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Département d’informatique et de recherche opérationnelle
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RÉSUMÉ

Ce mémoire de mâıtrise présente une nouvelle approche non supervisée pour

détecter et segmenter les régions urbaines dans les images hyperspectrales. La

méthode proposée nécessite trois étapes. Tout d’abord, afin de réduire le coût

calculatoire de notre algorithme, une image couleur du contenu spectral est es-

timée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur

deux critères complémentaires mais contradictoires de bonne visualisation; à savoir

la précision et le contraste, est réalisée pour l’affichage couleur de chaque image

hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non ur-

baines, la seconde étape consiste à extraire quelques caractéristiques discriminantes

(et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous

avons extrait une série de paramètres discriminants pour décrire les caractéristiques

d’une zone urbaine, principalement composée d’objets manufacturés de formes sim-

ples géométriques et régulières. Nous avons utilisé des caractéristiques texturales

basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de

la matrice de co-occurrence combinés avec des caractéristiques structurelles basées

sur l’orientation locale du gradient de l’image et la détection locale de segments de

droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le

problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper

des données de dimensions élevées, nous avons décidé de classifier individuelle-

ment, dans la derniére étape, chaque caractéristique texturale ou structurelle avec

une simple procédure de K-moyennes et ensuite de combiner ces segmentations

grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de

segmentations. Les expérimentations données dans ce rapport montrent que cette

stratégie est efficace visuellement et se compare favorablement aux autres méthodes

de détection et segmentation de zones urbaines à partir d’images hyperspectrales.

Mots clés:

images AVIRIS, détection et segmentation de régions urbaines, fusion de seg-
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mentations, gradient, matrice de co-occurrence, image hyperspectrale, K-moyennes,

détection de segment de droite, réduction de dimensionnalité non-linéaire.
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ABSTRACT

This master’s thesis presents a new approach to urban area detection and seg-

mentation in hyperspectral images. The proposed method relies on a three-step

procedure. First, in order to decrease the computational complexity, an informative

three-color composite image, minimizing as much as possible the loss of informa-

tion of the spectral content, is computed. To this end, a non-linear dimensionality

reduction step, based on two complementary but contradictory criteria of good vi-

sualization, namely accuracy and contrast, is achieved for the color display of each

hyperspectral image. In order to discriminate between urban and non-urban areas,

the second step consists of extracting some complementary and discriminant fea-

tures on the resulting (three-band) color hyperspectral image. To attain this goal,

we have extracted a set of features relevant to the description of different aspects

of urban areas, which are mainly composed of man-made objects with regular or

simple geometrical shapes. We have used simple textural features based on grey-

levels, gradient magnitude or grey-level co-occurence matrix statistical parameters

combined with structural features based on gradient orientation, and straight seg-

ment detection. In order to also reduce the computational complexity and to avoid

the so-called “curse of dimensionality” when clustering high-dimensional data, we

decided, in the final third step, to classify each individual feature (by a simple

K-means clustering procedure) and to combine these multiple low-cost and rough

image segmentation results with an efficient fusion model of segmentation maps.

The experiments reported in this report demonstrate that the proposed segmenta-

tion method is efficient in terms of visual evaluation and performs well compared

to existing and automatic detection and segmentation methods of urban areas from

hyperspectral images.

Keywords:

AVIRIS images, detection, features extraction, fusion of label field, gradient,

GLCM, hyperspectral image, K-means clustering, line segment detector, non-linear
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dimension reduction, straight line, histogram, segmentation, urban area.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent decades, urban detection and mapping from hyperspectral imagery

has become important and crucial for several military and civilian purposes. The

main application is Geographic Information Systems (GIS) update, which enables

the study and planning of urban growth and sprawl. GIS are useful in order to

explore suitable strategies for sustainable urban environmental development and

to do periodic urban development planning. In addition, it is a real source of

information in diverse fields such as geography, cartography (it can greatly help

local agencies to update land maps and draw city plans), surveillance, city planning,

and so on.

Very high resolution aerial and satellite images provide valuable information

for this purpose. Unfortunately, these images cover very large areas and these

(urban) areas are also dynamic environments. Therefore, the manual and periodic

inspection of these satellite images is very hard and prone to errors. In this study,

we propose an automatic and reliable segmentation method for detecting urban

areas.

1.2 Related Background & Proposed Approach

A number of methods have been proposed and studied in the last decades to

solve the difficult problem of satellite or aerial image segmentation and especially

the urban area detection problem with unsupervised techniques. Most of these

methods use a preliminary texture feature extraction step whose goal is to charac-

terize each meaningful textured region (urban or not) with statistical (or textural,

geometrical, morphological, fractal, etc.) image features which are then either char-

acterized by their (parametric or non-parametric) distribution, or simply gathered
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in a D-dimensional (feature) vector. This feature vector is then exploited in a

subsequent clustering or classification procedure. In this classical strategy, years of

research in segmentation have demonstrated that significant improvements on the

final segmentation results may be achieved either by using notably more sophisti-

cated feature selection procedures, or more elaborate clustering techniques.

For example, Li and Narayanan [LN04] have proposed to detect urban area

based on Gabor wavelet and the support vector machine (SVM). Karathanassi et

al. [KIR00] have used building-density information to classify residential regions. In

a subsequent study, Unsalan and Boyer [UB04a,UB04b,Uns06] have identified and

used a set of structural features to classify urban regions in panchromatic satellite

images. Zhong and Wang [ZW07] have extracted urban regions in greyscale satellite

images using combination of statistical models and multilevel structural features.

Similar to the work of Zhong and Wang [ZW07], we have also exploited mul-

tilevel structural cues; more precisely, we have based these structural features on

statistics computed from the gradient orientation and straight segment detection.

We have noticed that this set of features is especially relevant to describe differ-

ent aspects of urban areas, which are mainly composed of manufactured objects

exhibiting regular or simple geometrical shapes. We have also combined these

structural cues with some classical textural features based on grey-levels, gradient

magnitude or grey-level co-occurence matrix statistical parameters. Nevertheless,

in this project, and in contrast to the work of Zhong and Wang, we have decided

to directly use hyperspectral data as raw data instead of panchromatic satellite or

aerial images.

A hyperspectral image is a kind of uncompressed image which is obtained di-

rectly from multispectral remote sensors such as the Landsat Thematic Mapper

and SPOT XS. These hyperspectral imaging sensors, which have revolutionalised

the field of remote sensing by combining the science of spectroscopy with that of

imaging, have the ability to simultaneously collect the same image scene on many

bands of the light spectrum, in dozens or hundreds of narrow, adjacent spectral

2



bands (see Fig. 1.1). The resulting 3D image, or hyperspectral data-cube, makes

it possible to derive, for each pixel, a continuous and unique reflectance spectrum

which is of great importance, for example, in geology and geophysics for identi-

fying terrestrial surface materials such as particular mineral deposits or types of

vegetation.

Figure 1.1: Hyperspectral image [Nat,Hyp]
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Hyperspectral images provide the potential for more accurate and detailed in-

formation than common aerial or panchromatic satellite images. However, algo-

rithms that calculate and analyze these raw high-dimensional data have a very high

time complexity and are computationally expensive. In order to decrease compu-

tational complexity without restricting too much the inherent accuracy of these

images, we have to compress the hyperspectral data cube in an informative three-

color composite image, minimizing as much as possible the loss of information of

the spectral content. To attain this goal, a non-linear dimensionality reduction

model [Mig12], based on two complementary but contradictory criteria of good

visualization, namely accuracy and contrast, is applied to the color display of each

hyperspectral image. More precisely, the dimensionality reduction step used in

this study achieves a trade-off between the fidelity to the un-reduced (raw) spec-

tral data (accuracy) and some expected properties, such as the contrast, of the final

color image. This subsequently allows good separability of each observed existing

material in the final visualized color image.

