
Ocamllex Tutorial

Ocamllex Adaptation: SooHyoung Oh

Ocamllex Tutorial
by Ocamllex Adaptation: SooHyoung Oh

This is a tutorial on how to use ocamllex which is distributed with Ocaml language.

This document borrowed lots of part from flex manual.

Please mail all comments and suggestions to <shoh at compiler dot kaist dot ac dot kr >

This tutorial is work-in-progress. The latest version can be found at http://pllab.kaist.ac.kr/~shoh/ocaml/ocamllex-
ocamlyacc/ocamllex-tutorial/index.html.

The companion tutorial for ocamlyacc is available at http://pllab.kaist.ac.kr/~shoh/ocaml/ocamllex-
ocamlyacc/ocamlyacc-tutorial/index.html.

You can find the source of this document in ocamllex-tutorial-src.tar.gz. For printing, pdf (A4 size) is presented,
and there is html (tar.gz).

You can download the source of examples used in this document from ocamllex-examples.tar.gz.

Last updated: 2004-11-16

Table of Contents
1. Introduction ... 1
2. Some simple examples... 2
3. Format of the input file .. 4
4. Patterns.. 5
5. How the input is matched ... 7
6. Actions... 8

6.1. Position ... 8
7. The generated scanner ... 10
8. Start conditions.. 11
9. Interfacing with ocamlyacc .. 12
10. Options.. 13
11. Usage Tips .. 14

11.1. Keyword Hashtable .. 14
11.2. Nested Comments ... 14

12. Examples ... 16
12.1. Translate.. 16
12.2. Word Count .. 16
12.3. Toy Language... 16

13. License... 19
13.1. License in flex manual .. 19
13.2. Ocamllex Adaptation Copyright and Permissions Notice.. 19

iii

Chapter 1. Introduction

ocamllex is a tool for generating scanners: programs which recognized lexical patterns in text. ocamllex reads
the given input files, for a description of a scanner to generate. The description is in the form of pairs of regular
expressions and Ocaml code, called rules. ocamllex generates as output a Ocaml source file which defines lexical
analyzer functions. This file is compiled and linked to produce an executable. When the executable is run, it
analyzes its input for occurrences of the regular expressions. Whenever it finds one, it executes the corresponding
Ocaml code.

If you execute the following command with the input file named lexer.mll

ocamllex lexer .mll

you will get Caml code for a lexical analyzer in file lexer.ml .

1

Chapter 2. Some simple examples

First some simple examples to get the flavor of how one uses ocamllex . The following ocamllex input specifies a
scanner which whenever it encounters the string "current_directory" will replace it with the current directory:

{ }
rule translate = parse

| "current_directory" { print_string (Sys.getcwd ()); translate lexbuf }
| _ as c { print_char c; translate lexbuf }
| eof { exit 0 }

In the first rule, "current_directory" is the pattern and the expression between braces is the action. By this rule, when
the scanner matches the string "current_directory", it executes the corresponding action which prints the current
directory name and call the scanner again. Recursive calling itself is necessary to do the other job.

Any text not matched by a ocamllex scanner generates exception Failure "lexing: empty token" , so you have
to supply the last two rules. The second rule copies any character to its output which is not matched by the first
rule, and it calls itself again. By the third rule, the program exits when it meets end of file . So the net effect of
this scanner is to copy its input file to its output with each occurrence of "current_directory" expanded. The "{ }" in
the first line delimits the header section from the rest.

Here’s another simple example:

{
let num_lines = ref 0
let num_chars = ref 0

}

rule count = parse
| ’\n’ { incr num_lines; incr num_chars; count lexbuf }
| _ { incr num_chars; count lexbuf }
| eof { () }

{
let main () =

let lexbuf = Lexing.from_channel stdin in
count lexbuf;
Printf.printf "# of lines = %d, # of chars = %d\n" !num_lines !num_chars

let _ = Printexc.print main ()
}

This scanner counts the number of characters and the number of lines in its input (it produces no output other
than the final report on the counts). The first header section declares two globals, "num_lines" and "num_chars",
which are accessible both inside scanner function count and in the trailer section which is the last part enclosed
by braces. There are three rules, one which matches a newline ("\n") and increments both the line count and
the character count, and one which matches any character other than a newline (indicated by the "_" regular
expression). At the end of file, the scanner function count returns unit .

