
Implementation of Explicit Substitutions:
from λσ to the Suspension Calculus

Vincent Archambault-Bouffard
DIRO - Université de Montréal
archambv@iro.umontreal.ca

Stefan Monnier
DIRO - Université de Montréal
monnier@iro.umontreal.ca

Abstract
Explicit substitutions are an important tool for the efficient imple-
mentation of the normalization of terms in programs that manipu-
late data with binders, such as theorem provers or type checkers.
We explore here the design space between the λσ-calculus [Abadi
et al. 1991] and the suspension-calculus [Nadathur and Wilson
1998] by showing how to go from one to the other, in various small
steps. This gives an intuition about the performance advantages of
the suspension-calculus as well as provides various alternatives.

1. Introduction
The substitution operation at the core of most formal languages,
sometimes written using a notation such as e1[e2/x], is often taken
for granted but can be surprisingly tricky to formalize correctly.
This motivated the development of explicit substitutions calculi
such as λσ [Abadi et al. 1991] where substitution is not taken as
a black box, but is instead decomposed into several primitive steps,
reified explicitly as part of the syntax of terms, along with rewrite
rules.

Explicit substitutions calculi are especially useful for imple-
menting theorem provers or type checkers. In both applications, one
of the driving motivations for their use is their ability to combine
substitutions of various variables into a single term traversal. This
makes a significant difference to the performance of operations
such as term normalization and higher order unification [Liang
et al. 2004].

Among the various substitutions calculi, the ones that are able
to combine individual substitutions into a single term traversal fall
into two large families: the variants of Abadi’s λσ and the various
flavors of the suspension-calculus [Nadathur and Wilson 1998].
The first is a theoretical formalism that aims to bring out the core
concepts as cleanly as possible, whereas the second was developed
in the context of pragmatic needs and aims to be amenable to an
efficient implementation.

Our contribution is to bridge the gap between these two families,
by showing how to go from one to the other, in various small
steps. Each step comes with an explanation for the motivation
behind it, thus creating a kind of bidirectional narrative, where one
direction explains the algorithmic advantages of the suspension-
calculus, while the other direction gives an intuition about how the
suspensions used in the suspension-calculus can be mapped back
to the core concepts in λσ.

2. The λσ-calculus
Our starting point is the λσ as described in [Abadi et al. 1991], al-
though we use a slightly different notation. The calculus, like all
others in this article, is using a representation of terms based on de
Bruijn indices [de Bruijn 1972] so as to have a canonical represen-
tation of variables and hence avoid the cost of α-conversion. The

(β) (λt1) t2 t1[t2 · id]

(r0) #0[t · σ] t
(ri) #0[id] #0
(ra) (t1 t2)[σ] t1[σ] t2[σ]
(rl) (λt)[σ] λt[#0 · (σ ◦ ↑)]
(rs) t[σ1][σ2] t[σ1 ◦ σ2]

(midl) id ◦ σ σ
(midr) ↑ ◦ id ↑
(mshift) ↑ ◦ (t · σ) σ
(mass) (σ1 ◦ σ2) ◦ σ3 σ1 ◦ (σ2 ◦ σ3)
(mmap) (t · σ1) ◦ σ2 t[σ2] · (σ1 ◦ σ2)

Figure 1. Reduction rules of the original λσ-calculus

syntax of the calculus is:

t ::= #0 | t1 t2 | λt | t[σ]
σ ::= id | t · σ | ↑ | σ1 ◦ σ2

The syntax is split into the definition of lambda terms t and
substitutions σ. In terms, #0 is a de Bruijn index referencing the
most recently introduced variable; t1 t2 is a function application; λt
is a lambda abstraction; and t[σ] is a closure or suspension which
stands for the substitution σ applied to the term t.

In substitutions, id is the identity substitution which does not
substitute anything; t · σ is called a cons and is a substitution
which replaces #0 with t and applies σ to the other variables; ↑
is pronounced shift and is the substitution which simply increments
by one the de Bruijn index of every variable reference; and σ1 ◦ σ2

is the composition of the application of the substitution σ1 followed
by the application of the substitution σ2. The cons operator · binds
tighter than the composition operator ◦. The intuition underlying
these substitution terms is well explained in the original article
[Abadi et al. 1991].

