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ABSTRACT

In this paper we propose an original and statistical method for the sea-floor segmentation and its classi-
fication into five kinds of regions: sand, pebbles, rocks, ridges and dunes. The proposed method is based
on the identification of the cast shadow shapes for each sea-bottom type and consists in four stages of
processing. Firstly, the input image is segmented into two kinds of regions: shadow (corresponding to
a lack of acoustic reverberation behind each object lying on the sea-bed) and sea-bottom reverberation.
Secondly, the image of the contours of the detected cast shadows is partitioned into sub-windows from
which a relevant geometrical feature vector is extracted. A pre-classification by a fuzzy classifier is thus
required to initialize the third stage of processing. Finally, a Markov Random Field (MRF) model is
employed to specify homogeneity properties of the desired segmentation map. A Bayesian estimate of
this map is computed using a deterministic relaxation algorithm. Reported experiments demonstrate
that the proposed approach yields promising results to the problem of sea-floor classification.
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1. INTRODUCTION

High-resolution sidescan sonar plays an important role in underwater sensing due to its capability of pro-
viding high-quality acoustic imaging of the sea-bed. One of its application is the automatic segmentation
and classification of the sea-bottom. Segmentation of sea-floor aims at partitioning the acoustic image
into homogeneous regions with respect to certain geological characteristics. The goal of the classification
task is then to assign these different geoacoustic regions to sea-floor classes such as, “sand”; “pebbles”,
etc. These tasks can be essential in a wide range of applications such as geological survey (cartography,
geophysical exploration, etc.), ocean engineering (pipeline and cable surveying, etc.), military field, or
to improve the detection and classification of manufactured objects lying on sea-floors [1]. Basically, a
general procedure for sea-floor classification consists in doing: 1) data acquisition (followed by a possible
preprocessing); 2) feature extraction over small two dimensional areas within the image (aiming at reduc-
ing the informations contained in sub-image to a relevant feature vector); 3) selection of a classification
algorithm and finally; 4) classification of each sub-image.

> For the feature extraction step, a commonly used approach consists in considering the sea-floor sonar
images as highly textured. Under this assumption, we can use either the input image, i.e., the grey-levels
themselves [2], or some relevant textural feature measures on it, such as the grey level co-occurrence ma-
trices [3],[4],[5], the autoregressive parameters [6],[7], spectral or fractal measures [5],[8],[9]. Nevertheless,
in many cases, the input sonar image is strongly corrupted by speckle noise [10] and depending the noise
and sonar characteristics that affect signal strength [11], images can be apparently different for the same
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sea-floor. For this reason, the extracted textural features, computed directly on the grey level, may be
not very representative of the terrain morphology. Instead of using directly these grey levels, or some
textural features on it, an alternative approach consists in using the output of an unsupervised two-class
Markovian segmentation of the sonar image [12] and a pattern recognition methodology. The basic idea
is to identify the detected cast shadow shapes of the different morphological elements (such as ridges,
pebbles, etc.) located on the sea-floor.

> For the classification step, different kinds of methods can be applied. A first approach corresponds
to statistical discrimination such as Maximum Likelihood classifier [6] or Maximum A Posteriori (MAP)
classifier. An inherent drawback of these approaches, however, is that it is usually assumed that the
underlying probability distribution function of each class is known as well as computable. Unlike statistical
methods, neural networks [2],[4],[5],[7],[8],[13],[14], make no a priori assumptions about the distribution
of their inputs. On the other hand, they usually require a learning step training data which can be
problematic. In order to model a prior: partially defined information as well as exact knowledge about
the cast shadow shape corresponding to each sea-bottom type, an alternative approach, that we will
adopt in this paper, consists in exploiting these a priori information within a fuzzy classification scheme.
This fuzzy formalism allows also to take into account the mixture of classes of different nature within a
sub-image that can occurs in sea-floor classification context. In order to obtain an accurate segmentation
map, contextual information (i.e., relations between feature measures computed on adjacent sub-images)
can be taken into account. To this end, we can efficiently use MRF modeling which is appropriate to
specify spatial dependency between adjacent sub-images by means of a priori label field distribution [15].

In this paper, we propose a cast shadow shape fuzzy recognition approach combined with a Markovian
segmentation model to solve the sea-bed segmentation-and-classification problem. The proposed method
is divided into four steps: 1) unsupervised two-class segmentation; 2) feature extraction; 3) fuzzy pre-
classification; 4) Markovian segmentation. The block diagram of the implemented system is shown in
Fig. 1. In Section 2, we describe the feature extraction step. Section 3 presents the fuzzy classification
step, whereas Section 4 introduces the MRF model for the segmentation step. Results and conclusion
are given respectively in Section 5 and 6.
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Figure 1: Overview of the proposed sea-bed classification scheme.

