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Abstract— In this paper, we propose an efficient regularized To our knowledge, little attention has been given in asso-
restoration model associating a spatial and a frequential @ége- ciating/combining two different (but complementary) réagu
preserving regularizers in order to better modeled the intinsic ization terms and/or equivalently to propose a reguldopat
properties of the original image to be recovered and to obtai trat lowi ¢ f mult | ltio] d
a better restoration result. An adaptive and rescaling schee s_ra egy a owmg 0 .en orce S|mu aneousy. mu ng (an
is also proposed to balance the influence of these two differe  different) constraints in order to improve the final restima
regularization constraints and allowing to prevent that a over- result. Nevertheless, some of the well known edge-presgrvi
whelming importance for one of them prevail over the other in regularization priors are conceptually very differentther
order to efficiently fuse them during the iterative deconvoltion local and expressed in the spatial domain or more or lesgflob

process. This hybrid regularization approach, mixing theg two ) . .
constraints and more precisely, favoring a solution image &ving and expressed in the (DCT, wavelet or Fourier) frequential

simultaneously spatial sparseness of edges (with the GGMRFdomain. An hybrid regularization approach, mixing two or
constraint) and sparseness of its frequency DCT coefficiest several of them, could efficiently better modeled the comple

yields significant improvements in term of image quality and properties of the class of imagepriori defined as acceptable
higher ISNR results, comparatively to a single GGMRF or DCT ¢ tions for a better final restoration result.

prior model, and leads to competitive restoration results,in ) ) )
benchmark tests, for various level of blur, BSNR and noise  In this attempt to fuse several constraints or equivalently
degradations. several prior knowledges for the image to be recovered, a

Index Terms— Regularized iterative restoration/deconvolution Bayesian strategy has been recently proposed in [14], [15]
methods, edge-preserving regularizers, fusion of reguléation ~Which uses a statistical prior in product form. Such product
terms, mix of multiple constraints, generalized Gaussian Mrkov  type priors is able to combine multiple image prior models
random field (GGMRF) prior model, discrete cosine transform by assuming that the local discontinuities of the image, (i.e
its edges) given by different local edge models (i.e., défife
high-pass filters) are Student-t distributed. In order tpdss

) ) . the difficulty of evaluating the normalization constant bist
I N regularized restoration approaches, the regularlzat@deuCt type prior, the authors in [14], [15] propose to use

| term allows us to both to stabilize (from the computationg] constrained variational approximation methodology ferin
viewpoint) the solution to the ill-conditioning restomti in-  ha restored image.

verse problem and also to incorporate knowledge or beliefs
concerning the types of restoratioaspriori defined as ac- The approach proposed in this paper is different and uses
ceptable solutions. That is why the design of efficient imagaother fusion strategy. More precisely, our model simply
prior models or a priori regularization terms, and espécialexploits an additional constraint whose goal is to itegdsiv
their ability to (locally and globally) summarize the imsic balance the influence of two (but possibly several) differen
properties of the original image to be recovered are crucignalty constraints, expressed by each image prior model,
in the final image quality and signal-to-noise improvemesturing a simple iterative Landweber deconvolution process
(ISNR) restoration result. Besides, compared to [14], [15], our regularization styate

Over the last two decades, there have been considerdefeds to enforce two different edge-preserving strategies
efforts to find an efficient regularization term capable dfpectively expressed in the spatial and frequential dojgin
modeling the local image discontinuities, i.e., the edgeleho promoting a restored solution having simultaneously spati
of a natural images. To this end, several edge-preservisRarseness of edges, thanks to a GGMRF prior model and
regularization strategies were proposed (with some netaldl restored solution having sparseness of its frequency DCT
improvements in the restoration results) in the spatiat[[a]] coefficients.
domain gia non-stationary, compound Markov model with More generally, the concept of combining several classifier
possibly robust estimators) or in the frequential domain, tmodels or constraints for the improvement of the perforreanc
also promoting a restored image having a high sparsity of (in our application) to better modeled the complex preper
its spectral coefficientsyia thresholding operations in theties of the class of image to be recovered by a restoration
wavelet, Fourier or discrete cosine transforms [2], [5], [6algorithm is known, in machine learning field, as a committee
[8]-{13]. machine or mixture of experts [16], [17]. In this recent field