A somewhat more complicated example:

(* scanner for a toy language *)

{
open Printf

}

let digit = [’0’-’9’]
let id = [’a’-’z’] [’a’-’z’ ’0’-’9’]*

rule toy_lang = parse
| digit+ as inum

{ printf "integer: %s (%d)\n" inum (int_of_string inum);
toy_lang lexbuf

}
| digit+ ’.’ digit* as fnum

{ printf "float: %s (%f)\n" fnum (float_of_string fnum);
toy_lang lexbuf

}
| "if"

2

Chapter 2. Some simple examples

| "then"
| "begin"
| "end"
| "let"
| "in"
| "function" as word

{ printf "keyword: %s\n" word;
toy_lang lexbuf

}
| id as text

{ printf "identifier: %s\n" text;
toy_lang lexbuf

}
| ’+’
| ’-’
| ’*’
| ’/’ as op

{ printf "operator: %c\n" op;
toy_lang lexbuf

}
| ’{’ [^ ’\n’]* ’}’ { toy_lang lexbuf } (* eat up one-line comments *)
| [’ ’ ’\t’ ’\n’] { toy_lang lexbuf } (* eat up whitespace *)
| _ as c

{ printf "Unrecognized character: %c\n" c;
toy_lang lexbuf

}
| eof { }

{
let main () =

let cin =
if Array.length Sys.argv > 1
then open_in Sys.argv.(1)
else stdin

in
let lexbuf = Lexing.from_channel cin in
toy_lang lexbuf

let _ = Printexc.print main ()
}

This is the beginnings of a simple scanner for a language. It identifies different types of tokens and reports on what
it has seen.

The details of this example will be explained in the following sections.

3

Chapter 3. Format of the input file

The ocamllex input file consists of four sections; header, definitions, rules and trailer section:

(* header section *)
{ header }

(* definitions section *)
let ident = regexp
let ...

(* rules section *)
rule entrypoint [arg1... argn] = parse

| pattern { action }
| ...
| pattern { action }

and entrypoint [arg1... argn] = parse
...

and ...

(* trailer section *)
{ trailer }

Comments are delimited by (* and *), as in Caml.

The header and rules sections are necessary while definitions and trailer sections are optional.

The header and trailer sections are enclosed in curly braces and they contain arbitrary Caml code. At the beginning
of the output file, the header text is copied as is while the trailer text is copied at the end of the output file. For
example, you can code open directives and some auxiliary funtions in the header section.

The definitions section contains declarations of simple ident definitions to simplify the scanner specification. Ident
definitions have the form:

let ident = regexp
let ...

The "ident" must be valid identifiers for Caml values (starting with a lowercase letter). For example,

let digit = [’0’-’9’]
let id = [’a’-’z’][’a’-’z’ ’0’-’9’]*

defines "digit" to be a regular expression which matches a single digit, and "id" to be a regular expression which
matches a letter followed by zero-or-more letters-or-digits. A subsequent reference to

digit+ "." digit*

is identical to

[’0’-’9’]+ "." [’0’-’9’]*

and matches one-or-more digits followed by a ’.’ followed by zero-or-more digits.

The rules section of the ocamllex input contains a series of entrypoints of the form:

rule entrypoint [arg1... argn] = parse
| pattern { action }

| ...
| pattern { action }

and ...

The first | (bar) after parse is optional.

Each entrypoint consists of a series of pattern-action:

| pattern { action }

where the action must be enclosed in curly braces.

See below for a further description of patterns and actions.

4

Chapter 4. Patterns

The patterns in the input are written using regular expressions in the style of lex, with a more Caml-like syntax.
These are:

• ’c’

match the character ’c’. The character constant is the same syntax as Objective Caml character.

• _

(underscore) match any character.

• eof

match an end-of-file .

• "foo"

the literal string "foo". The syntax is the same syntax as Objective Caml string constants.

• [’x’ ’y’ ’z’]

character set; in this case, the pattern matches either an ’x’, a ’y’, or a ’z’ .

• [’a’ ’b’ ’j’-’o’ ’Z’]

character set with a range in it; ranges of characters ’c1’ - ’c2’ (all characters between c1 and c2, inclusive); in this
case, the pattern matches an ‘a’, a ‘b’, any letter from ‘j’ through ‘o’, or a ‘Z’.