Notice that this syntax represents non-zero de Bruijn indices via
terms of the form #0[↑ ◦ · · · ◦ ↑] with an appropriate number of ↑.

The calculus’s reduction rules are shown in Fig. 1. They are
split into 3 parts: the β rule which introduces suspensions, the read-
ing rules which describe how to propagate substitutions down the
terms, and the merge rules which describe how to reduce compo-
sitions to simpler substitution expressions. It can be shown that all
the rules together correspond to the classical β-reduction rule.

In [Curien et al. 1996], the authors investigate the confluence
properties of this calculus.

3. Implementing Explicit Substitutions
That formalization of λσ-calculus does not lend itself immediately
to an implementation, for the following reasons:

t ::= c | v |#i | t1 t2 | λt | t[σ]

(β) (λt1) t2 t1[cons t2 id]

(l) #i[σ] lookup #i σ
(rc) c[σ] c
(ri) t[id] t
(ra) (t1 t2)[σ] t1[σ] t2[σ]
(rl) (λt)[σ] λt[lift σ]
(rs) t[σ1][σ2] t[compose σ1 σ2]

Figure 2. Term syntax and generic rewrite rules

• The use of #0[↑ ◦ · · · ◦ ↑] to access any other variable than #0
is an inconvenient and inefficient representation. It also implies
that you cannot hope to eliminate all t[σ] from the code. So in
practice, we will extend the syntax of variable references to #i.

• The calculus lacks some elements present in many real lan-
guages, such as constants and meta-variables. To account for
those needs we add c and v to our lambda terms to represent
respectively constants and meta-variables.

• The calculus is defined as a set of rewrite rules without specify-
ing any order of application of those rules.

To address those issues and stay as general as possible, Fig. 2
shows the syntax of terms and the generic rewrite rules we will use
for the rest of this article. The representation of the substitutions is
kept abstract in the syntax and the generic rewrite rules are corre-
spondingly parameterized over 5 functions defined below. This will
hence let us reuse the same term syntax and rewrite rules with the
various explicit substitutions we present later on.

These generic definitions basically corresponds to the terms and
reading rules of λσ-calculus adapted for variables other than #0,
constant and meta-variables. There is no new generic reading rule
for v terms because reduction simply cannot proceed until those
variables are instantiated.

As said above, the rules are parameterized over 5 functions:

• id : The representation of the identity substitution.
• cons: Extend a substitution such that it additionally replaces #0

with a given term.
• lookup: Apply a substitution to a variable reference. Substitu-

tions are normalization’s moral equivalent of the environments
used in interpreters, which is why we like to think of this oper-
ation as looking up a variable in an environment.

• lift : Adjust a substitution for use inside a new binding.
• compose: Take two substitutions and build a new one which

applies them in sequence.

The generic rewrite rules solve the first two issues described at
the beginning of this section. As for the third one, while the read-
ing rules are still non-deterministic, the merge rules are contained
within the 5 functions and therefore have become deterministic.

Notice that many of the rules do not pay much attention to
the substitution that is manipulated. The goal for the rest of the
paper is to show how to implement the lookup, lift and compose
functions efficiently to allow multiple substitutions to be performed
in a single term traversal. This will allow us to go from the λσ to
the suspension calculus.

3.1 Implementation Suggested for λσ-calculus
In their paper, [Abadi et al. 1991] propose an implementation strat-
egy for weak head normalization. We can define those 5 functions
to correspond to their implementation strategy as shown in Fig. 3.

id = id
cons t σ = t · σ
lift σ = #0 · (σ ◦ ↑)
compose σ1 σ2 = σ1 ◦ σ2

lookup #i id = #i
lookup #0 (t · σ) = t
lookup #i (t · σ) = lookup #(i1) σ
lookup #i ↑ = #(i+ 1)
lookup #i (id ◦ σ) = lookup #i σ
lookup #i (↑ ◦ σ) = lookup #(i+ 1) σ
lookup #0 ((t · σ1) ◦ σ2) = t[σ2]
lookup #i ((t · σ1) ◦ σ2) = lookup #(i1) (σ1 ◦ σ2)
lookup #i ((σ1 ◦ σ2) ◦ σ3) = lookup #(i1) (σ1 ◦ (σ2 ◦ σ3))