. ) o ) i ) of research, two major categories of committee machines are
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ensemble of models or experts with a dynamic structure typsndegraded image, under this GGMRF constraint, can be
In this class of committee machines, the set of constraigts #ound by a classical gradient descent method. To this end,
combined by means of a mechanism that involves the inpghe derivative of(2(z) at site s, has the following analytical
data (contrary to the static structure type-based mixtdre expressiortY’(xs) = ¢ Z<s_¢> Bst|rs — 24|97 tsign(zs — 2¢)
experts). and leads to the following iterative steepest descent pureg

The remainder of this paper is organized as follows: Sectiéﬁ‘fhiCh moves the penalized likelihood estimates in the negat

Il describes the proposed model with respectively the edgéadient direction

sparseness and the sparse representation constraintaaltyd fi gt = gl 4 ol it (y — s 2l —y /21 (3)
the proposed fusion approach of these two constraints in an
iterative deconvolution Landweber process. Finally, isect i

presents a set of experimental results and comparisons "Wﬁereh#(z’ ) = h(

" ) . —i,—j) (the coordinatesi, j) represent
existing restoration techniques.

the discrete pixel locations and fdr symmetric, we have
h# = h). After derivation of Eq. (2)o!" is a constant equals
Il. PROPOSEDAPPROACH to 1 for all n. Nevertheless we can easily speed up this iterative
search procedure by adaptively changify at each iteration

according to the following equations [20]
The first regularization term used in our restoration model |

is formulated in the (image) spatial domain and allows to [n] _ g with ¢ = h#« (y—h*@["]) (4)
promote a (regularized) restored imag@ith spatial smooth- [[hx gl ||2

ness and edge sparsity properties. To this end, we h
considered the GGMRF prior model proposed by Bouragn
al. in tomographic reconstruction [18], [19]. This prior has
density function of the formPx (z) o exp{—yQ(x)} with
the following regularization term

A. Edge Sparseness Constraint In The Spatial Domain

ftere, in this notation, pixels are organizedqft! and in

h = ¢! in lexicographic order as one large column-vector.
For ~v = 0, the iterative procedure defined in Eq. (3) is the
(accelerated) well known Landweber algorithm [21].

Qx) = > Batlws — 2 (1) B. Sparsity Constraint In The Frequential Domain

<s,t> . . . .
s The second constraint used in our restoration model is

wherel < ¢ <2 is a parameter controlling the smoothness @brmulated in the Discrete Cosine Transform (DCT) domain
the image to be recovered and/or the sharpness of the edgg$romoting a restored image having a high sparsity in the
to be formed in the restored image,; = (2v2 +4)~! or (DCT) frequency domain. To this end, a convenient way to
(4 + 4v2)7!) depends on whether the pair of neighboringmpose this constraint, i.e., to enforce the sparsenesheof t
sites (relative to the second order neighborhood system), ®CT coefficientsw; on the restored image consist in applying
binary clique<s, t> is horizontal/vertical or right diagonal/left to each of these coefficients (of each individual block o&siz
diagonal. This prior model has the advantage to includegax 8 pixels of z[")), a simple thresholding operation. An
Gaussian MRF prior fo = 2 and a more interesting edge-example of sparsity constraint in the (frequency domaiés t
preserving absolute-value potential function with= 1. In  so-called soft-thresholding operation classically usedhe
the regularization framework and under this first constraiavelet based denoising approach [13], [22], [23]) of each
a restored image can be seen as a solution to the followiD@T coefficients, according to the following rule
penalized likelihood cost function to be optimized

7' =sgn(w)(jw| = T)+ ®)