Another contribution of this work is to consider a different approach for the

classification procedure. Instead of simply gathering together in a high-dimensional

(feature) vector all the the textural and structural features, we decide, in the final

third step, to classify each individual feature by a simple K-means clustering pro-

cedure and to combine these multiple low-cost, weak and roughly estimated image

segmentation results with a fusion model of segmentation maps such as the one

proposed in [Mig08,Mig10a].

The idea behind a fusion approach is that it is very difficult to find a segmen-

tation algorithm and/or selected features which could perfectly segment all hyper-

spectral images into two homogeneous regions such as urban and non-urban areas.

On the other hand, it is logical to think that we could gain from combining the

strengths and features of multiple segmentation maps which, individually, might

produce some poor segments (i.e., a poor segmentation result for some sub-parts

4



of the image) but for which there also often exist good segments. A clever merging

of these segmentation results, with poor segments considered as noise (and good

segments as reliable information), could produce a superior consensus segmentation

than any of the individual input segmentations [Mig08,Mig10a]. This strategy also

allows us to both reduce the computational complexity and to avoid the so-called

“curse of dimensionality” when clustering high-dimensional data.

1.3 Project Structure

The overall procedure is illustrated in Figure 1.2.

Figure 1.2: Structure of the project
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The remainder of this master’s thesis is organized as follows. Chapter 2 presents

the broad theoretical and methodological background used in this study, especially

the non-linear dimensionality reduction model which will be used, the Line Segment

Detector (LSD) [vGJMR08] exploited in the structural feature extraction step, and

finally the fusion model of segmentation maps. Chapter 3 presents the feature ex-

traction step and the set of relevant structural and textural features whose goal

is to describe the discriminant characteristics of the urban area, which are mainly

composed of man-made objects with regular or simple geometrical shapes. Fi-

nally, chapter 4 shows various experiments and chapter 5 presents a discussion and

conclusion.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Dimensionality Reduction Model

Hyperspectral images are generated from airborne sensors like the Landsat The-

matic Mapper, SPOT XS, NASA’s Airborne or AVIRIS etc. These imaging sensors

allow us to collect the same image scene on many bands of the light spectrum. In

this way, the resulting 3D image or hyperspectral data-cube1 makes it possible to

derive, for each pixel, a continuous and unique reflectance spectrum which is of

great importance, for example, in geology and geophysics, for identifying earth’s

surface materials such as particular mineral deposits or types of vegetation. In

practical applications, it is useful if this huge amount of high dimensional spectral

data information is reduced to three dimensions. This allows us to quickly display

this data cube into an informative color image (with red, green and blue channels)

and to provide a quick overview of existing materials and their distribution in the

image scene for further analysis [Mig10b].

To this end, dimensionality reduction methods based on linear projection meth-

ods such as Principal Component Analysis (PCA) [JR99] (and its numerous vari-

ants [SG84, Rog94, CD99]), Projection-Pursuit (PP) [JRACVR07], Independent

Component Analysis (ICA) [DQWR03], linear projection-based strategy [JG05,

JGC07] (and some similar strategies [KC10]), Multiresolution [RWK97] and wavelet

decompositions [MLM95] have commonly been proposed in the literature to obtain

the first three principal R, G and B image components to be finally visualized.

1The hyperspectral cubes used in this work are from the National Aeronautics and Space
Administration Jet Propulsion Laboratory AVIRIS system [VGC+93], which captures 224 spec-
tral bands, ranging from 400 − 2500 nm with a 1995 Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS). The image size is usually around 512 × 614 pixels. We have used the re-
flectance data which is atmospherically corrected to compensate for absorption and the spectrum
of the sun. The AVIRIS data are generously available for download on-line at http address
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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However, it should be noted that the use of ICA or more generally, the use of a

mutual information criterion [TA05], is based on the assumption of mutually inde-

pendent sources, which is not really the case of hyperspectral data [ND05]. In order

to overcome the main limitation of these above-mentioned linear projection meth-

ods (reviewed in [DRCM08]) which usually do not consider the inherent non-linear

characteristics of the hyperspectral data [BAF05], an alternative idea consists of

exploiting a (more time-consuming) non-linear dimensionality reduction method

such as the locally linear embedding (LLE) method [MSB07] or the Multidimen-

sional Scaling (MDS) based method [Mig08,CRHW09,Mig10b] and preserving the

set of pairwise Euclidean spectral distances in the perceptual LAB space.

Obviously, every representation of a high dimensional space with only three

dimensions (R, G and B channels) induces simplification and loss of information

and should be done according to the most appropriate criterion. In this work,

we rely on the non-linear dimensionality reduction model proposed in [Mig10b].

This dimensionality reduction model is based on a bi-criteria global optimization

approach which is derived from two well-known and contradictory criteria of good

visualization, useful in any multidimensional imagery color display, namely; accu-

racy, with the preservation of spectral distance criterion and contrast, guaranteeing

that colors are well distinguished or concretely allowing the good separability of

each observed existing material in the final visualized color image. In fact, the

preservation of the spectral distance criterion alone does not guarantee that colors

can be well distinguished. The final image may have low contrast, and consequently

high contrast is necessary to get a clear visualization. This is attained, however, at

the cost of information loss. We will briefly recall this model. For further details,

the reader should refer to [Mig10b].

As already said, the main goal of the dimensionality reduction model is to

preserve, as a first criterion, the distance between the spectral vector of each pair

of pixels and their final perceptual color distance in the final displayed color image.

The second criterion is related to the notion of contrast or the separability of features
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and is by definition expressed by the average distance between each pair of pixels in

LAB space (which is a perceptually uniform color space, i.e., the same amount in a

color value produces a change of about the same visual importance). To this end,

let u be the three-dimensional vector (u = (L A B)t) corresponding to the three

L, A, B color bands of the final image to be displayed. The dimensionality reduction

model related to this bi-criteria color display model seeks to find û = (L̂ Â B̂)t

which minimizes the following bi-criteria objective function:

û = arg minu

∑

s,ts6=t

{(

βs,t −
∥
∥φ(us)− φ(ut)

∥
∥

2

)2

− γ ‖φ(us)− φ(ut)
∥
∥

2

2

}

(2.1)

where the summation
∑

s,ts6=t

is over all the pairs of sites existing in the final image

to be displayed, and βs,t denotes the Euclidean distance associated between two

spectral vectors, associated with the pair of sites at spatial locations s and t. The

first term is related to the preservation of the spectral distance criterion, and the

second corresponds to the contrast criterion. Here, γ is the value controlling the

contribution of these two criteria, and φ(ûs = (L̂s Âs B̂s)
t) is the function that

takes into account the possible saturation effect, for each pixel, in the finally dis-

played RGB color space. More precisely, this function realizes the three following

operations. First, it converts the LAB color values into RGB color values. Sec-

ond, it ensures that all converted pixels are inside the RGB color space by setting

negative pixel values to 0 and those that are greater than 255 to 255. Third, it con-

verts back the RGB color values into the LAB color space. This function enables

the contradiction existing between these two criteria to be taken into account. A

high contrast (second criterion) in the perceptual LAB color space (see 2.1) can be

obtained at the cost of numerous saturated pixels which can no longer satisfy the

accuracy criterion of the resulting color mapping (first criterion).

