TABLE I

AVERAGE PERFORMANCE, IN TERM OF PRI MEASURE, OF SEVERAL SEGMENTATION (INTO REGIONS) ALGORITHMS (ABOVE PRI=0.75 AND RANKED ACCORDING TO THEIR MAXIMUM PRI SCORE) ON THE BSD300

ALGORITHMS	PRI [1]
HUMANS (in [2])	0.87
VOIBFM	0.81
-2011- gPb-owt-ucm [3]	0.81
-2010- PRIF [4]	0.80
-2008- CTex [5]	0.80
-2009- MIS [6]	0.80
-2011- SCKM [7]	0.80
-2008- FCR [8]	0.79
-2012- SFSBM [9]	0.79
-2004- FH [10] (in [2])	0.78
-2011- MD2S [11]	0.78
-2009- HMC [12]	0.78
-2009- Consensus [13]	0.78
-2009- Total Var. [14]	0.78
-2009- A-IFS HRI [15]	0.77
-2001- JSEG [16] (in [5])	0.77
-2011- KM [17]	0.76
-2007- CTM [2], [18]	0.76
-2006- Av. Diss. [19] (in [3])	0.76
-2008- St-SVGMM [20]	0.76
-2011- SCL [21]	0.76
-2005- Mscuts [22] (in [14])	0.76
-2003- Mean-Shift [23] (in [2])	0.75
-2008- NTP [24]	0.75
-2010- iHMRF [25]	0.75
-2005- NCuts [22] (in [3])	0.75
-2006- SWA [26] (in [3])	0.75

TABLE II Average performance of our algorithm for different performance measures (lower is better) on the BSD 300

ALGORITHMS	VoI	GCE	BDE
HUMANS	1.10	0.08	4.99
VOIBFM	1.88	0.20	9.30
PRIF [4]	1.97	0.21	8.45
SCKM [7]	2.11	0.23	10.09
MD2S [11]	2.36	0.23	10.37
FCR [8]	2.30	0.21	8.99
CTM [2], [18]	2.02	0.19	9.90
Mean-Shift [23] (in [2])	2.48	0.26	9.70
NCuts [27] (in [2])	2.93	0.22	9.60
FH [10] (in [2])	2.66	0.19	9.95

REFERENCES

- [1] R. Unnikrishnan, C. Pantofaru, and M. Hebert, "A measure for objective evaluation of image segmentation algorithms," in *Proc. of the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '05), Workshop on Empirical Evaluation Methods in Computer Vision*, vol. 3, June 2005, pp. 34–41.
- [2] A. Y. Yang, J. Wright, S. Sastry, and Y. Ma, "Unsupervised segmentation of natural images via lossy data compression," *Computer Vision and Image Understanding*, vol. 110, no. 2, pp. 212–225, May 2008.
- [3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, "Contour detection and hierarchical image segmentation," *IEEE Trans. Pattern Anal. Machine Intell.*, vol. 33, no. 5, pp. 898–916, May 2011.
- [4] M. Mignotte, "A label field fusion Bayesian model and its penalized maximum rand estimator for image segmentation," *IEEE Trans. Image Processing*, vol. 19, no. 6, pp. 1610–1624, 2010.
- [5] D. E. Ilea and P. F. Whelan, "Ctex- an adaptive unsupervised segmentation algorithm on color-texture coherence," *IEEE Trans. Image Processing*, vol. 17, no. 10, pp. 1926–1939, 2008.
- [6] M. Krninidis and I. Pitas, "Color texture segmentation based on the modal energy of deformable surfaces," *IEEE Trans. Image Processing*, vol. 7, no. 18, pp. 1613–1622, 2009.
- [7] M. Mignotte, "A de-texturing and spatially constrained K-means approach for image segmentation," *Pattern Recognition letter*, vol. 32, no. 2, pp. 359–367, January 2011.
- [8] ——, "Segmentation by fusion of histogram-based K-means clusters in different color spaces," IEEE Trans. Image Processing, vol. 17, pp. 780–787, 2008.