A . 2
e argmmm{”y hxa +WQ(£C)} ) where (.) is defined as(z); = max{z,0} and sgi.) is
wherey and z represent respectively, the observed blurrdie sign function (sgix) = 1, if = < 0, and sgiw) =
and noisy image (degraded by an additive and white Gaussiah. Otherwise). Another example is the hard version of this
noise with variance2) and the undistorted true imageis the ~soft-thresholding operation, leading to the following dhar
Point Spread Function (PSF) of the imaging sy&temd« is thresholding rule
the linear convolution operator. For the convolution prhae, 0 if |w<T
we herein assume that the image is toroidal, i.e., peritidica AP = { "
repeated. The first term of this cost function expresses the
fidelity to the available data and the second encodes thein which T" is a threshold level that acts as a regularization
spatial smoothness and the local edge-sparsity cons{rant parameter and we recall that is one of the coefficients
the expected properties) of the true undegraded imags. obtained by the DCT transform of the block (of sigex 8
the regularization parameter controlling the contribuitid the pixels) extracted from the current image estimate. These
two terms. A maximum penalized likelihood estimate of thawo thresholding rules allows to enforce thepriori sparse
representation (in the DCT domain) of the solution image to
2We shall assume throughout this paper that the degradatmfeln{PSF pea recovered, or equivalently allows to favor a generalized

and variance of the white Gaussian noise) is known. It mightgiven . L . ..
analytically or given numerically based on previous estioms or calibration Gaussian law for the distribution of these DCT coefficients

experiments. [23].

w otherwise



In order to reduce blocky artifacts across the 8 block A rescaling problem, inherent to the fusion of these two
boundaries, a standard way (already used in the wavelegularization terms exist and must herein be treated. iEo th
denoising community) is to make this transform translatioend, we have thus to balance the influence of these two
invariant, i.e., to use the DCT of all (circularly) tranddt different regularization strategies (in the sense of seddh
version of the image herein assumed to be toroidal [24],.[2%]r another constraint), during the iterative search proads
This thus implies (for a set of x 8 blocks extracted from the solution image. This rescaling will allow to preventttha
the image) to compute a set @&f horizontal shifts and® a overwhelming importance for one of the two regularization
vertical shifts & 64) translated images which will then beconstraints prevail over the second (and thus making therfus
DCT-denoised with the soft or hard thresholding rule andithef the two regularization terms inefficient). This rescglin

averaged in a final step (see Algorithm 1). problem is somewhat identical to the one occurring in patter
classification when different features with different snétre
DCT-Based Denoising Step blended together. In this case, the rescaling step prevents
that the similarity measure (used to evaluate the distance
zI" Input image to be denoised at iteration n between feature vectors) will (wrongly) give an overwhelimi
@l Denoised estimated image at iteration n importance to feature having a larger unit range.
T  Threshold In this work, in order to prevent that a overwhelming

importance for one of these two penalty terms prevail over th
second (and thus making the fusion of these two regulaoizati
strategies inefficient), we decide to adaptively balanestiio

for All (8 horiz. and 8 vert.) shifts of zI" do
for All [8 x 8] blocks extracted from z™ do

1. DCT Transform regularizers by adding, to the iterative search proceshef t

2. Threshold the obtained DCT coefficients restored image, the following adaptive empirical constrai

w with the hard thresholding rule “The residual image added to the likelihood image, to each
e { 0 if |w<T iteration of the iterative search process, by the GGMRF Hase
T = w  otherwise constraint and the DCT based constraints should be equal in

] . a norm sensé.
or the soft thresholding rule . i . . i NN .
o . In our application, the likelihood image:{) is the solution
i = sgn (w) (ju] =)+ image obtained at iteration, without thenth constraint, i.e.,
| 3. Inverse DCT of these thresholded coef. the image obtained by Eg. (3) Wiﬂ?l["] = 0. The residual
image designates the additive correction image added (at
each iteration) to the likelihood image by the presence of

| > Unshift the filtered image and store it

&M« Averaging of these 64 denoised images each constraint. In the case of the GGMRF constraint, the
— regularization adds, at iteration to the image likelihood the
Algo 1: DCT-Based Denoising Stepr¢(z"))) corrective term||~[™ Q' (z")|| (see Eg. (3)). In the case of

the DCT-based denoising constraint (without the GGMRF-
constraint), this residual image is simply (at each iterati