Figure 3. Implementation of λσ

3.2 Avoiding Composition
Before we start to optimize the λσ, we would like to make another
remark concerning the generic rewrite rules. If we look at the rules
in Fig. 2, we see that compose is only explicitly needed to handle
terms of the form t[σ1][σ2]. Looking further at the rules, we can
see that such terms can be introduced only in the following cases:

1. One of the reading rules when a subterm is already itself a
suspension.

2. The β rule when t1 is itself a suspension.

When performing the typical normalization by reduction of
outermost redexes, the reading rules should only be applied to
terms that haven’t been visited yet, so we have the property that
there should never be a suspension t′[σ′] inside the t of another
suspension t[σ]. In other words, the first case should never happen.
Similarly, in the normalization case, the second case should only
occur if the suspension t1 was pushed earlier from outside the λ by
the rlam rule.

As it turns out, we can add a special β′ rule to handle the second
case without resorting to compose:

(β′) (λt1)[σ] t2 t1[cons t2 σ]

This rule was already suggested in [Abadi et al. 1991] and a similar
rule can be found in the λj calculus [Accattoli and Kesner 2010].
Note that the β′ rule does not rule out the need of a compose
function if one of the other 4 functions makes use of it internally.

4. λσ0: Restricted λσ-calculus
The λσ-calculus presented so far has a very efficient implementa-
tion of compose but at the cost of a rather slow and complex imple-
mentation of lookup. Furthermore a large part of the computation
performed in lookup risks being executed repeatedly for the same
substitution applied to several variable occurrences.

Another problem is that sequences of ↑ tend to arise in many
scenarios. For example, it can be shown [Abadi et al. 1991] that
the normal form of a substitution in the λσ-calculus is of the form
t1 ·. . . · tn · (↑ ◦ · · · ◦ ↑). Thus most substitutions will contain a se-
quence of ↑, and we would like to represent them more efficiently.

For these reasons, in Twelf [Pfenning and Schürmann 1999], the
implementors decided to use a restricted form of the λσ-calculus
which we call λσ0 where the composition is not part of the syntax
of substitutions but is implemented as a function instead and where
↑ is extended to ↑n so multiple shifts can be combined into a single
one.

σ ::= t · σ | ↑n

id = ↑0
cons t σ = t · σ
lift σ = #0 · (compose σ ↑1)

lookup #0 (t · σ) = t
lookup #i (t · σ) = lookup #(i−1) σ
lookup #i ↑n = #(i+ n)

compose (↑0) σ = σ
compose (↑n1) (↑n2) = ↑n1+n2

compose (↑n) (t · σ) = compose (↑n−1) σ
compose (t · σ1) σ2 = t[σ2] · (compose σ1 σ2)

Figure 4. Syntax and functions of the λσ0-calculus

The corresponding syntax and instantiation of the parameters
of the reading rules are shown in Fig. 4. As can be seen, the
resulting syntax is pleasantly simplified and the implementation
is also streamlined. Substitutions are now represented as singly-
linked lists where the terminating “nil” element carries the number
of shifts to apply to the other variables.

lookup now is efficient, but at the cost of more expensive com-
pose. Furthermore, compose is now used internally for lift, so the
rule β′ is not sufficient to make the performance of compose irrel-
evant.

5. λσ1: Shifting Lazily
The performance of the λσ0-calculus tends to suffer from the
following two issues:

• The call to compose in lift will always fall through to the last
case of the compose function, which recurses until the end
of the substitution. So it takes time proportional to the length
of the substitution, and since lift increases the length of the
substitution by 1, a sequence of N applications of lift has an
O(N2) complexity. It would be preferable to try and push those
↑ to the leaves more lazily, so we can combine them along the
way.