In this context, the dimensionality reduction model is cast as a global opti-

mization problem of a complex (non-convex) cost function over the LAB color

value space. In order to find a particular configuration of û that efficiently min-

imizes this complex energy function, we use the three-step optimization strategy
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described in [Mig10b], namely:

1. First Step

First, we ignore both the contrast criterion (i.e., we take γ = 0.0) and the

saturation effect (we take φ(u) = u) and only keep the distance information

of spectral image. In this context, the objective function to be minimized is

equivalent to the loss function also used in multidimensional scaling methods

for the estimation of a low-dimensional mapping from high-dimensional data:

û = arg minu

∑

s,ts6=t

(

βs,t −
∥
∥us − ut

∥
∥

2

)2

. (2.2)

Further, we use the FastMap algorithm [FL95] (or its variants [Pla05]) either

directly for estimating a three dimensional (3D) embedding, i.e., for the 3D

mapping u = (L A B)t (see Eq. (2.2)) or for the separate estimation of L

and A and B (see Eq. (2.3)). Each (one-dimensional) mapping being defined

(in our case) for the three equal-sized subsets covering the overall available

wavelengths of the original hyperspectral image, i.e.,







L = arg min
∑

s,ts6=t

(

β
[1: 1

3
K]

s,t − |Ls − Lt|
)2

A = arg min
∑

s,ts6=t

(

β
] 1
3
K: 2

3
K]

s,t − |As − At|
)2

B = arg min
∑

s,ts6=t

(

β
] 2
3
K:K]

s,t − |Bs −Bt|
)2

(2.3)

where β
[k0:k1]
s,t denotes the Euclidean distance between the spectral bands k0

and k1 and Ls, As, Bs are respectively the L, B and A components at the

site (or pixel) s. Experimental results in [Mig10b] show that minimizing

Eq. (2.3) gives a better initialization step to our final optimization problem

(this is certainly due to the fact that the FastMap is all the more efficient

when the embedding is achieved at very low dimensions [Pla05]). In order to

now ensure that the LAB color values of the 3D mapping u are mostly not

saturated in the RGB space (i.e., a very small minority of pixels are outside
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the RGB color space), we use a simple linear stretching of the L, A, B color

values such as L ∈ [0 : 100], and A, B have a maximal amplitude of 100

(with a zero mean). Mathematically, this helps ensure that φ(us) = us for

all sites s and concretely that there are no saturated pixels which could alter

the preservation of spectral distance. This linear stretching allows us to find

the color mapping that minimizes the following objective function criterion

û = arg minu

∑

s,ts6=t

(

βscaled

s,t −
∥
∥φ(us)− φ(ut)

∥
∥

2

)2
(2.4)

where φ(us) ≈ us, due to our suitable range of LAB color values and βscaled

s,t =

ρ βs,t. Here, ρ is a scaling factor ensuring that, after the linear stretching,

the pairwise distances of the 3D mapping u and the distance of the pairwise

spectral vectors are still preserved. This scaling factor is defined by

ρ =

∑

s,t d
stretch

s,t
∑

s,t ds,t

(2.5)

where ds,t and dstretch

s,t are respectively the set of pairwise Euclidean distances

of the image before and after the linear stretching process.

Figure 2.1: LAB perceptual color space [Son]
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2. Second Step

At this stage, we search for the maximal increase in the contrast of the image

by multiplying the LAB color values by a spatially variant positive scaling

factor (at a price that some pixels will become saturated in the RGB space)

or by estimating the spatially invariant scaling factor k for which

k̂ =arg mink

∑

s,ts6=t

{(

kβscaled

s,t −
∥
∥φ(kus)− φ(kut)

∥
∥

2

)2

−γ ‖φ(kus)− φ(kut)
∥
∥2

2

} (2.6)

In order to do this estimation, we use a simple local discrete grid search, for

the parameter k in a suitable range (k ∈ [1.0−3.0] with a fixed step size set to

0.1). In order to decrease the computational time, we consider that each site

is connected only with its four nearest neighbors and four equally spaced other

pixels located within a square neighbourhood window of fixed size Ns = 61

pixels (empirically chosen based on trial and error) centered around the pixel

(see Fig. 2.2). Since the above-mentioned process can saturate some pixels in

Ns= 61 

Figure 2.2: Spatial neighborhood

the RGB space and that may alter the optimal value of kβscaled

s,t , we refine the

estimation of this parameter with a least-squares estimation. More precisely,

kβscaled

s,t is corrected by the factor [Pla05]

ρ =

∑

s,t β̂
2
s,t/β

2
s,t

∑

s,t β̂s,t/βs,t

(2.7)
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where βs,t is the true (unembedded) distance, using the set of pairwise spectral

vectors of the hyperspectral image and β̂s,t is the estimated (in the embedded

space) distance, using the set of pixel pairs in the stretched u mapping.

3. Third Step

At this stage, we are close to the solution of the optimization problem ex-

pressed in Eq. (2.1). We further refine the last obtained estimation (Eq.

(2.6)) by a local exploration around the current solution using the Metropo-

lis algorithm [MRR+53] and a low radius of exploration (see Algorithm 1).

Algorithm 1
Local exploration with Metropolis

E Energy function to be minimized
Tl Temperature at Iteration stepl
a Cooling schedule parameter

r Radius of exploration, real∈]0, 1]
T0, Tf Initial and final temperature
LS

max Maximal number of iterations

1. Initialization
a←

(Tf

T0

) 1

LS
max

2. Local Exploration

while l < LS
max do

for each pixel and each color channel with value
xs at site s do

• Compute∆Energy = E(ys)− E(xs) with
ys ∈ [xs − r : xs + r] (xs, ys ∈ [0.0:1.0])

• if (∆Energy < 0) Replacexs by ys

• else Replacexs by ys with
probability⊲ exp

(

−∆Energy

Tl

)

l← l + 1 andTl←T0 al

Figure 2.3: Algorithm 1. Local exploration with Metropolis [Mig12]
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Finally, we get a LAB color space image as a feasible solution for our bi-criteria

optimization problem, and we need to convert it into RGB color space for the

purpose of visualization. We notice (see Fig. 2.4) that the different regions can

be easily identified and very fine details are visible without artifacts, such as noise

or blurring artifacts due to the reduction/compression model or spectral ringing

artifacts, glints and anomalous fluorescence hot spots.

For a set of increasing discretized values of γ starting from γ = 0 (thus increas-

ing the contrast of the image), we can then compute the value of the preservation

of spectral distance based measure (with a correlation score measuring the agree-

ment between each pairwise spectral vector in the full and reduced dimension; a

correlation value equal to 1 means that there is no loss of information), and stop

when this measure starts to decrease significantly or when this measure is below

a fixed value of accuracy. For example, for the bottom-right image of Fig. 2.4

(with γ = 0.4), the contrast enhancement is achieved, relative to the bottom-left

image (γ = 0.3), to the detriment of 6.3 per cent (i.e., 0.95761− 0.895 ≈ 0.063),

of pairs of pixels which can no longer satisfy the agreement between the distance

of spectrums (associated to each pair of pixels) and their perceptual color distance

in the final fused image to be displayed (i.e., 6.3 percent loss of accuracy for this

contrast improvement).
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γ = 0.1, Correlation=0.95181 γ = 0.2, Correlation=0.96071

γ = 0.3, Correlation=0.95761 γ = 0.4, Correlation=0.895

Figure 2.4: Compression results
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2.2 Multiple Feature Extraction Model

2.2.1 LSD Model

In this section, we introduce another important tool for this project. This tool,

recently introduced in [vGJMR10], is an efficient linear-time line segment detector

that gives sub-pixel accurate detection results for a controlled pre-determined num-

ber of false detections according to the a contrario principle (and without requiring

parameter tuning).

In this work, we have used this detector to describe the geometric content

(via some structural features) and the straight lines (or line segments) and regular

structures present in hyperspectral images. More precisely, we have noticed that

the spatial arrangement of these straight lines, over relatively small neighborhoods

(via the computation of some basic statistics) is especially relevant to discriminate

a urban area that is mainly composed of manufactured objects exhibiting regular

or simple geometrical shapes. Indeed, most human-made objects or manufactured

structures, like buildings, bridges, roads etc. are made of flat surfaces and can be

well described by a finite number of straight lines which are often either parallel or

perpendicular.

In contrast to classic edge detectors, this LSD algorithm defines a line segment

as a rectangular region whose points share roughly the same image gradient an-

gle. This algorithm is very efficient for the detection of line segments based on the

empirical discovery made by Burns et al. [BHR86] showing that connected (rectan-

gular) regions with common orientation would almost always coincide with straight

edges.

2.2.1.1 Line Support Region

The LSD algorithm starts by computing the level-line angle at each pixel to

produce a level-line field, i.e., a unit vector field such that all vectors are tangent

to the level line going through their base point. Then, this field is segmented into
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connected regions of pixels that share the same level-line angle up to a certain

tolerance. The whole algorithm can be described in three steps (see also Fig. 2.5):

1. Partition the image into line-support regions by grouping connected pixels

that share similar gradient angles up to a certain tolerance.