• [^ ’A’-’Z’]

a "negated character set", i.e., any character but those in the class. In this case, any character EXCEPT an upper-
case letter.

• [^ ’A’-’Z’ ’\n’]

any character EXCEPT an uppercase letter or a newline

• r*

zero or more r’s, where r is any regular expression

• r+

one or more r’s, where r is any regular expression

• r?

zero or one r’s, where r is any regular expression (that is, "an optional r")

• ident

the expansion of the "ident" defined by an earlier let ident = regexp definition.

• (r)

match an r; parentheses are used to override precedence (see below)

5

Chapter 4. Patterns

• rs

the regular expression r followed by the regular expression s; called "concatenation"

• r|s

either an r or an s

• r#s

match the difference of the two specified character sets.

• r as ident

bind the string matched by r to identifier ident .

The regular expressions listed above are grouped according to precedence, from highest precedence at the top to
lowest at the bottom; ’*’ and ’+’ have highest precedence, followed by ’?’, ’concatenation’, ’|’, and then ’as’ . For
example,

"foo" | "bar"*

is the same as

("foo")|("bar"*)

since the ’*’ operator has higher precedence than than alternation (’|’). This pattern therefore matches either the
string "foo" or zero-or-more of the string "bar".

To match zero-or-more "foo"’s-or-"bar"’s:

("foo"|"bar")*

A negated character set such as the example "[^ ’A’-’Z’]" above will match a newline unless "\n" (or an equivalent
escape sequence) is one of the characters explicitly present in the negated character set (e.g., "[^ ’A’-’Z’ ’\n’]"). This
is unlike how many other regular expression tools treat negated character set, but unfortunately the inconsistency
is historically entrenched. Matching newlines means that a pattern like [^"]* can match the entire input unless
there’s another quote in the input.

6

Chapter 5. How the input is matched

When the generated scanner is run, it analyzes its input looking for strings which match any of its patterns. If
it finds more than one match, it takes the one matching the most text (the "longest match" principle). If it finds
two or more matches of the same length, the rule listed first in the ocamllex input file is chosen (the "first match"
principle).

Once the match is determined, the text corresponding to the match (called the token) is made available in the
form of a string. The action corresponding to the matched pattern is then executed (a more detailed description of
actions follows), and then the remaining input is scanned for another match.

If no match is found, the scanner raises the Failure "lexing: empty token" exception.

Now, let’s see the examples which shows how the patterns are applied.

rule token = parse
| "ding" { print_endline "Ding" } (* "ding" pattern *)
| [’a’-’z’]+ as word (* "word" pattern *)

{ print_endline ("Word: " ^ word) }
...

When "ding" is given as an input, the ding and word pattern can be matched. ding pattern is selected because it
comes before word pattern. So if you code like this:

rule token = parse
| [’a’-’z’]+ as word (* "word" pattern *)

{ print_endline ("Word: " ^ word) }
| "ding" { print_endline "Ding" } (* "ding" pattern *)
| ...

ding pattern will be useless.

In the following example, there are three patterns: ding , dong and dingdong .

rule token = parse
| "ding" { print_endline "Ding" } (* "ding" pattern *)
| "dong" { print_endline "Dong" } (* "dong" pattern *)
| "dingdong" { print_endline "Ding-Dong" } (* "dingdong" pattern *)
...

When "dingdong" is given as an input, there are two choices: ding + dong pattern or dingdong pattern. But by the
"longest match" principle, dingdong pattern will be selected.

Though the "shortest match" principle is not used so frequently, ocamllex supports it. If you want to select the
shortest prefix of the input, use shortest keyword instead of the parse keyword. The "first match" principle
holds still with the "shortest match" principle.

7

Chapter 6. Actions

Each pattern in a rule has a corresponding action, which can be any arbitrary Ocaml expression. For example, here
is the specification for a program which deletes all occurrences of "zap me" from its input:

{}
rule token = parse

| "zap me" { token lexbuf } (* ignore this token: no processing and continue *)
| _ as c { print_char c; token lexbuf }

Here is a program which compresses multiple blanks and tabs down to a single blank, and throws away whites-
pace found at the end of a line:

{}
rule token = parse

| [’ ’ ’\t’]+ { print_char ’ ’; token lexbuf }
| [’ ’ ’\t’]+ ’\n’ { token lexbuf } (* ignore this token *)

Actions can include arbitrary Ocaml code which returns a value. Each time the lexical analyzer function is called
it continues processing tokens from where it last left off until it either reaches the end of the file.