• Another related problem comes when we need to compute
something of the form (t1 · σ1 ◦ ↑n) ◦ t2 · σ2. Twelf will re-
duce it as follows:

(t1 · σ1 ◦ ↑n) ◦ t2 · σ2

 (t1[↑n] · (σ1 ◦ ↑n)) ◦ t2 · σ2

 (t1[↑n] · ...) ◦ t2 · σ2

 t1[↑n][t2 · σ2] · (... ◦ t2 · σ2)
 t1[↑n ◦ t2 · σ2] · (... ◦ t2 · σ2)
 t1[↑n−1 ◦ σ2] · (... ◦ t2 · σ2)

whereas we would want to get rid of t2 right from the start by
reducing in a different order, such as:

(t1 · σ1 ◦ ↑n) ◦ t2 · σ2

 (t1 · σ1) ◦ (↑n ◦ t2 · σ2)
 (t1 · σ1) ◦ (↑n−1 ◦ σ2)

We can solve those two problems by using the following tweak
to Twelf’s approach: replace the ↑ which just does a shift, with ↑σ
which is a new syntax whose meaning is equivalent to σ ◦ ↑ in the
λσ-calculus. Fig. 5 shows the resulting syntax and implementation.

Notice that we had to re-introduce an id substitution. More
importantly, notice that the rule for compose σ1 (↑nσ2) and the
rule for compose (t · σ1) σ2 overlap, and we use the definition’s
ordering to make sure that we always use the first, which hoists the

σ ::= id | t · σ | ↑nσ

id = id
cons t σ = t · σ
lift σ = #0 · ↑1σ

lookup #i σ = lookup’ 0 #i σ

lookup’ o#i id = #(i+ o)
lookup’ o#i (↑nσ) = lookup’ (o+ n) #i σ
lookup’ o#0 (t · σ) = if o = 0 then t else t[↑oid]
lookup’ o#i (t · σ) = lookup’ o#(i−1) σ

compose σ id = σ
compose σ1 (↑nσ2) = ↑n(compose σ1 σ2)
compose (↑1σ1) (t · σ2) = compose σ1 σ2

compose (↑nσ1) (t · σ2) = compose (↑n−1σ1) σ2

compose (t · σ1) σ2 = t[σ2] · (compose σ1 σ2)

Figure 5. Syntax and functions of the λσ1-calculus

shifts outward, in preference to the second, which pushes the shifts
deeper and duplicates them.

One way to think about it is that the λσ1-calculus tries to keep
the shifts close to the top of the substitution, so they can quickly
cancel out a cons. This is done in the second case of the compose
function. In contrast Twelf’s approach always pushes the shifts all
the way to the bottom of the substitutions, so we have to do more
work before we can cancel a cons with a shift. Of course, there is no
free lunch: we still have to propagate the shifts to the very bottom
sooner or later, but we do it in the lookup rules instead, where the
parameter o keeps track of how many shifts we have encountered
along the way.

6. λσ2: Fast Lookup of Free Variables
One inefficiency in λσ1 is the treatment of lookup for free variables
that are outside the scope of the substitution. More specifically, ev-
ery substitution has a length, which is the number of cons elements.
Looking at the lookup’ function in Fig. 5, one can see that any vari-
able reference #i whose i is larger than this length will end up in
the id case and be turned into #(i−l + o) where l is the length of
the environment and o is the number of shifts in the substitution.
In other words, for any #i where i is bigger than the length of σ,
lookup’ will traverse the complete σ, only to collect the number of
cons and the number of shifts.

For example, the term (λ#3) t1 will be reduced to #3[t1 · id].
The result is #2 which corresponds to collecting 1 cons and 0
shift. As another example the term (λλ#3) t1 will be reduced
to λ#3[#0 · ↑1(t1 · id)]. The result is λ#2 which corresponds to
collecting 2 cons and 1 shift.

The λσ2-calculus addresses this inefficiency by keeping track
of the length and the total number of shifts in substitutions. More
specifically, substitutions are now defined as triplets (ol, nl, e)
where ol is the length of e, nl is the number of shifts in it, and
e is the “raw” substitution, which has the same shape as the substi-
tutions of λσ1. The syntax and implementation of the λσ2-calculus
can be found in Fig. 6. The lookup’ function is identical to the one
for λσ1, except that ↑oid is replace by (0, o, ↑oid).