C. Fusion of Regularization Terms n) the difference image between the DCT—d[e]noised likelihood

: . . image minus the likelihood image, i.€.Yr(Z T
The goal of this work is o propose a restoration PrQCEdu{ﬁisgexpressionTT(.) designategs thgl‘DCJ:I'(-TT—:R)ESHC’\)AIEIﬂING-

two above-mentioned sparseness constraints, i.e., fayari ?l\?VERSEDCT] operator with the thresholding operation ac-
P SN cording to the rule given by Equations (6) or (5) with the

solution image having simultaneously spatial sparsenéss 0 .
g g y sP P regularization parameter valde

edges (with the GGMRF constraint) and sparseness of i he following section used this additional constraint in
frequency DCT coefficients while ensuring the likelihood 9

. . [n] . .
fidelity, i.e., by finding an estimaté ensuring an acceptableordef\r to _adaptlvely est|mat§ as a function of " during
. o 9 the iterative search restoration procedure.
minimum for the likelihood energlyy —hx*z||* under these two
constraints. Equivalently, we would like to restrict theég L
of restorations 4 priori) defined as acceptable solutions aQ' Parameter Estimation

those combining these two complementary spatio-freqalenti In our restoration modell” is preliminary and empirically
sparseness constraints. set according to the noise standard variationof the consid-

ered degradation model by the following procedure
The problem is not trivial since, the simple solution which g y ap

would consists in alternating the two regularization smés, THard—{ 160 !f Uz <10 (6)
i.e., an iteration of the gradient descent of the penalized 220 if 0% =10

likelihood function (Eq. (3)) followed by a DCT denoisingpt  or, for the soft thresholding rule, by

(Algo. 1) leads to restoration results equal to those obthin . 9

) e 020 if 0°<10

in the case of the only use of the GGMRF regularization term Tsoﬂ:{ 060 if o> 10 (7

or of the DCT-based constraint, according to the value given ' =

to the two regularization parameters (i.¢.for the GGMRF ~[1'is then estimated at the first iteration of our restoration
regularization term and’ for the DCT constraint). algorithm and adaptively change in order to adaptively haga



(for each iteration of our iterative algorithm) the resitinzage GGMRF-DCT-based restoration algorithm
added to the likelihood image between the two sparseness
constraints. Giverl’, 4"l is thus estimated by 62 Variance of the noise

Al = argngn{ ‘ |[er(@t) - al

(] () () T  Threshold value of the sparsity constraint
1 H7 (& )Hl Tr DCT denoising (see Algo I)
o Regularization value of the GGMRF model

Boct Beemrr
(8) o {1.60 if 02 <10

where ||.||; is the £1-norm and Byer and Beewse represent 220 if 0?>10
respectively the residual image added to the likelihoodcaahe
iteration of the restoration process. In our applicatioft! is 1. Estimation of 4%
estimated by a dichotomy search algorithm based on the_5|gn f}[o]:argmin{‘|\TT(§:£ﬁ’]L) _ I&)]LHI _ HVQ,@[O])M}
of (Boer — Beeure). We stop the procedure when the relative gl
distance between two successive values is less llﬁ]aﬁ with &0 = & £ a, b (y — b+ 27)
During the iterative restoration procedusé? is then refined,
at each step: of the iterative restoration process, with the

followi d ] — 7Hq[n]||2 and  ¢™ =¥ (y — b« 2M)
oliowing proceadure Hh % q[n]Hg
"l if B B
[n+1] _ 0.957 : camrr > Soct 9 by using a dichotomy search algorithm
7 { 1.05~"  otherwise © vme v &

1) Estimation of Number of IterationsThe convergence | 2. Restoration
criterion of the proposed restoration procedure is emglisic while 1 < max! 400, 1530} do
defined by e if n is odd

. . 1500 A[n+1 ~ln n] 1 # ~n ~ln ~[n
Number of iterations= max{4007 — } (10) I 3 ol e (y — e i) — 40 QY (31)
g
e if n is even

S M

I1l. EXPERIMENTAL RESULTS Tterative rescaling of 4"*1 p
A. Set Up 0.95 4]
For the implementation of the DCT-based denoising step glnt1 — it )@[n] Q/(3ln) > HTT(,@%) — )

we have used the fa8tx 8 FFT2D DCT package implemented
in C code by Takuya Ooura (functiom®cT8x8s tested in L

program SHRTDCT.C) and available on-line at http address | n —n+1
given in [26].

