) =Ui(z,y) + Uz(z)
— The first one expresses the adequacy between observation and model of noise. In the case of sonar images, Rayleigh’s

law is a good degradation model to relate the observations to the label process.?"!#

— The second energy term characterizes the fact that the expected label field is geometrically speaking rather regular.
It describes a prior: information.

We adopt an 8-connexity neighborhood and we consider the corresponding set C of two-site and four-site cliques (figure2).
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NOTA: . and D are two |abels of different kind

F1G. 2 — Particular configurations c;; of labels on two-site and four-site cliques adopted to express specific geometric shapes.
The set of cliques is noted C

With two-site and four-site clique, we can express specific geometric patterns well-fitted to the objects of interest
and their shadows, by means of particular local configurations denoted c;; (where i € {2,4} is the order of the cliques



and j designates the type of local configuration lying on this clique). Through potential functions V¢, we either favor, or
discourage particular or are neutral with clique configurations. The second energy term is defined as follows:

Ua(x) =) Vela)

ceC

with V.(z) = —i; if z is of type ci; on clique c.

The sign and value of 3;; parameters depend on the influence we want to give to configuration c;;. This energy term

requests up to twelve parameters. In order to have an unsupervised estimation, we use the ”Qualitative Box” method!
which enables us to calibrate f;; parameters.'”
Some studies”®!* proposed a new approach (Markovian multiscale modeling), and a synthetic overview recently® tried
to classify the different hierarchical MRF-based approaches. In our approach, the pyramidal structure of the label field is
associated to a single observation level. The energy function is re-written at each scale as a coarser MRF model (derived
from the one defined at full resolution). Structure and parameters are deduced from the original one.'® In this way, the
multigrid model developed will allow us to speed up the convergence rate and to improve the quality of the segmentation.
The hierarchical modelization is only used for the label field, the observations (sonar picture) remain at the finest resolution.
Then, the parameters associated with the observations have thus to be estimated automatically. The next part proposes
some new results to do these noise parameter estimations, with unsupervised methods, in the context of MRF modeling
for sonar picture segmentation.

4 NOISE MODEL PARAMETERS ESTIMATION

In this section, we show how EM (Ezpectation Mazimization) method or SEM (Stochastic Estimation Mazimization )
algorithm can be used to determine a Maximum Likelihood (ML) estimate of the noise model parameters without any
user interaction. The main interest of this section is to show how to use these algorithms for a specific application to sonar
imagery where we take the variety of laws in the distribution mixture into account.

Firstly, we recall the mixture estimation problem in sonar imagery and the Maximum Likelihood estimators when the
correct segmentation is known (X observable). The problem to estimate the model parameters directly from the image is
then described. The EM method and the recent SEM algorithm are briefly described. Then, we propose a modification
in order to estimate the noise model parameters of a mixture of different laws for a specific application to sonar imagery.
Experimental results will be presented and discussed in section 5.

4.1 Mixture estimation problem in sonar imagery

We consider a couple of random fields Z = (X, Y), with Y = {Y,, s € S} is the field of observations located on a lattice
grid S of N sites s. Each of the Y, take its value in Agpe = {0,...,255} (256 grey levels) and each X = {X,,s € S} in
a finite set © = {eo = shadow,e1 = sea bottom reverberation}. We assume that the distribution of (X,Y') is defined by,
firstly, Px,(em) = Ilm, 0 < m < K, the proportion of the class ¢,, and, secondly, the distributions family Py, x,(y/em)-
The observable Y is called the incomplete data and Z the complete data. We suppose that the Y;’s are independent given

X and the X;’s are also independent for : = 1,..., N. The superscript denote the iteration number and X, the number of
classes in the image (=2 for this study).
Assuming that a sonar image corresponds to a finite mixture, we observe a sample y = {y1,---,yn}, realization of Y

which distribution has for density:

K—1

Py(y) =Y T, Py/x,(y/ep) (1)

p=0

We have to estimate the parameters ®; = II,,, and ®, which define Px(em) and Py/x,(y/em) (0 < m < K) respectively.
In our case, these distributions vary with the class. More precisely we have shown that Gaussian law, A/ (y, 02), is a good
degradation model to describe the noise added on the shadow class (essentially due to the electronic noise). In order to
take the speckle noise phenomenon into account, we model the conditional density function of the sea-bottom reverberation
class by a shifted Rayleigh’s law, namely R(min,«?).'®



These are a number of iterative methods to deal with this problem. Mostly (Fourier, polynomials and cumulate histogram
methods) are inefficient in the case of an important distribution mixture or with a mixture of different laws.'®

4.2 Maximum likelihood estimator

Suppose that X is observable and let Py/s,(y/¢y) be the probability density function (pdf) of the incomplete data
Y = {Vi,...,Y,} where ®, is a set of parameters that characterizes the pdf. A ML approach consists in finding an

estimate ®,, such that:

&, = arg e In Py, (y/dy) @
If PYl/q)y(yi/gby) is a Gaussian law, (A(y, 02)), we easily obtain the empirical mean fiprz and variance &%
L &
fmr = N Z Yi (3)
1 - al

P = oy )’ @)

i=1

If each pixel Y; follows a shifted Rayleigh’s law, the log-likelihood function can be written as
nf£(®,) = In Pys, (y/dy)

= In { H o ;T—in) ~exp[——(yi ;;ZZ”)Q]}

i=1

with (min < y;) Vi, and under the independence assumption. The ML estimates for the unknown parameter ®, = (min, a?)

are given by the maximum value of the log-likelihood function. Setting the partial derivatives equal to zero, then we have

to solve the system %fy) = 0, which gives the ML estimators of the complete data. (§min is the minimum grey level

of the sample y). We obtain the following results’? :

N

. 1 =
&L = N 2_1:(?;Z — mmML)2 (5)
minML R Gmin — 1 (6)

Nevertheless, X is not observable (we don’t know what is the label associated with the pixel Y;) and we have to estimate
®, only with Y = y. In order to find these ML estimates from the incomplete data, one way consist in using the iterative

method called EM method?* or the SEM algorithm.?

4.3 EM algorithm

In this section, we describe briefly the EM algorithm. The EM algorithm? is an iterative algorithm, introduced by
Dempster, Laird, and Rubin to calculate the ML estimates when the observations can be viewed as incomplete data. This
algorithm begins with an initial estimate $1% and then consists in the two following steps at each iteration:

Estimation Step  — Find the function

Q(@, ") E Elin Pya(2/0) | v, 6] (7)

Mazimization Step — Find P+ that maximize Q.

P+l — arg max Q(2, é)[p]) (8)



The EM algorithm can be interpreted as an alternative to the maximization of Py;q¢(2/¢) over ®, where the algorithm
maximizes the expectation of Pz;4(z/¢) given the available information, namely the observed data Y, and the current
estimate of the parameters ®lP!. It has been shown that under some relatively general conditions, the estimates converge
to the ML estimates, at least locally.

In what follows, we recall briefly the equations obtained to estimate the parameters of a mixture of Gaussian densities.
We examine in details the situation of a shifted Rayleigh’s laws mixture, and the mixture of different laws.

The Y;’s are independent given X and X;’s are also independent for : = 1,... , N. In this case, the log-likelihood function
of the complete data can be written as

In Pz/@(z/ﬁﬁ) =In PX,Y/¢($7 y/¢)
=In Py/xs,(y/z,¢y) + In Pxs, (z/dz)

19

N N (9)
= Zln PY,/X,,éy(yi/xivqhy) + Zln PX,/<I>x(xi/¢$)

i=1 i=1

We now define an unobservable X dimensional vector Xf = [Xi,0,... ,Xi Kx—1] associated with X; which entries are all nil
except for the k™ entry, which is one for which ¥; has actually been generated by the k" density of the mixture. (x; is
substantially equivalent to the unobservable region process z;), we have,

lnPY,/X,,éy(yi/xﬁqsy) = th‘ : U(Ut‘/¢y) (10)

and similarly, In Px, /e, (z:/¢z) = V(¢z) (11)