2. FEATURE EXTRACTION STEP
The feature extraction step, we consider, does not directly handle the grey level of the image but exploits
the result of an unsupervised two-class (shadow and reverberation areas) Markovian segmentation of the
input sonar image as explained in [12]. This segmentation is then high-pass filtered and binarized in order
to extract the contour of each detected cast shadow. Then, the resulting edge image is partitioned in small
two-dimensional sub-windows from which feature vector are extracted. The aim of this feature extraction
process is to simplify the representation of the shadow shapes created by the different sea-floor types,
and to cope with a relevant parameter vector giving maximal information about the extracted shadow



profiles. Thus, each vector is associated to a sub-image. In order to distinguish between the cast shadow

shapes of ridges, dunes (whose cast shadow shapes are geometrically elongated and parallel), pebbles,

stones (corresponding to elements with random orientation), we have selected geometrical features. For

every cast shadow outline contained in the considered sub-window, we compute the following measures:
e The compactness: which evaluates the degree of compactness of the shape and is defined by:

where | and S stands respectively for the perimeter and the surface area delimited by the outline.

e The elongation: we compute for the cast shadow principal axis elongation ¢ (defined as the
standard deviation along the principal axis divided by the standard deviation along the smallest axis).
This parameter is given by the eigenvalues correlation matrix € and is computed from coordinates of
points in the cast shadow outline:

(cax + eyy + 1/ (cax — e4y)? +4c2,)

AR\ P V(eow = ey)? +4¢2,)
with: Cox = L Z(l‘s — l‘G)2
NF sel’
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where the summation is over all the Np pixels s of coordinates (z,y) on the outline I'. (g, yg) is the
center of gravity of .
e The orientation: we compute the orientation of the shadow principal axis defined by:

—Czoe + Cyy + \/(Cxcc - ny)2 + 462‘1}
a = arctan

2¢gy

Finally, a set of four features (invariant to rotation) can be derived from these geometrical parameters
computed on each outline. For each sub-window, we compute: 1.) “The mean compactness” (Cpoy)
of the set of outlines contained in the sub-window to be classified; 2.) “The directivity” that allows to
know if the detected cast shadows within the considered sub-window have a common orientation. To this
end, we compute the variance of orientation parameter: ¢2; 3.) “The maximal elongation cast shadow”
(Emaz) contained within the considered sub-window; and finally; 4. “The maximal size cast shadow
outline” (Npgqz). Once these four parameters have been computed for each sub-window, they make up
the feature vector that will be used for the fuzzy pre-classification step.

3. FUZZY CLASSIFICATION
In order to take into account these heteregenous features, a classification module based on fuzzy pattern
recognition is defined. This formalism is well suited to model our a prior: knowledge about the cast
shadow shapes for each sea-bottom type. It can also efficiently takes into account the mixture of classes
of different natures that can occurs within a sub-image to be classified.

If there are no contours in the considered sub-window, we can assign it to the “sand” class. We
have now to distinguish between four classes: “ridges”, “dunes”, “pebbles”, “rocks”. Let us define the
notation. Each feature vector z; computed on sub-window £ is described by the four geometrical features
zr = (Fr1 = Crmoy, Fro = O'Z, F3=Emaz, Fka= Nmaz), and can be assigned to five distinct classes w;



(wo = sand, wy = ridges, wy = dunes, ws = pebbles, w4 = rocks) through degrees of membership g, (), with
0 < ptw,;(.) <1. We assume independence between geometrical features Fi;, (0 < j<4). Let py,(Fk;) be
the grades for each statistical parameter, which are issued from the membership function. Qualitatively,
the membership function g, (Fy;) expresses the strength of the belief that the detected cast shadow
computed on sub-window k, with shape parameter F};, corresponds to the characteristic cast shadow
shape of the class w;. If py,(Fi;) = 1, there is an absolute confidence that the detected cast shadows
belong to the class w;, whereas if p,,, (F;) = 0, there is a null confidence. In our application, we model
our a priori knowledge about the cast shadow shapes for each sea-bottom type by the following four
assumptions:

Mex = Hep

_Huz=Hox

2

Figure 2: Plot of the membership functions for the parameter 2.

1.) In case of ridge (label wy) or dune (label wy), cast shadow shapes have a common orientation,
contrary to the ones created by the pebbles (label ws ) or rocks (label wy). Therefore, we define empirically
for parameter o2 the following membership functions:

,le(a'gc) = Huw; (02)
= exp(—=A o)

Huws (UZC) = Huw, (02)
_ exp[—A1 (A2 — 02)] if 02 < Ay
B 1 otherwise

We choose A; = 10, Az = 0.1 in our application. Fig. 2 represents the plot of the membership functions
for this parameter.