2. Approximate each line support region into the best line segment.

3. Validate or not each line segment based on the information in the line-support

region.

Figure 2.5: Growing process of a region [vGJMR10]

The gradient orientation field in Fig. 2.5 is represented by dashes. Marked pixels

are the ones forming the region (from left to right: first, second, and third iterations,

and final result). More precisely, each region starts with one pixel and the initial

region angle is set to be the level line angle (gradient angle) at that pixel. Then, the

pixels adjacent to the region are tested; the ones with gradient orientation equal

or similar to the region angle is added to this region. At each iteration, the region

angle is updated until no new adjacent pixel is added to that region. The region

angle is defined by

arctan =

∑

i sin(angi)
∑

i cos(angi)
. (2.8)

The pseudo-code (RegionGrow, Fig. 2.6) gives more details. Seed pixels

with larger gradient magnitude are tested first as they are more likely to belong

to straight edges. When a pixel is added to a region, it is marked used and never

visited again.
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Figure 2.6: RegionGrow algorithm [vGJMR10]

2.2.1.2 Rectangle Approximation of Regions

A valid line-support region must be associated with a line segment. A line

segment is actually a rectangle, determined by its two endpoints and its width. Its

approximation is shown in Fig. 2.7. Line segments are characterized by a rectangle

determined by its center point, angle of orientation, length, and width. In order

to estimate these parameters, we first regard the region of pixels as a solid object

and the gradient magnitude of each pixel is used as the mass of that point. Then

the center of mass is used to select the center of rectangle. The angle is the main

direction for the line segment (this procedure can lead to an erroneous line angle

estimation when the background shows a slow intensity variation, see [vGJMR08]).

Finally, the length and the width are set to the smallest values that cause the

rectangle to cover the full line support region. The center of the rectangle (cx, cy)
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Figure 2.7: Rectangle approximation of regions [vGJMR10]

is set to

cx =

∑

j∈Region
G(j) · x(j)

∑

j∈Region
G(j)

(2.9)

cy =

∑

j∈Region
G(j) · y(j)

∑

j∈Region
G(j)

(2.10)

where G(j) is the gradient magnitude of pixel j, j runs over the pixels in the region,

the main rectangle’s angle is set to the angle of the eigenvector associated with the

smallest eigenvalue of the matrix:

M =




mxx mxy

mxy myy





with

mxx =

∑

j∈Region
G(j) · (x(j)− cx)

2

∑

j∈Region
G(j)

(2.11)

myy =

∑

j∈Region
G(j) · (y(j)− cy)

2

∑

j∈Region
G(j)

(2.12)

mxy =

∑

j∈Region
G(j) · (y(j)− cy) (x(j)− cx)

∑

j∈Region
G(j)

(2.13)
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Figure 2.8 shows an example of a rectangular approximation of a line-support

region. (Left: Image. Middle: One of the line-support regions. Right: Rectangular

approximation superposed on the line-support region).

Figure 2.8: Example of rectangular approximation [vGJMR10]

2.2.1.3 Line Segment Validation

The line segment validation procedure is to test whether or not a line seg-

ment belongs to foreground, according to the theory of the contrario approach and

the Helmholtz principle as proposed by Desolneux et al. [DMM00]. The so-called

Helmholtz principle states that no detection (of straight lines) should be produced

on an image of noise, in which all gradient angles are independent and uniformly

distributed. Conversely, structured events (all gradient angles in the region cor-

respond to the angle of the rectangle up to a certain tolerance) are defined as

being rare in the a contrario model and have to be considered as non-meaningful

straight lines. Thus, a valid line segment should have many or more aligned points

(i.e., gradient angles corresponding to the angle of the rectangle up to a certain

tolerance). Given an image i and a rectangle r, we denote by k(r, i) the number

of aligned points and n(r) the total number of pixels in r. Then, the expected

number of events is given by

Ntest × PH0
[k(r, I) ≥ k(r, i)] (2.14)

20



Figure 2.9: Example of aligned points [vGJMR10]

where the number of tests Ntest is the total number of possible rectangles being

considered, PH0
is the probability of the background model H0 , and I is a random

image following H0. The H0 stochastic model fixes the distribution of the number

of aligned points k(r, I), which only depends on the distribution of the level line

field associated with I. The background model H0 satisfies the following properties:

1. {LLA(j)}j∈Pixel is composed of independent random variables;

2. LLA(j) is uniformly distributed over [0, 2π];

here, LLA(j) is the level line angle at pixel j. Under hypothesis H0, the probability

that a pixel on a background model is an aligned point is p = τ/π and, as a

consequence of the independence of the random variables LLA(j) , k(r, I) follows

a binomial distribution. Thus the probability term:

PH0
[k(r, I) ≥ k(r, i)] (2.15)

is given by

PH0
[k(r, I) ≥ k(r, i)] = B(n(r), k(r, i), p) (2.16)

where B(n, k, p) is the tail of the binomial distribution:

B(n, k, p) =

n∑

j=k

(
n

j

)

pj(1− p)(n−j). (2.17)
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The number of tests Ntest corresponds to the total number of rectangles. The

exhaustive choice is to take all the rectangles starting and ending at image pixels.

In an N ×M image this gives NM × NM different rectangles,
√

MN different

width values are considered for each one. The total number of possible rectangles

Figure 2.10: Possible detected rectangle [vGJMR10]

in a picture of N×M pixels is NM5/2. The value p is initially set to τ/π, but other

values are also tested to cover the relevant range of values. Finally γ is the number

of different p values. Each rectangle is tested with each p value. The final number

of tests is γ NM5/2. Finally, we could get the Number of False Alarms (NFA):

NFA(r, i) = γ MN5/2 B(n(r), k(r, i), p) (2.18)

This corresponds to the expected number of rectangles which have a sufficient

number of aligned points to be as rare as r under H0. When the NFA is large, this

means that such an event is expected to be non-meaningful. On the other hand,

when the NFA value is small, the event is acceptable. A threshold ǫ is set: we

select the valid line segment which satisfies the inequality: NFA(r, i) ≤ ǫ.
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2.2.1.4 The Complete LSD Algorithm

Algorithm 2 shows a pseudo-code for the complete algorithm. The region grow-

ing process starts with the pixel that has the largest gradient magnitude and ends

with the smallest one (because the straight edges are more likely to be formed by

the pixels with larger gradient value). Line 5: RegionGrow, is used to obtain

a line-support region. Line 6: RectApprox, gives a rectangle approximation of

the region. Line 7: NFA is finally used to validate or not each line-segment, and

we recall that these methods are previously described in Sections 2.2.1.1, 2.2.1.2,

2.2.1.3.

Figure 2.11: LSD complete algorithm [vGJMR10]
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2.2.1.5 Internal Parameters

There are three parameters involved in LSD: ρ, τ , and ǫ. The parameter ρ is a

threshold on the gradient magnitude: pixels with small gradient are not considered.

Desolneux et al. [DMM00] showed that gray level quantification produces errors in

the gradient orientation angle. This error is negligible when gradient magnitude is

large, but can be significant for a small gradient magnitude. We define

| angle error | ≤ arcsin
( q

∆n

)

(2.19)

where q is the noise added in the image and ∆n is the magnitude error between

an ideal image and a real image. We have to reject pixels where the angle error

is larger than angle tolerance τ used in the RegionGrow algorithm. That is, we

impose |angle error| ≤ τ and we get τ = q
sin(τ)

. In this case we set q = 5 and τ is

30 degree after several tests.