Where — U(yi/¢y) = [InPyx,a,ui/e0,dy),--,In Py, x, 0, (vi/ex—1,¢y)] (12)
and V(gz) = [InPx,e.(e0/¢z), - ,In le/%(eK—l/(éz)]t (13)

Therefore, the expression for Q(®, é)[p]) becomes (using the equations (9)(10)(11)(12)(13)).

Q(e, ) = EE U, 8- Uifo,) + S Elxtly 671 V(62 (14)

i=1
Where the component of the conditional expectation are:

Pyx.(y/ex) - Px;(ex)
Elxir|y] = Px,/v(ex = n
[xix Y] iy (ex/y) S Py (/o)) - Pro(e)) (15)

where x;i is the k*" component of x;. We have dropped the conditioning on &P for notation convenience. If the z; are
independent of y; for j # 1, as assumed here, the preceding expression can be simplified:

Py, (vi/er) - Px,(ck)
Elxiklyl = == 16
Pk T i) - Proer) (16)

Indeed, letting H[p] Px,(ex), we have

¥ Py, x(yi/ex)
K-1
Z]:O ng] ’ PYI/Xz(yi/ej)

1 = Elxix|y] = (17)

4.3.1 MIXTURE OF GAUSSIAN DISTRIBUTION

PY,/Xl(yi/ek) is Gaussian with mean px and variance ai. Then it can be shown'? that setting the partial derivatives

of Q(2, @[p]) equal to zero and solving them for the unknown parameters, the following iterative scheme can be derived:

N [P]
[p+1]  _ Zz 1 Xig " Y
'uk - ZN [p] (18)
) 1
N [P] Alp+1]42
xSy —
(0£€P+1])2 _ thl ik (y Hy ) (19)
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)Acgi] is given by (17) and

N A[p]
A E . X
H[P-l' 1] — i=1 "1k 20
k N ( )

4.3.2 Mixture of Rayleigh distribution

Py, x,(yi/ex) is a shifted Rayleigh’s law of parameters ®, = (min, a}). We search ®, that maximize the Q(®, @[p])
function (Mazimization Step).
@EJPH] = arg max Q(2, &)[p])
¥
Setting the partial derivatives of Q(®, &)[p]) equal to zero and using (10) (11), we obtain

N

> Ve, Utwi/éu)] - Elxily, 671+ [V, V'(¢a)] - Elxily, 6] = 0 (21)

i=1 i=1
V*¥(¢.) is not dependent of min and o2, then we have,

N

Z[V%Uf(yi/%)] - E[xily, qg[p]] -0 (22)

i=1

Solving this equation for the unknown parameters ®, = (miny, ozi), we obtain

N
o
doxi e {In Py (vifer)} = 0 (23)
=1 K
N
Sl Py x(wifer)) = 0 (24)
ik ammk i i

i=1
From (23) we have

N . —[p+1]
@y = S R (g — miny )
[ -

2 Zf\il )A(Ez]

min given by (24) is not easily computable and we use another that estimates this parameter: k-mean algorithm (Cf.
subsection 4.5).

(25)

4.3.3 Mixture of different distributions

In order to estimate the parameters of mixture of different laws (for example a Gaussian law for the first class and a
shifted Rayleigh’s law for the second class), the EM algorithm can be easily modified and works as follow.
During the FEstimation Step, for each y;, we define the next distribution X;=[X; k=0,...,Xik=k—1] with a Gaussian law
for Py,;x,(y:/e0) and Py,;x,(y:/e1), a Rayleigh’s law, from the current estimate of the parameters o7 of each class.

