Pseudo-Code 1/2

Algorithm 1 Hybrid optimization routine

E	Energy function to be minimized	
$\gamma L_{\mathrm{max}}^D$	Step size of the gradient Number of iterations (Gradient)	
$ \begin{array}{c} r \\ T_0 \\ T_f \\ L_{\max}^S \end{array} $	Radius of exploration, real $\in]0, 1]$ Initial Temperature Final Temperature Number of iterations (Metropolis)	
1. Deterministic Search		

2. Stochastic Local Exploration

METROPOLIS_EXPLOR $(E; r, T_0, T_f, L_{MAX}^S)$ [Algo. 3]

Algorithm 2 Conjugate gradient

	Ensure for sting to be minimized
Σ	Credient vector of E
1	Image with pixels in lexicographic
[7]	order as one column-vector
$I_s^{[l]}$	Image vector at site s and iteration l
$<\cdot,\cdot$	> Scalar product
l	Iteration step
γ	Step size of the gradient
$L^D_{\rm max}$	Maximal number of iterations
Repea	t
if	l = 0 then
	$d^{[l]} = -\nabla E(I^{[l]})$
	$=4 \sum_{s,t_{s \neq t}} \left[I_s^{[l]} - I_t^{[l]}\right] \left(\beta_{[1]s,t}^2 - \left[I_s^{[l]} - I_t^{[l]}\right]^2\right)$
els	e
	$b^{[l-1]} = \frac{\langle \nabla E(I^{[l]}) - \nabla E(I^{[l-1]}), \nabla E(I^{[l]}) \rangle}{\langle \nabla E(I^{[l-1]}), \nabla E(I^{[l-1]}) \rangle}$
	$d^{[l]} = -\nabla E(I^{[l]}) + b^{[l-1]}d^{[l-1]}$
	$I^{[l+1]} = I^{[l]} + \gamma d^{[l]}$
L	l = l + 1
Until	$l < L^D_{max}$ or $\frac{(E^{[l]} - E^{[l-1]})^2}{(E^{[l]})^2} \approx 0;$

Local exploration with Metropolis EEnergy function to be minimized T_l Temperature at Iteration step laCooling schedule parameter Radius of exploration, real $\in]0, 1]$ r T_0 Initial Temperature $\begin{array}{c} T_f \\ L_{\max}^S \end{array}$ **Final Temperature** Maximal number of iterations 1. Initialization $a \leftarrow \left(\frac{T_f}{T_0}\right)^{\frac{1}{L_{\max}^S}}$ 2. Local Exploration while $l < L_{max}^S$ do for each pixel with value x_s at site s do • Compute $\Delta \text{Energy} = E(y_s) - E(x_s)$ with $y_s \in [x_s - r : x_s + r]$ and $y_s \in [0.0 : 1.0]$ • If (Δ Energy < 0) Replace x_s by y_s • Else Replace x_s by y_s with probability $\triangleright \quad p = \exp\left(-\frac{\Delta \text{Energy}}{T_l}\right)$ 3. $l \leftarrow l + 1$ and $T_l \leftarrow T_0 a^l$

Algorithm 3

Algorithm 4 **Optimization-Based Edge Specification Algorithm OBEHS** Algorithm EEnergy function to be minimized Bhattacharya distance between the $D_{\mathcal{B}}$ target and output edge histogram l Iteration step **Stopping Criteria** Threshold energy value E_{\min} $D_{\mathcal{B}_{\max}}$ Threshold Bhattacharya distance $L_{\rm max}^{H}$ Maximal number of iterations while $l < L_{max}^H$ or $E > E_{min}$ or $D_{\mathcal{B}} > D_{\mathcal{B}_{max}}$ do 1. Specification ALGORITHM B, C OR D 2. Optimization HYBRID_OPTIMIZATION_(E)[Algo. 1]

Pseudo-Code 2/2

[Algorithm A]:

- Order pixels: $I(x_1, y_1) \prec I(x_2, y_2) \prec \ldots \prec I(x_N, y_M)$
- Split this pixel ordering relation from left to right in L groups, such as group j has h_j pixels.
- For all the pixels in a group j, assign gray-level
- j.

[Algorithm B]:

- 1. Ordering relation
 - Normalize H in order that $W = \sum_{k=0}^{k=Z-1} h_k$
 - Order the $W = 8 \cdot N \cdot M$ pairwise pixel absolute differences:

 $|I_s - I_t| \prec |I_u - I_v| \prec \ldots \prec |I_x - I_y|$

- Split this pixel absolute difference ordering relation from left to right in Z groups, such as group j has h_j elements, i.e., h_j couples of pixels.
- For all pairs of pixels or pair of sites (s,t) whose the absolute difference is in a group j, assign β_{[1] s,t} = j.
- 2. Optimize:

$$\hat{I} = \arg\min_{I} \sum_{\langle s,t \rangle_{s \neq t}} \left(\beta_{[1]\,s,t}^2 - (I_s - I_t)^2 \right)^2$$

[Algorithm C]:

- 1. Specification with ordering relation
 - For l = 1 to n_t
 - * $W_{[l]} = 8 \cdot l \cdot N \cdot M$
 - * Normalize $H_{[l]}$ such that $W_{[l]} = \sum_{k=0}^{k=Z-1} h_{[l],k}$
 - Order the W_[l] pairwise pixel absolute differences:

$$|I_s - I_t| \prec |I_u - I_v| \prec \ldots \prec |I_x - I_y|$$

- * Split this pixel absolute difference ordering relation from left to right in Z groups, such as group j has h_{[l],j} elements, i.e., h_{[l],j} couples of pixels.
- * For all pairs of pixels or pair of sites (s,t) whose absolute difference is in a group j, assign $\beta_{[l] s,t} = j$.
- 2. Optimize:

$$\hat{I} = \arg\min_{I} \sum_{\langle s,t \rangle_{s \neq t}} \left(\beta_{[1]\,s,t}^2 - (I_s - I_t)^2 \right)^2$$

for $t \in \mathcal{N}_s^1 \cup \mathcal{N}_s^2 \cup \ldots \cup \mathcal{N}_s^l$

[Algorithm D]:

It simply consists in alternating Algorithm C and Algorithm A until a stability criterion is reached (i.e., the output image does not change too much between two iterations).

In the case where the input image is specified from a target image for which we want to keep its color palette, there are two different ways:

- either the histogram of the components L, A and B of the input image is specified (Algorithm A) from the components L, A and B of the target image
- 2) or, one has to define a strict ordering relation among color image pixels and a possible solution is to use the luminance or the gray value for that. In this case, the color histogram specification procedure proceeds as follows:
 - Order color pixels of the input image (I) from their luminance or grey value: I(x₁, y₁) ≺ I(x₂, y₂) ≺ ... ≺ I(x_N, y_M)
 - Order color pixels of the target image (T) from their luminance or grey value: T(u₁, v₁) ≺ T(u₂, v₂) ≺ ... ≺ I(u_N, v_M) Note that if the size of the target image is different from the size of the input image, an up-sampling or a sub-sampling procedure should be used.
 - Assign to $I(x_i, y_j)$ the color value $T(u_i, v_j)$ for all i < N and j < M.