Actions are evaluated after the lexbuf is bound to the current lexer buffer and the identifer following the keyword
as to the matched string. The usage of lexbuf is provided by the Lexing standard library module;

• Lexing.lexeme lexbuf

Return the matched string.

• Lexing.lexeme_char lexbuf n

Return the nth character in the matched string. The index number of the first character starts from 0.

• Lexing.lexeme_start lexbuf

Lexing.lexeme_end lexbuf

Return the absolute position in the input text of the beginning/end of the matched string. The position of the
first character is 0.

• Lexing.lexeme_start_p lexbuf

Lexing.lexeme_end_p lexbuf

(Since Ocaml 3.08) Return the position of type position (See Position).

• entrypoint [exp1... expn] lexbuf

Call the other lexer on the given entry point. Notice that lexbuf is the last argument.

6.1. Position
* Since Ocaml 3.08

The position information on scanning the input text is recorded in the lexbuf which has a field lex_curr_p of the
type position :

type position = {
pos_fname : string; (* file name *)
pos_lnum : int; (* line number *)
pos_bol : int; (* the offset of the beginning of the line *)
pos_cnum : int; (* the offset of the position *)

}

8

Chapter 6. Actions

The value of pos_bol field is the number of characters between the beginning of the file and the beginning of
the line while the value of pos_cnum field is the number of characters between the beginning of the file and the
position.

The lexing engine manages only the pos_cnum field of lexbuf.lex_curr_p with the number of characters read
from the start of lexbuf . So you are reponsible for the other fields to be accurate. Typically, whenever the lexer
meets a newline character, the action contains a call to the following function:

let incr_linenum lexbuf =
let pos = lexbuf.Lexing.lex_curr_p in
lexbuf.Lexing.lex_curr_p <- { pos with

Lexing.pos_lnum = pos.Lexing.pos_lnum + 1;
Lexing.pos_bol = pos.Lexing.pos_cnum;

}
;;

9

Chapter 7. The generated scanner

The output of ocamllex is the file lex.ml when it is invoked as ocamllex lex.mll . The generated file contains the
scanning functions, a number of tables used by it for matching tokens, and a number of auxiliary routines. The
scanning functions are declared as followings:

let entrypoint [arg1... argn] lexbuf =
...

and ...

where the fuction entrypoint has n + 1 arguments. n arguments come from the definition of the rules secton. And
the resulting scanning function has one more argument named lexbuf of Lexing.lexbuf type as the last one.

Whenever entrypoint is called, it scans tokens from the lexbuf argument. When it finds a match in patterns, it
executes the corresponding action and returns. If you want to continue the lexical analyze after evaluating of the
action, you must call the scanning function recursively.

10

Chapter 8. Start conditions

ocamllex provides a mechanism for conditionally activating rules. When you want do activate the other rule, just
call the other entrypoint function. For example, the following has two rules, one for finding tokens and one for
skipping comments.

{}
rule token = parse

| [’ ’ ’\t’ ’\n’]+
(* skip spaces *)
{ token lexbuf }

| "(*"
(* activate "comment" rule *)

{ comment lexbuf }
...

and comment = parse
| "*)"

(* go to the "token" rule *)
{ token lexbuf }

| _
(* skip comments *)

{ comment lexbuf }
...

When the generated scanner meets comment start token "(*" at the token rule, it activates the other rule comment .
When it meets the end of comment token "*)" at the comment rule. it returns to the scanning token rule.

11

Chapter 9. Interfacing with ocamlyacc

One of the main uses of ocamllex is as a companion to the ocamlyacc parser-generator. ocamlyacc parsers call
one of the scanning functions to find the next input token. The routine is supposed to return the type of the next
token with an associated value. To use ocamllex with ocamlyacc , scanner functions should use parser module
to refer token types, which are defined in ‘%tokens’ attributes appearing in the ocamlyacc input. For example, if
input filename of ocamlyacc is parse.mly and one of the tokens is "NUMBER", part of the scanner might look like:

{
open Parse

}

rule token = parse
...
| [’0’-’9’]+ as num { NUMBER (int_of_string num) }
...