2.2.1.6 Structural Features From LSD

In our study, urban and rural regions can be discriminated from several dis-

criminant structural features based on a previous straight line detection step. In

this work, we have considered the following structural features:

• Average line length

• Entropy of line length

• Average line contrast

• Entropy of line contrast

The reason we choose these four features to describe a region is based on the fact

that wilderness and rural areas produce more random line length and lower line

contrast. Consequently, these features allow us to get a good distinction between

urban and rural area. This will be made more explicit in chapter 3.
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2.2.2 GLCM Model

The Grey-Level Co-occurrence Matrix (GLCM), introduced by Haralick [HSD73]

in the 1970s, has proven to be an effective texture descriptor and has since been

used in numerous fields to quantify the textural pattern within an image (given

a specified analysis window). Indeed, various textural parameters calculated from

the grey level co-occurrence matrix help understand the details about the overall

image content. It is defined as “a two dimensional histogram of gray levels for each

pair of pixels, which are separated by a fixed spatial relationship.”The GLCM of

an image is defined by its radius δ and orientation θ. For example, consider a 4×4

matrix with four grey-tone values 0 through 3. A generalized GLCM for such an

image is shown below where number of (i, j) stands for number of times that grey

values i and j have been neighbors satisfying the condition stated.

0 0 1 1
0 0 1 1
0 2 2 2
2 2 3 3

Table 2.1: Grey value

Grey Tone 0 1 2 3
0 ♯(0, 0) ♯(0, 1) ♯(0, 2) ♯(0, 3)
1 ♯(1, 0) ♯(1, 1) ♯(1, 2) ♯(1, 3)
2 ♯(2, 0) ♯(2, 1) ♯(2, 2) ♯(2, 3)
3 ♯(3, 0) ♯(3, 1) ♯(3, 2) ♯(3, 3)

Table 2.2: General form of GLCM

The four GLCM for angles equal to 00, 450, 900 and 1350 and radius equal to 1

are thus given by:

4 2 1 0
2 4 0 0
1 0 6 1
0 0 1 2

Table 2.3: GLCM (δ=1, θ=00)

6 0 2 0
0 4 2 0
2 2 2 2
0 0 2 0

Table 2.4: GLCM (δ=1, θ=900)

After making the GLCM frequency tables, we calculate the probability of each

pair of adjacent pixels for each direction. For example, for Table 2.1 (δ = 1, θ = 00),

the probability of P (0, 0) = 4/(4 + 2 + 1 + 2 + 4 + 1 + 6 + 1 + 1 + 2) = 1/6 = 0.166
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4 1 0 0
1 2 2 0
0 2 4 1
0 0 1 0

Table 2.5: GLCM (δ=1, θ=450)

2 1 3 0
1 2 1 0
3 1 0 2
0 0 2 0

Table 2.6: GLCM (δ=1, θ=1350)

0.166 0.083 0.042 0
0.083 0.166 0 0
0.042 0 0.249 0.042
0 0 0.042 0.083

Table 2.7: Statistics example of GLCM

and then we have probability Table 2.7. According to this probability Table 2.7, it

is now straightforward to compute, for example, the so-called contrast feature for

(δ = 1,θ = 00):

Contrast =
N−1∑

i,j=0

P (i, j)(i− j)2 (2.20)

where N is the total number of grey level in windows. More specifically,

Contrast = 0.166×(0− 0)2 + 0.083×(0− 1)2 + 0.042×(0− 2)2 + 0×(0− 3)2

+ 0.083×(1− 0)2 + 0.166×(1− 1)2 + 0×(1− 2)2 + 0×(1− 3)2

+ 0.042×(2− 0)2 + 0×(2− 1)2 + 0.250×(2− 2)2 + 0.042×(2− 3)2

+ 0×(3− 0)2 + 0×(3− 1)2 + 0.042×(3− 2)2 + 0.083×(3− 3)2

≈ 0.586

There will be some other textural measures which will be based on these GLCM,

such as entropy, energy, correlation, and which will be considered for this project

as textural features. This will be detailed in the following chapter.

2.2.3 Gradient Magnitude and Orientation Model

Histogram of Gradients Orientation (HOG) and Magnitude (HOM) are feature

descriptors often used in computer vision and image processing for the purpose
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of object detection. The technique counts occurrences of gradient orientation and

magnitude in a local window of an image. For example, Dalal and Triggs [DT05]

have successfully used HOG descriptors to solve the problem of pedestrian detection

in static images.

Similar to the method of Dalal and Triggs [DT05], we can also exploit HOG

and HOM in order to efficiently discriminate between man-made and natural struc-

tures by extracting textural features from the histogram estimated on each local

(overlapping) sliding n×n window centered around each pixel to be classified. For

example, if a window contains urban texture (e.g., with buildings) we can likely

obtain a histogram of gradient orientation with two main peaks because of the

common sense that buildings are described by straight lines which are often either

parallel or perpendicular and since most of the buildings are oriented perpendicu-

larly to the streets which are also often parallel (between them).

2.3 Fusion of Segmentation Maps

Fusion of Segmentation Map [Mig08] is our final tool in this project. Each

individual (textural and structural) feature will be clustered independently of the

others with a simple K-means clustering procedure, and a final fusion procedure

will aim to combine these segmentation maps in order to provide a more reliable

and accurate segmentation result. The advantage of a fusion approach, in our case,

is fourfold:

• First, it is very difficult to find a segmentation algorithm and/or selected fea-

tures which could perfectly segment all kinds of hyperspectral images into two

homogeneous regions such as urban and non-urban areas. On the other hand,

it is logical to think that we could gain from combining the strengths and

features of multiple segmentation maps which, individually, might produce

some poor segments (i.e., poor segmentation result for some sub-parts of the

image) but for which there also often exist good segments. A clever merging

of these segmentation results, with poor segments considered as noise (and
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good segments as reliable information), could produce a superior consensus

segmentation than any of the individual input segmentations [Mig08,Mig10a].

• This strategy also allows us to both reduce the computational complexity

and to avoid the so-called “curse of dimensionality” when clustering high-

dimensional data (as would be the case by gathering all the considered textu-

ral and structural features into a unique and high-dimensional feature vector).

Of course, a dimensionality model may be used but every dimensionality re-

duction model implies a loss of information (since, we are not ensured than

the global feature vector lies on an embedded low-dimensional linear or a

non-linear manifold within the higher-dimensional space).

• This strategy avoids the rescaling problem which occurs when different fea-

tures with different units are blended together. Indeed, it prevents that a

similarity measure (used to evaluate the distance between feature vectors

during the clustering procedure) (wrongly) gives a overwhelming importance

to a feature having a larger unit range, and conversely.

• Finally, this fusion strategy will allow simply to take into account the impor-

tant features of a (textured) natural image, i.e., the inherent spatial depen-

dencies between spatial neighbouring sites (which are likely to belong to the

same region).

2.3.1 Label Class Histogram Based Fusion Model

The key idea behind the fusion procedure proposed in [Mig08] is to simply

consider, for each pixel in a fixed window, the local histogram of the class labels of

every segmentation map to be fused, For example, in order to fuse N segmentations

with M classes into a segmentation with P classes, for each pixel we first build N

histograms (N segmentation maps) with M bins (M classes) computed on each

local (overlapping) sliding small (squared) window centered around each pixel to

be classified, in order to get a N ×M-dimensional feature vector for every pixel
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(then normalized to sum to one). We finally use a K-means clustering method to

obtain a segmentation into P classes.

Consequently, in this fusion procedure, two sites for which the local-class-label

histogram (i.e., the mixture of textons in the different color spaces given by the

bins histogram) are not too far away from each other will be in the same class in the

resulting fused segmentation. Inversely, two sites associated to different local-class-

label histograms will likely belong to different classes in the final segmentation.

An example of fusion results is given in Fig. 2.12 (from top to bottom and

left to right; input natural image and six segmentation results obtained by a K-

means clustering on an input image expressed in the RGB, HSV, YIQ, XYZ, LAB

and LUV color spaces with a coarsely quantized color histogram as feature vector

and final segmentation map resulting of the fusion of these six clusterings (bottom

right)).