The way λσ2-calculus keeps track of the length of the substi-
tution and the number of shifts might not be obvious to readers
unfamiliar with the suspension calculus. The id substitution obvi-
ously has 0 cons and 0 shifts. The cons function increases by one
the variable ol because one more term is added to the substitution.
Recall that this rule is triggered by the β-rule. The function lift, in-

σ ::= (ol, nl, e)
e ::= id | t · e | ↑ne

id = (0, 0, id)
cons t (ol, nl, e) = (ol + 1, nl, t · e)
lift (ol, nl, e) = (ol + 1, nl + 1,#0 · ↑1e)

lookup #i (ol, nl, e) =
if (i ≥ ol) then
#(i− ol + nl)

else
lookup’ 0 #i e

compose σ id = σ

compose (ol1, nl1, e1) (ol2, nl2, ↑ne2) =
(ol′, nl′, ↑n(compose e1 e2))
where ol′ = ol1 +max(0, (ol2−nl1))

nl′ = nl2 +max(0, (nl1−ol2))
compose (ol1, nl1, ↑1e1) (ol2, nl2, t · e2) =

compose (ol1, nl1−1, e1) (ol2 − 1, nl2, e2)

compose (ol1, nl1, ↑ne1) (ol2, nl2, t · e2) =
compose (ol1, nl1−1, ↑n−1e1) (ol2−1, nl2, e2)

compose (ol1, nl1, t · σ1) (ol2, nl2, e2) =
(ol′, nl′, t[σ2] · (compose (ol1−1, nl1, σ1)(ol2, nl2, e2)))
where ol′ = ol1 +max(0, (ol2 − nl1))

nl′ = nl2 +max(0, (nl1 − ol2))

Figure 6. Syntax and functions of the λσ2-calculus

creases both ol and nl by one because it adds the term #0 at the
front of the substitution and lifts the remaining part of the substitu-
tion. This rule is triggered by the ri-rule when substitution go under
a lambda.

The tricky part is how compose computes the new ol and nl
for the substitution it generates. When a shift cancels a cons,
compose calls itself recursively with substitutions that contains
one fewer shift and one fewer cons. But when compose creates
a new substitution, it computes its new length to ol′ = ol1 +
max(0, (ol2 − nl1)) and its new number of shifts to nl′ = nl2 +
max(0, (nl1 − ol2)). To see that this is correct, the reader should
recall that ol and nl are used to adjust the indices of the free
variables. Also, compose is used for terms like t[σ1][σ2]. When
is a variable free when t is the target of two substitution σ1 and σ2?
First it must be free for the first substitution σ1. So its index must
be greater than the length of σ1.

i > ol1 (1)

After the first substitution is applied, the variable now has the index:

i′ = i− ol1 + nl1 (2)

Now when the second substitution is applied, in order to be free the
index i′ must again be greater than the length of σ2. So we have

i′ = i− ol1 + nl1 > ol2 (3)

Because the composition of σ1 and σ2 must give the same results as
applying both substitution in order, its ol′ is max(ol1, ol1 + ol2 −
nl1) which can be written ol1 + max(0, ol2 − nl1). The max
function is used because both equations 1 and 3 must be satisfied.

For the parameter nl′, we must have that the new variable index
i′′ after the second substitution σ2 satisfies

i′′ = i′−ol2+nl2 = i−ol1+nl1−ol2+nl2 = i−ol′+nl′ (4)

Again, the equation is justified because the composition of σ1 and
σ2 must give the same results as applying both substitution in order.

By having ol′ = ol1 +max(0, ol2 − nl1), it is easy to check that
nl′ = nl2 +max(0, nl1 − ol2).

The strength of λσ2-calculus comes from the fact that we can
compute nl and ol when traversing a term even in the presence
of substitutions composition and therefore always lookup the free
variables of a term in constant time. We now turn to the suspension-
calculus to improve the lookup of bound variables.