12

Chapter 10. Options

ocamllex has the following options:

• -o output-file

By default, ocamllex produces lexer.ml , when ocamllex is invoked as "ocamllex lexer.mll ". You can change
the name of the output file using -o option.

• -ml

By default, ocamllex produces code that uses the Caml built-in automata interpreter. Using this option, the
automaton is coded as Caml functions. This option is useful for debugging ocamllex , but it’s not recommended
for production lexers.

• -q

By default, ocamllex outputs informational messages to standard output. If you use -q option, they are sup-
pressed.

13

Chapter 11. Usage Tips

11.1. Keyword Hashtable
The number of status transitions generated by ocamllex are limited to at most 32767. If you use too many transi-
tions, for example, too many keywords, ocamllex generates the following error message:

camllex: transition table overflow, automaton is too big

It tells that your lexer definition is too complex. To make the generated automata small, you have to encode using
keyword table:

{
let keyword_table = Hashtbl.create 72
let _ =

List.iter (fun (kwd, tok) -> Hashtbl.add keyword_table kwd tok)
[("keyword1", KEYWORD1);

("keyword2", KEYWORD2);
...

]
}

rule token = parse
| ...
| [’A’-’Z’ ’a’-’z’] [’A’-’Z’ ’a’-’z’ ’0’-’9’ ’_’]* as id

{ try
Hashtbl.find keyword_table id

with
Not_found -> IDENT id

}
| ...

For a complete example, see Toy Language program.

11.2. Nested Comments
Some language such as Ocaml support nested comment. It can be implemented like this:

{ }

rule token = parse
| "(*" { print_endline "comments start"; comments 0 lexbuf }
| [’ ’ ’\t’ ’\n’] { token lexbuf }
| [’a’-’z’]+ as word

{ Printf.printf "word: %s\n" word; token lexbuf }
| _ as c { Printf.printf "char %c\n" c; token lexbuf }
| eof { raise End_of_file }

and comments level = parse
| "*)" { Printf.printf "comments (%d) end\n" level;

if level = 0 then token lexbuf
else comments (level-1) lexbuf

}
| "(*" { Printf.printf "comments (%d) start\n" (level+1);

comments (level+1) lexbuf
}
| _ { comments level lexbuf }
| eof { print_endline "comments are not closed";

raise End_of_file
}

When the scanner function meets comments start token "(*" in evaluating token rule, it enters comments rule
with level of 0. token rule is invoked again when all comments are closed. Comments nesting level is increased
whenever there is comment start token "(*" in the input text.

14

Chapter 11. Usage Tips

If the scanner function meets end of comments token "*)" , it tests the comments nesting level. When the nesting
level is not zero, it decrements the level by one and continues to scan comments. It returns to token rule when all
the comments are closed i.e., the nesting level is zero.

15

Chapter 12. Examples

This chapter includes examples in complete form. Some are revised from the code fragments of the previous
chapters.

12.1. Translate
This example translates the text "current_directory" to the current directory.

{ }

rule translate = parse
| "current_directory" { print_string (Sys.getcwd ()) }
| _ as c { print_char c }
| eof { exit 0 }

{
let main () =

let lexbuf = Lexing.from_channel stdin in
while true do

translate lexbuf
done

let _ = Printexc.print main ()
}

12.2. Word Count
This example shows the number of lines, words and characters of the given file if the filename is given, or of the
standard input if no command arguments are given.

{ }

rule count lines words chars = parse
| ’\n’ { count (lines+1) words (chars+1) lexbuf }
| [^ ’ ’ ’\t’ ’\n’]+ as word

{ count lines (words+1) (chars+ String.length word) lexbuf }
| _ { count lines words (chars+1) lexbuf }
| eof { (lines, words, chars) }

{
let main () =

let cin =
if Array.length Sys.argv > 1
then open_in Sys.argv.(1)
else stdin

in
let lexbuf = Lexing.from_channel cin in
let (lines, words, chars) = count 0 0 0 lexbuf in
Printf.printf "%d lines, %d words, %d chars\n" lines words chars

let _ = Printexc.print main ()
}

12.3. Toy Language
In this example, the scanner function toy_lang returns a value of token type, but the main function does nothing
with it.