During the Mazimization Step, we use the expression (18)(19)(20) to estimate the parameters of the shadow class (ﬂgpﬂ],

(&([)p+1])2) and Ilo respectively, and the relation (25) (20) to re-estimate (éz[p+1])2 and I1; the parameters of the sea bottom
reverberation class.

4.4 SEM algorithm

This subsection is devoted to the SEM algorithm, which is described in general terms. The SEM? is a recent density
mixture estimator which is an improvement of the EM method obtained by the addition of a stochastic component. The
SEM algorithm behaves as follows:



Initialization Step:
We take, for every observations y;, a probability Px,v;(em/y:) of its belonging to the class e, (0 < m < K) and
for every p > 0.

Stochastic Step:

For each y;, we select from the set of classes {eo,... ,ex—1} an element according to the distribution [P)[?]/Y (ea/yi), .-
P)[(pl]/yl(e;(_l/yi)]. This selection defines a partition [ Ep], R [}1;]_1] of the sample y = {y1,... ,yn}.

Maximization Step:
The SEM algorithm supposes that every y; belonging to Q[,,’;] for each m (0 < m < K) is realized according to the
distribution defined by Py, x,(y/em), the density corresponding to the class en,. By denoting o — card(QEﬁ]), QL,’;] =

(y[lp]m7 ygp]m, .. ,y[cpgpl ), we can estimate ®,, the parameters of the mixture with the Maximum Likelihood estimator of
’ ! m 7m
each class.

— In the case of mixture of two Gaussian distributions, we use the empirical mean and variance.

— In the case of mixture of two Rayleigh distributions, we use the ML estimators defined previously (4.3).

And in the two cases, Il,, is given by the empirical frequencies

. cll
IEARE ~ (26)
Estimation Step:
For each yi, we define the next distribution [P)[?-I;lﬁ]’(eo/y)’ . P)[?-;il(ezg'_1/y)] on the set of classes by the a posteriori
distribution based on the current parameter olr+1l,
+1
m i) = SK—=1 [ptl
Z]:O ng : 'PYz/X,(yi/ej)

Remember that Pg/-;(l](y/em) designates the Gaussian distribution corresponding to [u[,,’fl'l], (cr£5+1])2] in the case of a

mixture of two Gaussian distributions and the Rayleigh distribution corresponding to [77zz'n[r,’f|'1]7 (oz[,,’;+1])2] in the case of a
mixture of two Rayleigh distributions. If the sequence ® becomes steady, the SEM algorithm is ended else we return to
Stochastic Step. Numerous simulations show the correct behavior of the SEM. Its theoretical study is performed in the
case of the mixture of two Gaussian distributions but this algorithm can be easily used to estimate the mixture of two
Rayleigh’s laws.

4.4.1 Mixture of different distributions

In the case of the mixture of two different laws, the general procedure remains the same. Nevertheless during the
Mazximization Step, we use the empirical mean, variance and frequency for the partition Q[p] associated to the shadow
class defined by equation (3), (4), and (26) respectively and the ML estimator for the partition QM associated to the sea
bottom reverberation class (equation (5)(6) and (26)). During the Estimation Step, Py;x,(y/eo) designates the Gaussian
distribution and Py, x,(y/e1) the Rayleigh distribution.

4.5 Initialization

Initial parameter estimates have a significant impact on the rapidity of the convergence of these algorithms and on the
quality of the resulting final estimates. Remember that the EM method converges to a locally and not necessary globally



optimum estimate. Besides, the EM method can not estimate the min parameter of the sea bottom reverberation class. In
our application, we use the following method :

The estimates of the initial parameters of the noise model are determined by running a 6 * 6 non overlapping sliding
window over the image and calculating the sample mean, variance and minimum grey level estimates. These estimates are
then clustered into two classes using the k-means clustering algorithm. ML estimations are then used over the k-means

segmentation to find (IDLO], and (IDES].