(a)

(b)

Figure 2.12: Example of fusion result on a natural image [Mig08]
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2.3.2 PRI Based Fusion Model

This fusion of segmentation maps can also be achieved in the Probabilistic Rand

Index (PRI) [Mig10b] sense, with a consensus (or loss) function encoding the set

of constraints, in terms of pairs of pixel labels (identical or not) provided by each

of the segmentations to be fused. The resulting optimization can then be solved

with a multiscale Markovian approach combined with a coarse-to-fine optimization

method (see [Mig10b] for further details). In this framework, the resulting fusion

segmentation map Ŝfusion is defined by maximizing the following full-scale energy

function:

Ŝfusion-PRI = arg min
S

{ ∑

<i,j>

δ(li, lj)
[
1− 2pij

]}

(2.21)

where the set of {pij} is computed with the empirical proportion estimator on the

set of L segmentation Sk (k ≤ L) to be fused with

pij =
1

L

k=L∑

k=1

δ(lSk

i , lSk

j ) (2.22)

where δ is the delta Kronecker function and lSk

i is the label of Sk at site i. For exam-

ple, if a pair of sites < i, j >, over all the segmentations to be fused, have the same

label, pij = 1.0. If a pair of sites < i, j >, over all the segmentations have different

labels, pij = 0.0. Concretely, this term encodes the set of constraints, in terms of

pairs of pixel labels (identical or not), provided by each of the L segmentations to

be fused. The minimization of this term finds the resulting segmentation which

also optimizes the PRI criterion. For more details concerning the minimization of

this function, see [Mig10b].
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CHAPTER 3

FEATURE EXTRACTION

3.1 Introduction

In remote sensing images, urban areas show obvious different textural charac-

teristics from those of non-urban areas. An urban area is a topographical complex

region where man-made constructions are the dominant features. These man-made

structures show several characteristics in terms of various textural and structural

features. In terms of structural features, for example, buildings usually show many

straight-line segments, and their roofs are regular shapes and as already said, build-

ings are described by straight lines which are often either parallel or perpendicular

with two main orientations. In terms of textural features, for example, residential

buildings usually reflect more light than other objects do, thus the grey-levels in

these areas are much brighter with a greater variance.

(a) (b)

Figure 3.1: Different resolution images
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In addition, we have also to take the image resolution into consideration. In

the mid-resolution images (10m per pixel), the urban areas usually show many

short straight line segments produced by buildings and houses (Fig. 3.1(a)). But

in the images with high resolution, (2m per pixel) [3.1(b)], the same buildings are

often much larger and produce not only short line segments but also many long

line segments.

We have implemented three types of features in this project: the textural fea-

tures with respectively the GLCM and the gradient magnitude features; the local

structural features with the gradient orientation features; and, the global struc-

tural features with the straight line based features. The gradient-magnitude and

GLCM features are both grey-level based features: they describe grey-tones change

tendency. While straight line and gradient-orientation features captured relatively

strong or high-level structural information, they are both structure-based features.

We have computed the features by using different window scales according to

the image resolution. The meaning of multiple scales is the same as introduced

in the study in [KH03]. In this case, we set a small window size 4×4 around

every pixel for computing the GLCM features, gradient magnitude and orientation

features since image resolution is low, but for straight line segments we choose a

slightly larger window size 12×12 in the purpose of getting more line segments in

that window. The more line segments there are, the more accurate statistics we

can get.

3.2 Gradient Magnitude Features

At first, we built the gradient magnitude histogram M for each pixel s, and

normalized it by MAXs ∈ {Ms} (i.e., Ms → Ms/MAXs). More precisely, for each

image pixel s, a histogram {H(i)s, i = 1, 2, · · · , N} was computed over the nor-

malized gradient magnitudes contained in a window Ws with size ns×ms centered

around s. The magnitude value of every pixel in the normalized gradient magnitude

image lies between zero and one. We divided [0, 1] into N equal intervals (or bins,
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here N = 20). When the magnitude value falls into the interval [i/N, (i + 1)/N),

the count of Hs(i) increases by one. Using the histogram as an approximate proba-

bility P (i) mass function of gradient magnitude, we can then compute the following

features from this non-parametric gradient magnitude histogram [RK82]

• Magnitude Mean:

µM =

N∑

i=0

P (i) i/N (3.1)

The mean tells us something about the general magnitude of the image. An

urban region usually has a high mean value.

• Magnitude Variance:

σM =
N∑

i=0

P (i)(i/N − µM)2 (3.2)

This describes the spread in the data. Images with urban structure usually

has high standard variance (for the value of the gradient magnitude).

• Magnitude Skewness:

Skewness =
1

σM
3

N∑

i=0

P (i)(i/N − µM)3 (3.3)

The skew measures the asymmetry (unbalance) about the mean in the gra-

dient magnitude distribution. Region with urban structure should have high

standard variance but low skew value.

• Magnitude Energy:

Energy =

N∑

i=0

[P (i)]2 (3.4)

The energy measure tells us something about how gradient magnitude are

distributed. This value gets smaller as the magnitude values are distributed

across more gradient magnitude level values. A high energy means that the
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number of gradient magnitude levels in the image is small. Urban region

usually has higher energy value.

• Magnitude Entropy:

Entropy = −
N∑

i=0

P (i) log2(P (i)) (3.5)

As the magnitude values are distributed among more magnitude levels, the

entropy increases, while if the entropy value in a region is low we consider it

as an urban area.

3.3 Gradient Orientation Features

The gradient orientation features described here are similar with the ones pre-

sented in [KH03]. For each pixel s, the gradients contained in a window Ws with

size ns × ms centered around s form a histogram {Hs(i), i = 1, ..., N} of 18 bins

(with a bin width = 10 degree) for each site s, i.e., instead of increasing the count

+1 each time, we weight each count by the gradient magnitude at that location,

as in [BP01]. Let Eδ be the magnitude of the histogram at the δ-th bin, and N be

the total number of bins in the histogram. Then we smoothed the histogram using

kernel smoothing: the smoothed histogram is given as

E ′
δ =

∑N
i=0 K((δ − i)/h)Ei

∑N
i=0 K((δ − i)/h)

(3.6)

where K is a kernel function with bandwidth h. The kernel K is generally chosen

to be a non-negative, symmetric function. From this smoothed histogram, we then

compute the following features:

• Orientation Mean

µR =
1

N

N∑

δ=0

E ′
δ (3.7)
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If the window Ws contains a smooth patch, the magnitude will be very small

and the mean orientation of the histogram over all the bins will also be

small. On the other hand, if Ws contains a few straight lines and/or edges

embedded in a smooth background, a few bins will have significant peaks in

the histogram in comparison to the other bins, and the mean value over all

bins will be large.

• Central-Shift Moments

vp =

∑N
i=0(E

′
δ − v0)

p+1H(E ′
δ − v0)

∑N
i=0(E

′
δ − v0)H(E ′

δ − v0)
(3.8)

where H(x) is the unit step function such that H(x) = 1 for x > 0, and 0

otherwise. The moment computation in Eq. (3.8) considers the contribution

only from the bins having magnitude above the mean µR. Further, each bin

value above the mean is linearly weighted by its distance from the mean so

that the peaks far away from the mean contribute more. The moments vp

will be small if Ws contains smooth texture, otherwise it is large.

• Junction

βc = | sin(δ1 − δ2)| (3.9)

Since man-made structures are usually of regular shape, the gradient ori-

entation in such a region will show two or one clusters in histogram and

the relation between the peaks of the histograms must thus contain useful

information.

The peaks of the histogram are obtained simply by finding the local maximum

of the smoothed histogram. If the texture in site s contains urban structures

(like buildings, roads, etc.) the junction angle between two peaks should be

around 900 (since the structure is likely to be perpendicular). Let δ1 and δ2

be the ordered orientations corresponding to the two highest estimated peaks

such that E ′
δ1
≥ E ′

δ2
. We compute the junction measure between two peaks

by the Eq. (3.9). A value close to 1 will represent an urban region.
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3.4 Straight Line Features

Straight-line based features encode relatively strong structural information.

Based on the results given by a LSD detector, we have first estimated, for each

pixel, the local histogram of the line length and line contrast around a squared

neighborhood window. We have obtained two histograms {Hs(i), i = 1, ..., N} of

40 bins (with bin-width = 2 pixels) for line length and bin-width = 15 for line

contrast). If a window Ws contains an urban patch, the mean of both line length

and line contrast histograms, over all the bins, will be large, but due to human

activity the entropy value will be small.