{
open Printf

let create_hashtable size init =
let tbl = Hashtbl.create size in
List.iter (fun (key, data) -> Hashtbl.add tbl key data) init;

16

Chapter 12. Examples

tbl

type token =
| IF
| THEN
| ELSE
| BEGIN
| END
| FUNCTION
| ID of string
| OP of char
| INT of int
| FLOAT of float
| CHAR of char

let keyword_table =
create_hashtable 8 [

("if", IF);
("then", THEN);
("else", ELSE);
("begin", BEGIN);
("end", END);
("function", FUNCTION)

]

}

let digit = [’0’-’9’]
let id = [’a’-’z’ ’A’-’Z’][’a’-’z’ ’0’-’9’]*

rule toy_lang = parse
| digit+ as inum

{ let num = int_of_string inum in
printf "integer: %s (%d)\n" inum num;
INT num

}
| digit+ ’.’ digit* as fnum

{ let num = float_of_string fnum in
printf "float: %s (%f)\n" fnum num;
FLOAT num

}
| id as word

{ try
let token = Hashtbl.find keyword_table word in
printf "keyword: %s\n" word;
token

with Not_found ->
printf "identifier: %s\n" word;
ID word

}
| ’+’
| ’-’
| ’*’
| ’/’ as op

{ printf "operator: %c\n" op;
OP op

}
| ’{’ [^ ’\n’]* ’}’ (* eat up one-line comments *)
| [’ ’ ’\t’ ’\n’] (* eat up whitespace *)

{ toy_lang lexbuf }
| _ as c

{ printf "Unrecognized character: %c\n" c;
CHAR c

}
| eof

{ raise End_of_file }

{
let rec parse lexbuf =

let token = toy_lang lexbuf in
(* do nothing in this example *)

17

Chapter 12. Examples

parse lexbuf

let main () =
let cin =

if Array.length Sys.argv > 1
then open_in Sys.argv.(1)
else stdin

in
let lexbuf = Lexing.from_channel cin in
try parse lexbuf
with End_of_file -> ()

let _ = Printexc.print main ()
}

18

Chapter 13. License

13.1. License in flex manual
Copyright (C) 1990 The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Vern Paxson.

The United States Government has rights in this work pursuant to contract no. DE-AC03-76SF00098 between the
United States Department of Energy and the University of California.

Redistribution and use in source and binary forms with or without modification are permitted provided that:
(1) source distributions retain this entire copyright notice and comment, and (2) distributions including binaries
display the following acknowledgement: "This product includes software developed by the University of Califor-
nia, Berkeley and its contributors" in the documentation or other materials provided with the distribution and in
all advertising materials mentioning features or use of this software. Neither the name of the University nor the
names of its contributors may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

13.2. Ocamllex Adaptation Copyright and Permissions Notice
Copyright (C) 2004 SooHyoung Oh.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and
this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this document under the conditions for verbatim
copying, provided that this copyright notice is included exactly as in the original, and that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this document into another language, under the above
conditions for modified versions.

If you are intending to incorporate this document into a published work, please contact the maintainer, and we
will make an effort to ensure that you have the most up to date information available.

There is no guarantee that this document lives up to its intended purpose. This is simply provided as a free
resource. As such, the authors and maintainers of the information provided within can not make any guarantee
that the information is even accurate.

19

	Ocamllex Tutorial
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Some simple examples
	Chapter 3. Format of the input file
	Chapter 4. Patterns
	Chapter 5. How the input is matched
	Chapter 6. Actions
	6.1. Position

	Chapter 7. The generated scanner
	Chapter 8. Start conditions
	Chapter 9. Interfacing with ocamlyacc
	Chapter 10. Options
	Chapter 11. Usage Tips
	11.1. Keyword Hashtable
	11.2. Nested Comments

	Chapter 12. Examples
	12.1. Translate
	12.2. Word Count
	12.3. Toy Language

	Chapter 13. License
	13.1. License in flex manual
	13.2. Ocamllex Adaptation Copyright and Permissions Notice