1.054™  otherwise

o ) Algo 2 : GGMRF-DCT-based restoration algorithm
In order to compare the efficiency of our restoration model

using a regularization term fusion-based procedure, coarpa
tively to a restoration model using a single GGMRF or DCT

prior model, we have thus considered, for comparisons : the two different regularization terms and the parameter

estimation procedure given by Equations (6), (8), (9) and

1) The restoration algorithm using only the GGMRF prior (10).
model ¢ = 1). In this case, the regularization parameter
~, that controls the contribution of the likelihood and
prior terms is given by = 02 /6.0, which ensures (after
several trials and errors) a nearly optimal restoration We now present a set of experimental results and compar-
results for all the experiments tested in this paper. isons illustrating the performance of the proposed approbx

2) The restoration procedure using only the DCT-basehis end, we have replicated the degradation models géyeral
complexity prior model. More precisely, this proceduresed by several authors and we have compared the ISNR result
simply leads to the iterative Landweber [21] procedurgiven by our approach and the other published state-o&the-
(Eg. (3) with v = 0) whose each iterative step ismethods respectively in Tables Il and Ill. In these experitag
regularized by the DCT denoising step (using the haafiginal images ar&€AMERAMAN (experimentd, 2, 3, 5 and
thresholding rule and the estimation procedure given 16y of size 256 x 256 and LENA of size512 x 512 (experiment
Eq. (6)). For our tests, this algorithm is called the “DCT4). Table | summarizes the different degradation models,used
gradient”. which are defined by the blur type, the variance of the adalitiv

3) The proposed restoration method (summarized in pseudbite Gaussian noise and the resulting BSNR (i.e., the ratio
code in Algorithm 1I), i.e., the combined GGMRE; between the variance of the noise and the variance of blurred
and DCT-based (with the hard thresholding rule) demage without noise) for each of the experiments. The best
noising constraints with the adaptive scheme to weig8NR results provided by the existing restoration alganish

Comparison with State-of-the-art Methods



Fig. 1. From top to bottom, original image, Noisy-blurredaige for Expl
(see Table I) and restored image using the proposed rdstorapproach
ISNR=9.02 dB (see Table II).

Fig. 2. From top to bottom, original image, Noisy-blurredaige for Exp3
(see Table I) and restored image using the proposed restorapproach
ISNR=5.33 dB (see Table II).

and the results provided by our approach for each degradatio
level are indicated in bold.

C. Comparison with the SA-DCT regularized deconvolution

Since the SA-DCT deconvolution algorithm proposed by
Foi et al. in [2] also uses a DCT-based denoising step, a
comparison and a discussion is herein given in what concerns
difference of models, estimation/sensitivity of the imtalrpa-
rameters and computational complexity of the two restorati
methods. The SA-DCT regularized deconvolution algorithm
proposed in [2] is a non-iterative two-step restorationcgro
dure whose first step is essentially a deblurring stage given
by a regularized Wiener filtering. The second step is a DCT
filtering, applied on this resulting deblurred image, comeplu
on several polygonal supports whose shape are defined by
a preliminary segmentation technique (called LPA-ICI for



TABLE | TABLE Il
BLUR, NOISE VARIANCE AND BSNR (DB) FOR EACH EXPERIMENT PERFORMANCE COMPARISON BETWEEN OUR ALGORITHM AND OTHER
RESTORATION METHODS FOR EXPERIMENTEXP5-6