• Line Mean

Length mean =

N∑

i=0

Plength(i) (3.10)

• Line Contrast

Contrast mean =

N∑

i=0

Pcontrast(i) (3.11)

• Line Length Entropy

Length entropy = −
N∑

i=0

Plength(i) log2(Plength(i)) (3.12)

• Line Contrast Entropy

Contrast entropy = −
N∑

i=0

Pcontrast(i) log2(Pcontrast(i)) (3.13)

3.5 GLCM Texture Features

The theoretical background of Grey-Level Co-occurrence Matrix (GLCM), has

been already presented in Section 2.2.2. GLCM based textural features consider the

relation between two neighboring pixels in one offset, as the second order statistics

of a texture. The grey-value relationships in a target are transformed into the
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co-occurrence matrix space by a given kernel mask (3×3, 5×5 or 7×7 depending

on image resolution). In the transformation from the image space into the co-

occurrence matrix space, the neighboring pixels in one or some of the eight defined

directions can be used; normally, four directions such as 00, 450, 900, and 1350 are

initially regarded, and the reverse direction (negative direction) are included.

A number of texture features may be extracted from the GLCM (see [HSD73]

and [CTH84]). We use the following notation: G is the number of grey levels

used, µ is the mean value of P (the probability matrix), and µx, µy, αx and αy

are the means and standard deviations of Px and Py. Px(i) is the i-th entry in the

marginal-probability matrix obtained by summing the rows of P (i, j):

Px(i) =

G−1∑

j=0

P (i, j) (3.14)

Py(j) =

G−1∑

i=0

P (i, j) (3.15)

µx =
G−1∑

i=0

iPx(i, j) (3.16)

µy =

G−1∑

j=0

jPx(i, j) (3.17)

αx
2 =

G−1∑

i=0

(Px(i)− µx(i))
2 (3.18)

αy
2 =

G−1∑

j=0

(Py(j)− µy(j))
2 (3.19)

Px+y(k) =

G−1∑

i=0

G−1∑

j=0
︸ ︷︷ ︸

i+j=k

P (i, j) (3.20)
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for k = 0, 1, 2, . . . , 2(G− 1)

Px−y(k) =

G−1∑

i=0

G−1∑

j=0
︸ ︷︷ ︸

|i−j|=k

P (i, j) (3.21)

for k = 0, 1, 2, . . . , G− 1.

Therefore, the general GLCM texture measure is dependent upon kernel size

and directionality. Known measures such as contrast, entropy, energy, dissimilarity,

angular second moment (ASM) and homogeneity are expressed as follows:

• Homogeneity, Angular Second Moment (ASM) :

ASM =

G−1∑

i=0

G−1∑

j=0

P (i, j)2 (3.22)

ASM is a measure of homogeneity of an image. A homogeneous scene (plane

area) will contain only a few grey levels, giving a GLCM with only a few but

relatively high values of P (i, j). Thus, the sum of squares will be high.

• Contrast:

Contrast =

G−1∑

n=0

n2
{G−1∑

i=0

G−1∑

j=0
︸ ︷︷ ︸

|i−j|=n

P (i, j)
}

. (3.23)

Contrast is a measure of the local contrast of an image. The contrast is

expected to be low if the grey levels in a region are similar. High contrast

value indicates urban area.

• Entropy :

Entropy = −
G−1∑

i=0

G−1∑

j=0

P (i, j) log(P (i, j)) (3.24)

Entropy measures the randomness of a grey-level distribution. The entropy

is expected to be high if the grey-levels are distributed randomly throughout

the image. An urban region usually has low entropy.
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• Correlation :

Correlation =
G−1∑

i=0

G−1∑

j=0

ij P (i, j)− µx µy

αx αy

(3.25)

Correlation provides a correlation between the two pixels in the pixel pair.

The correlation is expected to be high if the grey levels of the pixel pairs are

highly correlated. High correlation of grey-levels means this area contains

man-made structures.

• Energy :

Energy =
G−1∑

i=0

G−1∑

j=0

(i− j)2 P (i, j) (3.26)

Energy measures the number of repeated pairs. The energy is expected to be

high if the occurrence of repeated pixel pairs is high, thus a plane area has a

high energy value.

• Cluster Shade :

Shade =

G−1∑

i=0

G−1∑

j=0

(i + j − µx − µy)
3 P (i, j) (3.27)

• Cluster Prominence :

Prom =
G−1∑

i=0

G−1∑

j=0

(i + j − µx − µy)
4 P (i, j) (3.28)
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, each individual (textural and structural) feature (presented in

the previous chapter) is segmented, independently of the others, into two classes

(i.e., urban and non-urban areas) with a simple K-means clustering procedure on

the four AVIRIS test images. This experimentation will allows us to select, in

terms of visual evaluation, a subset of relevant features for our project. The most

reliable features will be used in the final fusion procedure in order to provide a

more reliable and accurate segmentation result.

In the following Figures, (a),(c),(e),(g), represent the original images com-

pressed from hyperspectral data while (b),(d),(f),(h) are the results of a two-class

clustering with the considered textural or structural feature.
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4.1 GLCM Features

4.1.1 Cluster-Shade Average Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Cluster-shade average feature segmentations
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4.1.2 Cluster-Shade Variance Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: Cluster-shade variance feature segmentations
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4.1.3 Cluster-Prominence Average Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Cluster-prominence average feature segmentations
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4.1.4 Cluster-Prominence Variance Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Cluster-prominence variance feature segmentations
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4.1.5 Contrast Average Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Contrast average feature segmentations
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4.1.6 Contrast-Variance Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Contrast-variance feature segmentations
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4.1.7 Energy-Average Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Energy-average feature segmentations
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4.1.8 Energy-Variance Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8: Energy-variance feature segmentations
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4.1.9 Entropy-Average Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Entropy-average feature segmentations
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4.1.10 Entropy-Variance Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.10: Entropy-variance feature segmentations
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4.1.11 Homogeneity-Average Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.11: Homogeneity-average feature segmentations
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4.1.12 Homogeneity-Variance Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.12: Homogeneity-variance feature segmentations
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4.2 Gradient Magnitude Features

4.2.1 Energy Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.13: Energy feature segmentations
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4.2.2 Entropy Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.14: Entropy feature segmentations
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4.2.3 Mean Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.15: Mean feature segmentations
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4.2.4 Skewness Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.16: Skewness feature segmentations
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4.2.5 Smooth Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.17: Smooth feature segmentations
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4.3 Gradient Orientation Features

4.3.1 Mean Orientation Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.18: Mean orientation feature segmentations
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4.3.2 Second Moment Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.19: Second moment feature segmentations
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4.3.3 Junction Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.20: Junction feature segmentations
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4.4 Straight Line Features

4.4.1 Length Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.21: Length feature segmentations
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4.4.2 Contrast Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.22: Contrast feature segmentations
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4.4.3 Length Entropy Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.23: Length entropy feature segmentations
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4.4.4 Contrast Entropy Feature

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.24: Contrast entropy feature segmentations
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4.5 Feature Selection

We have tested four satellite images showing a wide variety of homogeneous re-

gions such as lake, plane area, man-made structure (road, building, etc), mountain,

forest, etc.. According to the segmentation results, in terms of visual evaluation,

we decided to select 14 features from among these 24 features, namely,

• The GLCM cluster shade average

• The GLCM cluster shade variance

• The GLCM cluster prominence average

• The GLCM cluster prominence variance

• The GLCM contrast average

• The GLCM contrast variance

• The GLCM energy average

• The GLCM entropy average

• The GLCM entropy variance

• The GLCM homogeneity average

• The GLCM homogeneity variance

• The gradient orientation average

• The gradient orientation second moment

• The straight line contrast
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4.6 Fusion Result

We present now the fusion results obtained by the model proposed in [Mig08]

