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While Emacs proponents largely agree that it is the world’s greatest text editor, it is almost as much
a Lisp machine disguised as an editor. Indeed, one of its chief appeals is that it is programmable
via its own programming language, Elisp (or Emacs Lisp), a Lisp in the classic tradition. In this
article, we present the history of this language over its more than 30 years of evolution. Its core has
remained remarkably stable since its inception in 1985, in large part to preserve compatibility with
the many third-party packages providing a multitude of extensions. Still, Elisp has evolved and
continues to do so.

Despite the fact that it is closely tied to a concrete editor, Elisp has spawned multiple implementations—
in Emacs itself but also in variants of Emacs, such as XEmacs, Edwin, and even the window manager
Sawfish. Through competing implementations as well as changes in maintainership, it has picked up
outside influences over the years, most notably from Common Lisp.

Important aspects of Elisp have been shaped by concrete requirements of the editor it supports,
such as the buffer-local variables that tie bindings to editing contexts, as well as implementation
constraints. These requirements led to the choice of a Lisp dialect as Emacs’s language in the
first place, specifically its simplicity and dynamic nature: Loading additional Emacs packages or
changing the ones in place occurs frequently, and having to restart the editor in order to re-compile
or re-link the code would be unacceptable. Fulfilling this requirement in a more static language
would have been difficult at best.

One of Lisp’s chief characteristics is its malleability through its uniform syntax and the use
of macros. This has allowed the language to evolve much more rapidly and substantively than
the evolution of its core would suggest, by letting Emacs packages provide new surface syntax. In
particular, Elisp can be customized to look much like Common Lisp, and additional packages provide
multiple-dispatch object systems, legible regular expressions, programmable pattern matching
constructs, generalized variables, and more. Still, the core has also evolved, albeit slowly. Most
notably, it acquired support for lexical scoping.

The timeline of Elisp development is closely tied to the projects and people who have shaped
it over the years: We document Elisp history through its predecessors, Mocklisp and MacLisp, its
early development up to the “Emacs schism” and the fork of Lucid Emacs, the development of
XEmacs, and the subsequent rennaissance of Emacs development.
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1 INTRODUCTION

Elisp is the extension language of the Emacs text editor. In this sense, it is just a side-project
of Emacs and might be overlooked as a programming language. But Emacs itself comes with
more than a million lines of Elisp code, and yet more Elisp is distributed separately from
Emacs in various Emacs Lisp Package Archives (ELPA). If you additionally consider that
the majority of Emacs users have likely written a few lines of Elisp in their configuration
file, it is clearly one of the most widely used dialects of Lisp.

1.1 Organization

Elisp has evolved in multiple strands and implementations over the years, and thus its
evolution did not happen along a single timeline. Moreover, some aspects evolved over long
periods of time. To avoid excessive interleaving of those aspects, we have organized the
top-level structure of the paper into chronological eras. Within an era, as a new topic is
introduced, we usually follow that topic chronologically to its conclusion, even if that means
going beyond the era where it started.
We trace the overall evolution of Elisp in the software projects that implemented it. Its

predecessors EINE (1976) and Multics Emacs (1978) were themselves written in Lisp. Unix
Emacs (also known as Gosling Emacs), which appeared in 1981, was written in C but
included its own Lisp-like language. We briefly describe those predecessors in Section 2.
Emacs as we know it today itself started in early 1985. Section 3 describes the driving

motivation for the early design and implementation of Elisp. The following Section 4 traces
the evolution of the base language design, and Section 5 its implementation. Development
continued at a high pace until about 1991. Around that time, its development slowed down
and was overtaken by Lucid Emacs, later renamed XEmacs, whose development of Elisp
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we describe in Section 6. Eventually, development of Emacs picked up again, and both
co-evolved until about 2007. We describe the relevant aspects of that evolution in Section 7.
After 2007, XEmacs development slowed down, and we describe this post-XEmacs period in
Section 8.
Elisp was re-implemented in several other projects outside this successions. We briefly

touch upon those projects in Section 9. Our conclusions are in Section 10.

2 PREHISTORY

While Emacs’s original inception was as a set of macros for the TECO editor, it had no
high-level extension language. Arguably, the strongest influences for Elisp were Gosling
Emacs’s Mock Lisp and MacLisp.

2.1 MacLisp

Several early incarnations of Emacs were written in Lisp, notably on the Lisp Machine
(called EINE for “EINE Is Not EMACS”) by Dan Weinreb and in MacLisp [17, 20] by Bernie
Greenberg in 1978 [24]. The ensuing possibilities for extending the editor were attractive to
Richard Stallman, who wanted to write a new widely available version. As a result, Elisp is
a direct descendant of MacLisp.