[ Blur | o> | BsNR
Expl || 9 x 9 uniform 308 || 40 ISNR (dB)
[CAMERAMAN 256 x 256] Methods Exp5 Exp6
Exp2 || hij=(1+2+52) ", i = —70....7 2 32 GGMRF-DCT-gradient 3.99 2.96
[CAMERAMAN 256 X 256] DCT-gradient 3.93 2.75
Exp3 || hij=(1+%+52) ", ii= -7, .7 8 26 GGMRF-gradient 3.35 2.47
[CAMERAMAN 256 x 256] (2008) Mignotte [4] 4.24 2.99
Exp4 || [1,4,6,4,1]*[1,4,6,4,1]/256 49 16.5 (2006) Mignotte [3] 3.50 1.90
[LENA 512 x 512] (2000) Molinaet al. [32] - 2.22 (PsNr=21.1)
Exp5 || 5% 5 uniform 33.3 || 20 (1998) Mayet al. [33] 3.43

(1997) Charbonnieet al. [34] (in [32]) - 1.86 (PsNR=20.8)

[CAMERAMAN 256 X 256]
EXp6 || o<[14(i2+5%/16]72 i,j=—9,..., 9 || 62.5 || 17
[CAMERAMAN 256 x 256]

doubly regularize an iterative deconvolution procedure.

The performance of the SA-DCT regularized deconvo-
lution algorithm depends on two regularization parameters
(e1 and e2) which are manually tuned and are different for
each experiment. Respectivel§.013,0.040), (0.038,0.045),
(0.062,0.030) and finally (0.10,0.12) are chosen in [2]

TABLE Il
PERFORMANCE COMPARISON BETWEEN OUR ALGORITHM AND OTHER
RESTORATION METHODS FOR EXPERIMENTE&XP1-4

Methods Expl EIXSpI;R (d::ps Expa DY the authors for Expl, Exp2, Exp3 and Exp4 and are
GGMRF-DCT-gradient 902 7.76 533 4.4g optimal for these experiments (see the Matlab procedure
DCT-gradient 810  70L 513 a1a demaSADCT.deblurringcopy.m available on-line at http ad-
GGMRF-gradient 764 671 461 259 drgss given in [2]). By F:ompari;on, our restoration_ m(_ethod
(2009) Oliveiraet al. [7] 860 518 742 278 relies on one regularization functlo.n (see Eq. (6)) whicthés
(2008) Dabovet al. [27] 8.34 . . 481 same for all images and degradation models.
(2008) Chantat al. [15] 9.53 - - 3.03
(2008) Mignotte [4] 7.81 7.14 5.24 3.84 D. Discussion
((228877)) ;:;:ég:t E:I"[[;‘;]] Z:;g 358 ~ Table IV shows the time in seconds and the number of
(2006) G.-Colon & Portilla [8] 733 745 555 ) |terat_|ons that each_ restoration took _for each one of the
(2006) Bioucas-Diat al. [9] [10] | 8.52 i i 297 considered degrad_atlon models_accordmg Eq. (10) (cf.eTabl
(2006) Chantat al. [1] 891 i ) 377 [) and for our algorithm (cf. Algorithm I1) (system used: AMD
(2006) Foiet al. [2] 858 829 634 455 Athlon 64 Progessor 3500+2.2. GHz, 4435.67 bogomips
(2006) Mignotte [3] 823 758 570 163 gnd non-optimized code running on .L|nux). Source _gode
(2006) Bioucas-Dias [12] 810 740 515 285 (in C++ language) of our algorithm (with the set of initial,
(2005) Figueiredo & Nowak [11] || 8.16 7.46 524 2.84 degraded and restored images) are publicly available at the
(2004) Katkovniket al. [29] 8.23 B ) B following http address www.iro.umontreal.eahignotte/ Re-
(2004) Neelamanét al. [5] 7.30 B} _ B searchMaterial/sfrbr.html in order to make possible evant
(2003) Figueiredo & Nowak [13] || 7.59 693 488 294 comparisons with future restoration methods. Let us notiae
(2001) Jalobeanet al. [30] . 6.75  4.85 B our restoration procedure could be computationally optédi
(1998) Liu & Moulin [31] . - . 1.08 since numerous fast Very Large Scale Integration (VLSIpshi
(1996) Banham & Katsaggelos [6] 6.70 - B, - exist for computing more quickly the DCT transform.