7. The Suspension Calculus
The reader familiar with the suspension calculus will notice a
strong resemblance to the λσ2-calculus. To get to the suspension
calculus we need to perform one last optimization. We would like
to be able to lookup bound variable efficiently, without having to
traverse the substitution. In λσ2-calculus we need to do so for two
reasons. First, for a bound variable #i, it is impossible to locate
directly the position of the ith cons element in the data structure of
σ. Indeed, t ·σ terms are mixed with ↑nσ. Second, even if we had a
way to directly access the ith cons element, we need to collect the
number of shifts. The only way to do so is by traversing the list.

To lift the first restriction, the terms e can be made more com-
pact by having each step be a combination of a cons with some
number of shifts. More specifically, let’s consider the typical shape
of an environment e in the λσ2-calculus:

↑n1(t1 · ↑n2(t2 · . . . · ↑nm id))

We can replace every ↑n(t · σ) with a new syntax (t, n) :: σ. This
syntax merges t · σ and ↑nσ together. Also, considering the way
lookup is implemented, we can see that the final ↑nm id is not
really needed, since either lookup only uses ol and nl or lookup’σ1
necessarily stops before reaching the end. We can replace ↑nm id by
a constant nil.

(t1, n1) :: (t2, n2) :: · · · :: nil
We now have a substitution represented as a list. Now lookup can
be implemented efficiently. Not only does it skip the O(N) traver-
sal for free-variables, but the traversal can use a simple indexation
operation to directly fetch the nth element. So e could be imple-
mented with any standard data structure such as an array or a bal-
anced tree.

To lift the second restriction, the suspension calculus makes one
more tweak to that representation: in order to avoid having to count
all the shifts by traversing e, the (t, n) :: σ representation stores in
n the difference between the number of shifts and the variable nl of
the substitution. In other words, we have the following equivalence:

(t1, n1) :: (t2, n2) :: · · · :: (tm, nm) :: nil
'

↑(nl−n1)(t1 · ↑(n1−n2)(t2 · . . . · ↑(nm−1−nm)tm · ↑nm id))

So to get the total number of shifts for the variable #i, we must
compute nl − ni. It is important to understand that the difference
ni is computed when the element ti is added to the substitution.
If the counter nl continues to grow after that, the relation is still
valid because it means that new shifts were added to the front of the
substitution and thus need to be added to the total of shifts collected
before we reach ti if we make a traversal like in λσ2.

7.1 Restricted Suspension Calculus
Figure 7 shows the syntax and implementation of the calculus with
the new way to represent the substitution.

This version of the suspension calculus is more rudimentary
than any of the published ones. But it corresponds fairly closely
to the restricted suspension calculus presented in [Nadathur 1999]
and used in [Shao et al. 1998].

The main difference is the absence of the @n form. This form
is used in the suspension-calculus as a shorthand for (#0, n +

σ ::= (ol, nl, e)
e ::= nil | (t, n) :: e

id = (0, 0, nil)
cons t (ol, nl, e) → (ol + 1, nl, (t, nl) :: e)
lift (ol, nl, e) → (ol + 1, nl + 1, (#0, nl + 1) :: e)

lookup #i (ol, nl, e) =
if (i ≥ ol) then
#(i− ol + nl)

else
let (t, n) = nth i e
in case t in
t′[(ol′, nl′, e′)]⇒ t′[(ol′, nl′ + nl−n, e′)]
⇒ t[(0, nl−n, nil)]

Figure 7. Syntax and functions of λsusp

compose (ol1, nl1, e1) (ol2, nl2, e2) =
(ol′, nl′, compe e1 nl1 ol2 e2)
where ol′ = ol1 +max(0, (ol2−nl1))

nl′ = nl2 +max(0, (nl1−ol2))

compe e1 nl1 0 nil = e1

compe nil 0 ol2 e2 = e2

compe nil nl1 ol2 ((t, n) :: e2) =
compe nil (nl1−1) (ol2−1) e2,
if nl1 ≥ 1

compe ((t1, n1) :: e1) nl1 ol2 ((t2, n2) :: e2) =
compe ((t1, n1) :: e1) (nl1−1) (ol2−1) e2
if nl1 > n1

compe ((t1, n1) :: e1) nl1 ol2 ((t2, n2) :: e2) =
let e′ = compe e1 n1 ol2 ((t2, n2) :: e2)
in (t1[(ol2, n2, (t2, n2) :: e2)], n2 +max(0, (n1−ol2))) :: e′

Figure 8. Compose function for the simplified λsusp

1), which is what we use here in the lift function instead. The
advantage of using a special form like @n is to distinguish the
case where a variable is replaced with another variable from the
case where a variable’s index is simply renumbered. This difference
is significant when we care to preserve information such as the
location of the variable in the source code.