5 RESULTS ON REAL SONAR PICTURES

The quality of the estimations is difficult to appreciate in absence of the real values. We can roughly perform such an
evaluation with the comparison of the histograms with the probability densities mixture based on the estimated parameters.
These iterative algorithms were applied to the image shown in the two Figures Ag. The first one represents a manufactured
object shadow and the second one, several rock shadows and the shadow of a manufactured object. Figures Cp show
the resulting mixture solution in graphical form. The two dashed curves in the figures show the individual components
Py x,(y/em)(0 < m < K).In these cases, the SEM algorithm and the EM method seem to give good results. In both
cases, the histogram is quite close to the mixture densities based on estimated parameters, and a segmentation with these
estimates gives good results.

According to the kolmogorov distance and x? criterion, the shadow class is better approximated by a Gaussian law rather
than a Rayleigh law (Cf.table 1). For several numerous experimentations, the SEM algorithm is reliable in all the situations
tested. On the other hand, the EM method has some difficulties to find a reasonable solution for a few images, in particular
for poorly separated distributions and when the initialization is not very good.

The results obtained were foreseeable, remind that the use of the EM method is non trivial and its theoretical justification
requires strong hypotheses.!® Moreover the SEM algorithm is an improvement of the EM method obtained by the addition
of a stochastic component. This is why the solution is less dependent of the initialization and the speed of convergence is
appreciably improved.

sonar picturel | distributions: distributions: sonar picture 2 | distributions: destributions:
bottom: Rayleigh | bottom: Rayleigh bottom: Rayleigh | bottom: Rayleigh
shadow: Rayleigh | shadow: Gauss shadow: Rayleigh | shadow: Gauss

Kolmogorov 0.077 0.069 Kolmogorov 0.127 0.120

distance distance

X2 criterion 4606 4144 X2 criterion 5647 5056

TAB. 1 — SEM Algorithm: Kolmogorov distance and x> criterion for a mizture of Rayleigh’s distributions and a mizture
of different distributions

6 CONCLUSION

In sonar imagery, a low level step of a segmentation in two classes; i.e. shadow (due to the lack of acoustic reverberation)
and sea-bottom reverberation is necessary and allows us the detection and then the classification of objects located on the
sea floor. The use of Markov Random Field models within the framework of global Bayesian decision can give good results,
but random field models are specified by a number of parameters (in particular the noise model parameters) which have
to be estimated from the data to solve the problem of sonar image unsupervised segmentation.

In order to estimate these parameters, we have shown that the EM method and the SEM algorithm could be used and
could be taken into account the variety of the laws in the distribution mixture. The two methods presented, lead to
formula easy to calculate. The simplest one being the EM method in which an iterative procedure produces estimates
of the mixture without stochastic step. The EM method gives satisfactory results provided that the distributions are not
too poorly separated and when the initialization is not bad in which case the SEM method yields to better results. From
this point of view, we can say that the SEM algorithm seems better suited in the context of sonar imagery. Numerous
simulations have shown the correct behavior of the SEM in the case of a mixture of different laws. Results obtained are
good and consistently better (according to the Kolmogorov distance and x? criterion) than those obtained with a mixture



of two Rayleigh distributions.The parameters estimation of the hierarchical Markovian model (more precisely the spatial
and inter-level cliques) will be the topic of our future research.
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Fig Ag: sonar picture Fig Bo: result of the k-means

(object shadow)

Fig Bg: result of the k-means

Fig Ag: sonar picture

clustering procedure (object shadow and rock shadow) clustering procedure
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Fig By: representation of the two clusters

Fig Bi: representation of the two clusters for k-mean algorithm

for k-mean algorithm

Initialization : K-means

Initialization : K-means X0
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i table II: estimated parameters
table II: estimated parameters
LA . | L

Fig Co: Image histogram and estimated mizture (SEM) Fig Cy: Image histogram and estimated mizture (EM)

Figures Ao are the original observations,figures Bo the results of the k-means clustering algorithm and Figures B ,the
two clusters associated to the shadow and sea bottom reverberation classes. The mizture of distribution is represented by
Figure Cy. The result obtained are given in Table II.
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