Fig. 3 shows the evolution of the ISNR and its convergence
as a function of the number of iterations for respectively th

local polynomial approximation - intersection of com‘idencdegrad"]ltion models Exp3 and Exp4.

intervals). To summarize, the SA-DCT in [2] thus efficiently We can notice that the proposed method leads to compet-
fuses a DCT-based filtering and the result of a segmentatitive restoration results for various level of blur and ris
applied on the deblurred input image by a Wiener filteringe Thdegradations in benchmark tests and gives a good compro-
segmentation used in this method (as in [3]) implicitly @it mise between restoration results for the high and low BSNR
an image prior model expressing that any real-world imagease. Besides, the proposed restoration method, comlihéng
can be approximated by an union of a number of nonovéeGMRF and DCT constraints always significantly improves
lapping and distinct regions (of uniform grey level valuBy. the ISNR result comparatively to a single GGMRF or DCT
comparison, our restoration algorithm aims at fusing a DCPrior model in all the considered degradation models. This
based sparsity and an edge preserving GGMRF constraiteisds to demonstrate the ability of our strategy to effityent
which favors edge sparsity in the recovered image in orderficse these two different constraints on the restorationltes



TABLE IV
TIME IN SECONDS AND ITERATION NUMBER FOREXP1-6
. | Time (sec)| Iterations
o
ko) Expl | 525 4869
é Exp2 | 117 750
% Exp3 | 62 400
= Exp4 | 78 400
£ Exp5 | 74 400
% Exp6 | 1068 400
1F i
0.5 1 1 1 1 1 1 1 . . . . “ .
0 50 100 150 200 250 300 350 400 [2] A. Foi, K. Dat_)o_v, V. Ka_tkovnlk, and K. E_glazarlan, S_ha|aelapt|ve
| i DCT for denoising and image reconstruction,” Rioceeding of SPIE
terations Electronic Imaging 2006, Image Processing: Algorithms &ystems V
Fig. 3. Evolution of the SNR improvement for i@ MERAMAN image with vol. 6064A-18, http://www.cs.tut.fitfoi/SA-DCT/, January 2006.
the Exp3 and Exp5 degradation models. [3] M. Mignotte, “A segmentation-based regularization ntefor image
deconvolution,”IEEE Trans. Image Processingol. 15, no. 7, pp. 1973—
1984, 2006.

. . . &4] ——, “A non-local regularization strategy for image dewolution,”
Figures 1 and 2 show visually some restorations results for pattern Recognition Letters/ol. 29, no. 16, pp. 2206-221, December

Expl and Exp2 Let us also add that the estimation Bf 2008. _ ‘ _ _
(WhiCh then ensures the estimation@f and the number of [5] R. Neelamani, H. Choi, and R. Baraniuk, “ForwaRD: Fouxieavelet
. . Id be i d si b ISNR | b regularized deconvolution for ill-conditioned system$EZEE Trans.
Iterathns cou ellmprove since ette.r results aan Signal Processingvol. 52, no. 2, pp. 418-433, 2004.
found if we supervised (by manually tuning) these two valueg] M. R. Banham and A. K. Katsaggelos, “Spatially adaptivevelet-based
for each tested experlmental result presented in this paper multiscale image restorationfEEE Trans. Image Processingol. 5,
. . no. 4, pp. 619-634, 1996.

The Soft thrEShOIdmg rule (Step 2. Algorlthm 1) does n0(§7] J. Oliveira, J. Bioucas-Dias, and M. Figueiredo, “Adeettotal varia-
allow to improve the ISNR results compared to the hard ~ tion image deblurring: A majorization-minimization appah,” Signal
thresholding rule used in our GGMRF-DCT-based restoration ~Processingvol. 89, no. 9, pp. 1683-1693, September 2009.

. . 8] J. A. Guerrero-Colon and J. Portilla, “Deblurring-besbising using
procedure. The ISNR results for the different experimengs a spatially adaptive gaussian scale mixtures in overcorplgtamids,” in

equivalent or less good. More precisely, we respectivetgiob IEEE International Conference on Image Processing (ICB);00l. |,
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