2.) In case of ridge (label wy) or dune (label ws), cast shadows present a stretched shapes contrary to
the ones created by the pebbles (label ws) or rocks (label wy). Therefore, we define for &yaz:

_ exp[—)\4()\5 - gmax)] 1f gma:c < )\5
puy (Emaz) = { 1 otherwise
_ exp[_)\4(/\6 - gma:c)] 1f gma:c < AG
puws (Emaz) = { 1 otherwise
Hauws (gma:c) =  Hw, (gmax)
exp[_)\4(€max - AS)] if é}mm > A5
1 otherwise

We choose Ay = 1, As = 7, As¢ = 5 (A5 > Ag since ridge cast shadows are stretcher than dune cast
shadows).

3.) In case of ridges (label wy) or dune (label ws), cast shadows have less compact shapes than the
ones created by pebbles (label ws) or rocks (label w,4) that we can express by the following membership



function for Choy:

Hwi (Crmoy) = Hawy(Cmoy)
= exp(_)\GCmoy)

Huws (Cmoy) = Puwa(Crmoy)
_ exp[—As(A7 — Croy)] if Croy < A7
a 1 otherwise

A = 5, A7 = 0.2 in our experiments.
4.) Rock (label wy) shadows have a bigger size than the ones created by pebbles (label ws): therefore,
we define for Cp,oy:

_ exp()\S - Nma:c) 1f Nmax > )\8
pus(Nmaz) = { 1 otherwise
Hwy,(Nmaz) = Py (Nmae) = 1
fws(Nmaz) = 1= pw,(Nmaz)

we take Ag = 60 in our application. As we have assumed independence between the different geometrical
features, the degree of membership for each class w;,py, (25) (0<i<4) is given by the minimum operator

[16]:
My, (k) = min {Nwl(Fkl),u-;/iw,(FM)} 0<i<4

and we assign the class w; to the sub-window £, satisfying:

wW; = arg max  {pw, (k) }
wi€{wy,...,wa}

One has to find a good compromise for the size of sub-windows involved in the computation of feature
vector zg. On one hand, a small sub-window size increases the accuracy of the segmentation. On the other
hand, geometrical features computed on a too small sub-window does not allow to efficiently recognize
large cast shadow shapes such as the ones created by large dunes of sand (see Fig. 6). To circumvent
this difficulty, a multi-scale classification is achieved by simply increasing the size of the sub-window in
which we compute feature vectors zy, and by taking into account the fuzzy classification results obtained
at different scales. The classification strategy followed in our application, then consists in detecting
the presence of the dune class at higher scale, and in projecting the detected dune label at the finest
classification by duplication (see Fig. 3).

//dunes/
Higher level @ Projection

of classification

? ? dunes, dunes
? ? /dunes/ dunes
? 2 /dunes/ dunes
? ? dunes/ dunes

Finest level
of classification

Figure 3: The multi-scale classification strategy.



4. SEGMENTATION STEP

In order to obtain an accurate segmentation-and-classification map, contextual information has to be
taken into account. To this end, we resort to MRF models [15] which allows us both to take into
account the fuzzy classification results previously obtained (on adjacent sub-windows) and also to express
constraints on the desired solution such as homogeneity properties of the expected segmentation map. In
this way, we consider a couple of random fields (X, W), with X = {X,,s € S}, the field of observations (x;
the feature vector is considered as a realization of X;), and W = {W;, s € S} the label field, located on a
lattice S of N sub-windows s. Each of the W; takes its value in {wq=sand, wi =ridges, wy=dunes, ws=
pebbles, wy = rocks}. The distribution of W, Pw (w), is supposed to be stationary and Markovian. In
this approach, the determination of segmentation map w is stated as a statistical contextual labeling
problem, according to a global Bayesian formulation. We adopt the MAP criterion and we search for w
such as:

I argmaxPW/X(w/I)
= aI'ngu&}lX{PW(w) Pxyw(z/w)}

In accordance with the Hammersley and Clifford theorem [15], Py (w) is a Gibbs distribution (P (w) £
Z=Yexp~Y2() with Uy(w), an energy function and Z a normalizing constant). Denoting Pxw(z/w) =
exp(—Ul(w, J:)), the above equation can be defined in terms of an energy function U(w, z) to be mini-
mized:

U(w,z) = Uy (w, z) + Uz (w)
where Uy (w, z) is the “feature-driven” term that expresses the adequacy between observations and labels
{wo, w1, wa, w3, wa}, and Us(w) is the regularization energy term corresponding to the a priori model.

> Let § = {Gs,s € S} define a neighborhood system on S and C the corresponding set of binary
cliques. In order to favor homogeneous regions, we adopt a standard 8-connexity spatial neighborhood
system for G, and an isotropic Potts model that associates to binary clique <s,t> (see Fig. 4), the
potential Ve, 5 (w) = Bt (1 —0(ws, wy)) where B¢ (Bst € {51, 2, B3, Ba}) only depends on the orientation
of the clique, and 4(.) is the Kronecker delta function. Us(w) can then be written as:

Us(w) = Z Bse (1 — 8(ws, wy))

<s,t>

B £ Bs B

Figure 4: Two-site cliques and associated parameters.