The reader will probably have noticed the absence of a compose
function, which simply reflects the fact that this calculus relies on
the β′ rule to avoid most uses of compose. And it comes with
its own additional ad-hoc rule, hidden within the lookup function:
before returning a new suspension shifted by nl−n, the function
checks to see if the base form t is itself a suspension, in which
case it performs the composition of the base substitution with the
shift by nl−n, to avoid the need for a complete implementation of
compose.

7.2 Simplified Suspension Calculus
Of course, if needed, we can define compose, for example by
taking the rewrite rules presented in [Gacek and Nadathur 2007]
and implementing them as a function as shown in Fig.8.

We can see in Fig. 8 that compose is similar to the one defined
for λσ2. The resulting composition has the same ol′ and nl′. The
first two cases of compe correspond to the id case. The two other
cases when a shift cancels a cons. Remember that nil replaces
↑nm id so the substitution can still represent shifts in the presence

of nil. The last one corresponds to the last case of compose in λσ2

where the second substitution is distributed over the cons of the
first.

8. Related Work
This is not the first time explicit substitutions calculi are compared.
For example, Gacek and Nadathur [Gacek and Nadathur 2007] pro-
vide a formal mapping between the simplified suspension calcu-
lus and λσ as well as many other calculi. They also provide a full
treatment of the properties of the simplified suspension calculus
and their mathematical proofs. Our intention here is to try and give
a more intuitive and pragmatically motivated mapping, going into
several motivated steps instead of giving a formal mapping.

9. Conclusion
In this paper we showed how the suspension calculus can be viewed
as an optimized implementation of the original λσ. We hope this
can motivate the use of the suspension calculus as an implementa-
tion tool even though it is not easy to figure out how it works based
on its own original rules. Indeed, like most optimized algorithms,
trying to understand the inner working of the suspension calculus
directly can be hard. It is simpler to understand λσ and how to pro-
ceed to optimize it.

10. Acknowledgment
We would like to thank the reviewers for giving us various pointers
to similar work in the litterature.

References
M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.

Journal of Functional Programming, 1(4):375–416, 1991.
B. Accattoli and D. Kesner. The structural λ-calculus. In Computer Science

Logic, pages 381–395. Springer, 2010.
P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and

strong calculi of explicit substitutions. J. ACM, 43(2):362–397, 1996.
N. G. de Bruijn. Lambda-calculus notation with nameless dummies, a

tool for automatic formula manipulation, with application to the church-
rosser theorem. Indagationes Math., 34(5):381–392, 1972.

A. Gacek and G. Nadathur. A simplified suspension calculus and its
relationship to other explicit substitution calculi. Technical Report
2007/39, Digital Technology Center, University of Minnesota, 2007.

C. Liang, G. Nadathur, and X. Qi. Choices in representation and reduction
strategies for lambda terms in intensional contexts. Journal of Auto-
mated Reasoning, 33:89–132, 2004.

G. Nadathur. A fine-grained notation for lambda terms and its use in
intensional operations. Journal of Functional and Logic Programming,
1999(2), 1999.

G. Nadathur and D. S. Wilson. A notation for lambda terms: A generaliza-
tion of environments. Theoretical Computer Science, 198(1-2):49–98,
May 1998.

F. Pfenning and C. Schürmann. System description: Twelf - a meta-
logical framework for deductive systems. In International Conference
on Automated Deduction, volume 1632 of Lecture Notes in Artificial
Intelligence, pages 202–206, July 1999.

Z. Shao, C. League, and S. Monnier. Implementing typed intermediate
languages. In International Conference on Functional Programming,
pages 313–323. ACM Press, Sept. 1998.