[Mig10a] on the four AVIRIS test images. In the following four result pages, (a) is

the original compressed image, while (b)-(o) designate the two-class segmentation

map for each of the above-mentioned feature. Finally (p),(q),(r) give the fused seg-

mentation map result obtained with the Class Label Histogram (CLH) based fusion

model [Mig08], the Probabilistic Rand Index (PRI) based fusion model [Mig10a]

and finally the High Dimensional Vector (HDV) based fusion model on respectively

MoffetField2, MoffetField3, JasperRidge1 and JasperRidge2 images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

(p) CLH based
fusion map

(q) PRI based
fusion map

(r) HDV based
fusion map

Figure 4.25: MoffetField2 fusion procedure
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

(p) CLH based
fusion map

(q) PRI based
fusion map

(r) HDV fusion
map

Figure 4.26: MoffetField3 fusion procedure
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

(p) CLH based
fusion map

(q) PRI based
fusion map

(r) HDV based
fusion map

Figure 4.27: JasperRidge1 fusion procedure
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

(p) CLH based
fusion map

(q) PRI based
fusion map

(r) HDV based
fusion map

Figure 4.28: JasperRidge2 fusion procedure
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4.7 Conclusion

It can be seen that the images are correctly segmented into two classes (more

details are given in the following chapter and in Annexes) by the two fusion pro-

cedures. The urban areas are not mistaken for mountainous areas or forests. Scat-

tered (JasperRidge) or dense urban areas (Moffet Field) are also clearly distin-

guished. More precisely, the PRI based fusion model gives a better and more accu-

rate result. The fusion method also spent a little more time than the CLH based

fusion technique. We have also found that the HDV fusion model didn’t provide

us with a satisfactory result, (almost certainly due to the curse of dimensionality,

the rescaling problem and the reasons already explained in Section 2.3).
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CHAPTER 5

COMPARISON AND DISCUSSION

5.1 Experimental Environment

We have implemented this project in C/C++ code with OpenCV (Mac OS

based on 2.4 GHZ Intel core 2 duo processor and 4 GB DDR3 memory). Source data

are from http://www.iro.umontreal.ca/ mignotte/ in the format .rfl. Dimension of

data is 512× 614× 224. The computational time, in seconds, is indicated for each

experiment.

5.2 Results Comparison

In this section we have first summarized the main results previously obtained

i.e.,

1. Using the Label Class Histogram Based Fusion Model

2. Using the PRI Based Fusion Model

3. Using simply a high dimensional feature vector combining all the features

with respectively two and three classes for the final segmentation map, and we

conclude this chapter with a brief discussion.
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Image Av. Run. Time Compressed Image Segmentation Image

MoffetField2.rfl ≈ 687 sec.

MoffetField3.rfl ≈ 659 sec.

JasperRidge1.rfl ≈ 738 sec.

JasperRidge2.rfl ≈ 711 sec.

Table 5.1: CLH based fusion procedure (2 classes)
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Image Av. Run. Time Compressed Image Segmentation Image

MoffetField2.rfl ≈ 714 sec.

MoffetField3.rfl ≈ 704 sec.

JasperRidge1.rfl ≈ 710 sec.

JasperRidge2.rfl ≈ 650 sec.

Table 5.2: CLH based fusion procedure (3 classes)
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Image Av. Run. Time Compressed Image Segmentation Image

MoffetField2.rfl ≈ 746 sec.

MoffetField3.rfl ≈ 756 sec.

JasperRidge1.rfl ≈ 790 sec.

JasperRidge2.rfl ≈ 776 sec.

Table 5.3: PRI based fusion procedure (2 classes)
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Image Data Av. Run. Time Compressed Image Segmentation Image

MoffetField2.rfl ≈ 848 sec.

MoffetField3.rfl ≈ 752 sec.

JasperRidge1.rfl ≈ 847 sec.

JasperRidge2.rfl ≈ 809 sec.

Table 5.4: PRI based fusion procedure (3 classes)
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Image Data Av. Run. Time Compressed Image Segmentation Image

MoffetField2.rfl ≈ 666 sec.

MoffetField3.rfl ≈ 654 sec.

JasperRidge1.rfl ≈ 699 sec.

JasperRidge2.rfl ≈ 628 sec.

Table 5.5: Segmentation by high dimensional features vector (2 classes)
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Image Data Av. Run. Time Compressed Image Segmentation Image

MoffetField2.rfl ≈ 663 sec.

MoffetField3.rfl ≈ 654 sec.

JasperRidge1.rfl ≈ 699 sec.

JasperRidge2.rfl ≈ 638 sec.

Table 5.6: Segmentation by high dimensional features vector (3 classes)

It can be seen that the precision of final result also depends on the number of

classes set a priori before the fusion procedure. In our application, an interesting

approach consists in segmenting the image into three classes instead of two classes.

In this case, the three segmented regions are urban region, non-urban region and

weak structure or non-dense urban area.
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CHAPTER 6

CONCLUSION

In this master’s thesis, we have compared three different approaches for seg-

menting hyperspectral images into two classes (namely, urban and non-urban areas)

from a set of structural and textural features and a final clustering procedure. We

have compared the classical approach which consists in gathering all the features

in a high dimensional feature vector along with a final clustering procedure and

two different fusion models. These two latter approaches first rely on the previous

classification of each individual feature by a simple K-means clustering procedure

and aim at finally combining these segmentation maps in a final (more reliable and

accurate) segmentation result. These last two approaches give the most promising

results. This is certainly due to the curse of dimensionality, the rescaling problem

and the reasons already explained in Section 2.3.

The final classification procedure allows us to efficiently detect the urban areas

and the rural areas (with various backgrounds) when we consider two classes and

to discriminate between the class dense non-urban region and non dense urban

area when we consider three classes.

There are still many issues that could improve this unsupervised classification

method. The first and foremost would consist in taking into account, in addition

to the textural and structural features used in this project, some spectral features.

Indeed, since the dense urban regions are mainly composed of a few materials

such as concrete, steel and wood (for the buildings and houses), coal tar (for the

roads) and aluminium (for the car and light metallic structures), it would be very

interesting to use this a priori knowledge in order to identify spatial regions whose

spectrum, in the raw uncompressed hyperspectral images, is really a mixture of

these five components.
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Appendix I

Annexe 1

AVIRIS hyperspectral image of Moffett Field, California, CA 94035, acquired

on August 20, 1992, at the southern end of the San Francisco Bay (Lat1: 37.4708,

Lon1: −122, Lat2: 37.4708, Lon2: −122.167) (Ref.: http://aviris.jpl.nasa.gov)

[Nas].

Figure I.1: MoffetField2 Hyperspectral Image
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AVIRIS hyperspectral image acquired on August 20, 1992 by a NASA ER-2

plane at an altitude of 20000 meters (65000 feet) over Moffett Field, California,

CA 94035, (Lat1: 37.45, Lon1: −122, Lat2: 37.45, Lon2: −122.167) at the southern

end of the San Francisco Bay. It can be seen on the top of the image is the Moffett

Field airport. Of particular interest is the small region of high response in the upper

left corner of the larger side. This response is in the red part of the visible spectrum

(about 700 nanometers), and is due to the presence of 1-centimeter-long (half-inch)

red brine shrimp in the evaporation pond (Ref.: http://aviris.jpl.nasa.gov) [Nas].

Figure I.2: MoffetField3 Hyperspectral Image
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Airborne Visible Infrared Imaging Spectrometer (AVIRIS) image of Jasper

Ridge Biological Preserve (JRBP) (Lat1:37.3883, Lon1: −122.17, Lat2: 37.4508,

Lon2: −122.243) acquired on June 1992 (Ref.: http://aviris.jpl.nasa.gov) [Nas].

Figure I.3: JasperRidge1 Hyperspectral Image
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Airborne Visible Infrared Imaging Spectrometer (AVIRIS) image of Jasper

Ridge Biological Preserve (JRBP) (Lat1: 37.375, Lon1: −122.188, Lat2: 37.4375,

Lon2: −122.261) acquired on June 1992 (Ref.: http://aviris.jpl.nasa.gov) [Nas].

Figure I.4: JasperRidge2 Hyperspectral Image
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