> The interaction model between observations and hidden labels exploits the value obtained by the
membership function g, (2s) (see Section 3). Uy (w, z) is defined as follows:

Uy(w,z) = — Z’y(ws, zs)

where 7(.) is a function that returns i, (2,) if w, = argmax,, (,uwj(xs)) (0<j<4) and 0 otherwise.
Finally, the global energy function to be minimized is defined as follows:

U(w,z) = —Z’y(ws,rs) + Zﬁst(l—ﬁ(ws,wt))

sES <st>

Ui(w,z) Uz(w)



U, expresses the adequacy between our a priori knowledge about the cast shadow shapes for each sea-
bottom type and labels via the obtained result by the fuzzy pre-classification step. The second term Us
encodes constraints on the desired solution such as homogeneity properties of the expected segmentation
map. The optimal labeling we seek is the minimum of this energy function. We use the deterministic
relaxation algorithm ICM [15] to minimize this function. For the initialization of this algorithm, we
employ the classification map obtained by a blind fuzzy classification scheme.

5. EXPERIMENTAL RESULTS
To validate our sea-floor classification method, we have carried out experiments with images delivered by
different sonar systems. For all the reported results, we consider a sub-window of 64 x 64 pixels size for
the finest result classification (for cartography application, the considered accuracy level is sufficient and
represents approximately a 6 x 6 meters area). For the multi-scale strategy classification (see Section 3),
we use sub-windows of 128 x 128 and 256 x 256 pixels respectively. Potential parameters §; are set to
0.2 (0<i<4).

Fig. 5,6, 7, 8, 9 represent original sea-floor images and classification results obtained with our scheme
with the following display convention superimposed on the original sonar image. An empty square for the
class “sand” | and respectively a square with a small square inside it for the class “pebbles”, a bigger square
for the class “rocks”, a straight line for the class “ridges” and two parallel lines for the class “dunes”.
These sonar images are composed by one or several different sea-floor types and obtained results show
good segmentation and classification results in all tested cases. We can also see the interest of our multi-
scale classification strategy described in Section 3. It allows us to efficiently recognize large cast shadow
shapes created sometimes by large dunes of sand. A right classification and segmentation map thanks to
MRF regularization at full resolution is thus obtained. A look at Fig. 9.a and 9.b shows the improvement
in classification by taking into account the spatial dependency between adjacent sub-windows, i.e., by
using the Markovian a priori model described in Section 4. We can compare the results obtained with
a simple feature extraction using a fuzzy classification scheme: less sub-windows are misclassified and
the segmentation-and-classification map is more accurate. Remaining errors occur at the boundaries
between different morphological elements, due to the possibles mixture of classes of different natures that
can occurs (see Fig. 9.b). Nevertheless, experimental results demonstrate the accuracy and efficiency of
such a contextual fuzzy segmentation and classification scheme.

6. CONCLUSION

We have presented an original approach to sea-floor classification combining MRF modeling and fuzzy
logic. This pattern recognition scheme is based on the extraction and the identification of the cast
shadow shapes of morphological elements lying on the sea-bed. The segmentation-and-classification issue
is formulated in a Bayesian framework, and is stated as an equivalent energy minimization problem.
This proposed scheme appears as an attractive alternative to classical textural feature-based extraction
and neural classification approaches. This method has been validated on a number of real sonar images
demonstrating the efficiency and robustness of this automatic scheme.
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Figure 5: (a) Set of 1-labeled pixels of the binarized high pass filtered version of the segmented sonar
image presented in (b). (b) Original sides-can sonar image of an area composed by sand (an empty
square) and dune of sand (square with two parallel lines).

Figure 6: Original sidescan sonar image of an area composed by dunes (display convention: square with
two parallel lines) and classification results obtained with our scheme. In this example, the adopted multi-
scale classification strategy allows to efficiently recognize large cast shadow shapes created by dunes of
sand and to obtain a right classification and segmentation map.



Figure 7: Original sidescan sonar image of an area composed of sand (display convention: empty square)
and pebbles (display convention: square with a small square inside it). Segmentation and classification
results showing right detection of these two classes.
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rocks and ridges.
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Figure 8: Original sidescan sonar image of an area composed by sand
and classification results showing right detection of these three classes.
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Figure 9: (a) Original sides-can sonar image composed by rocks and ridges and results obtained with a
simple fuzzy classification scheme. (b) Classification results obtained with our scheme. In this example,
we can see that contextual information allows to improve significantly the segmentation and classification
results.
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