- [9] —, "A non-stationary mrf model for image segmentation from a soft boundary map," Pattern Analysis and Applications, March 2012.
- [10] P. Felzenszwalb and D. Huttenlocher, "Efficient graph-based image segmentation," International Journal on Computer Vision, vol. 59, pp. 167–181, 2004.
- [11] M. Mignotte, "MDS-based multiresolution nonlinear dimensionality reduction model for color image segmentation," *IEEE Trans. Neural Networks*, vol. 22, no. 3, pp. 447–460, March 2011.
- [12] H. Rachid and M. Mignotte, "A hierarchical graph-based Markovian clustering approach for the unsupervised segmentation of textured color images," in Proc. of the IEEE International Conference on Image Processing, Cairo, Egypt, November 2009, pp. 1365–1368.
- [13] S. Ghosh, J. Pfeiffer, and J. Mulligan, "A general framework for reconciling multiple weak segmentations of an image," in *Proc of the Workshop on Applications of Computer Vision*, (WACV'2009), Snowbird, Utah, USA, 2009 December, pp. 1–8.
- [14] M. Donoser, M. Urschler, M. Hirzer, and H. Bishof, "Saliency driven total variational segmentation," in *Proc. of the IEEE Int'l Conf. Computer Vision* (ICCV'09), 2009.
- [15] M. M. Mushrif and A. K. Ray, "A-IFS histon based multithresholding algorithm for color image segmentation," *IEEE Signal Processing Lett.*, vol. 16, no. 3, pp. 168–171, 2009.
- [16] Y. Deng and B. S. Manjunath, "Unsupervised segmentation of color-texture regions in images and video," *IEEE Trans. Pattern Anal. Machine Intell.*, vol. 23, no. 8, pp. 800–810, 2001.
- [17] M. B. Salah, A. Mitiche, and I. B. Ayed, "Multiregion image segmentation by parametric kernel graph cuts," *IEEE Trans. Image Processing*, vol. 20, no. 2, pp. 545–557, 2011.
- [18] Y. Ma, H. Derksen, W. Hong, and J. Wright, "Segmentation of multivariate mixed data via lossy coding and compression," *IEEE Trans. Pattern Anal. Machine Intell.*, vol. 29, no. 9, pp. 1546–1562, 2007.
- [19] L. Bertelli, B. Sumengen, B. Manjunath, and F. Gibou, "A variational framework for multi-region pairwise similarity-based image segmentation," *IEEE Trans. Pattern Anal. Machine Intell.*, vol. 30, no. 8, pp. 1400–1414, 2008.
- [20] G. Sfikas, C. Nikou, and N. Galatsanos, "Edge preserving spatially varying mixtures for image segmentation," in *Proc. of the IEEE International Conference on Computer Vision and Pattern Recognition*, vol. 1, Anchorage, AK (USA), June 2008, pp. 1–7.
- [21] R. Huanga, N. Sangb, D.Luoc, and Q. Tangd, "Image segmentation via coherent clustering in 1*a*b* color space," *Pattern Recognition Letters*, vol. 32, no. 7, pp. 891–902, 2011.
- [22] T. Cour, F. Benezit, and J. Shi, "Spectral segmentation with multiscale graph decomposition," in *Proc. of the IEEE International Conference on Computer Vision and Pattern Recognition*, 2005.
- [23] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 5, pp. 603–619, 2002.
- [24] J. Wang, Y. Jia, X.-S. Hua, C. Zhang, and L. Quan, "Normalized tree partitionning for image segmentation," in *Proc. of the IEEE International Conference on computer vision and pattern recognition*, Anchorage, AK (USA), June 2008, pp. 1–8,.
- [25] S. Chatzis and G. Tsechpenakis, "The infinite hidden Markov random field model," IEEE Trans. Neural Networks, vol. 21, no. 6, pp. 1004–1014, 2010.
- [26] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt, "Hierarchy ans adaptivity in segmenting visual scenes," Nature, vol. 442, pp. 810-813, 2006.
- [27] J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 888–905, 2000.