2.2 Gosling Emacs

Unix Emacs, written by James Gosling in 1980/1981 [12], preserved in the history books as
Gosling Emacs, was one of the immediate predecessors of Emacs. It featured an extension
language called MLisp or Mock Lisp, which bears visual resemblance to Elisp. MLisp
featured function definitions via defun, as well as many built-in functions (such as eolp,
forward-character, save-excursion) whose names survive in Elisp. Emacs contained
some backwards-compatibility support for MLisp until Emacs 21.2 in 2001.

MLisp was a quite limited language: It lacked cons cells and lists. MLisp did have dynamic
binding and local variables, but a peculiar mechanism for passing arguments: There were no
named parameters. Instead, a program would invoke the arg function: For example, (arg 1)

would access the first argument. Moreover, argument expressions were essentially evaluated
in a call-by-name fashion by arg, and evaluation happened in the dynamic environment of
the callee.

3 EARLY HISTORY

Following Greenberg’s Multics Emacs, Richard Stallman decided to write a (for him) second
version of Emacs, which included Elisp from the start. As Greenberg’s Emacs required a
high-performance Lisp compiler to run efficiently, Richard Stallman decided to reimplement
the basis for the new Emacs in C, with an integrated Lisp interpreter. Buffer manipulation
and redisplay were written in efficient C, higher-level functionality in Lisp.
The initial design of Elisp was motivated by the pervasive requirement of extensibility ;

users “must be able to redefine each character” [25]. TECO and Gosling Emacs featured
small languages that were either too obscure or too weak to support this vision. Consequently,
Richard Stallman took inspiration from MacLisp, and Elisp started as a real programming
language with powerful abstraction facilities, thus foregoing Greenspun’s tenth rule.
Moreover, Richard Stallman, made the design of Elisp embody and showcase the ideals

of Free Software. For example, not only is it legal to get and modify the source code, but
every effort is made to encourage the end-user to do so. The resulting requirements had a
profound influence on the Elisp language:
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∙ The language should be accessible to a wide audience, so that as many people as possible
can adapt Emacs to their own needs, without being dependent on the availability of
someone with a technical expertise. This can be seen concretely in the inclusion in
Emacs of the Introduction to Programming in Emacs Lisp tutorial [6] targeting users
with no programming experience. This has been a strong motivation to keep Elisp on
the minimalist side and to resist incorporation of many Common Lisp features.

∙ It should be easy for the end-user to find the relevant code in order to modify Emacs’s
behavior. This has driven the development of elements such as the docstrings (see
Section 4.4) and more generally the self-documenting aspect of the language. It also
imposes constraints on the evolution of the language: the use of some facilities, such as
advice, is discouraged because it makes the code more opaque.

∙ Emacs should be easily portable to as many platforms as possible. This largely explains
why Elisp is still using a fairly naive mark&sweep garbage collector, and why its main
execution engine is a simple byte-code interpreter.

4 BASE LANGUAGE DESIGN

The base language of Elisp started out as a straightforward variant of MacLisp [17, 20].
Many basic special forms are identical: defun, defvar, defmacro, let, let*, cond, if,

function, catch, throw, unwind-protect. So are basic data structures: symbols, nil, cons
cells, arrays, and many familiar Lisp functions.

The language used dynamic scoping where the latest binding of a variable is simply stored
in the value slot of the corresponding symbol object, resulting in simple and efficient variable
lookups and let-bindings. Symbols could be used to refer to variables. In particular, the set
function, which performed assignment, accepted the name of a variable as its argument. A
symbol had an associated property list, essentially a dictionary mapping property names
(also symbols) to values.

Like MacLisp, Elisp was (and still is) a Lisp-2 [26]. The namespaces for functions and
“ordinary values” are separate, and to call a function bound to a variable, a program must
use funcall. Also, symbols can be used as function values.

Some specialized control structures were missing in the original Elisp, among them the do
loop construct, and the accompanying return and go forms for non-local control transfer.
This section discusses some notable differences from and additions to MacLisp. Lambda

expressions worked slightly differently, as discussed in Section 4.1. Section 4.2 discusses
the string representation (absent in MacLisp). MacLisp-style backquote reader syntax was
only added later to Elisp—see Section 4.3. A feature supporting easy extensibility was
self-documentation through docstrings, described in Section 4.4. Section 4.5 describes how
Emacs ties functions to interactive commands. Section 4.6 describes Elisp’s improvements
over MacLisp’s error handling. Section 4.7 describes buffer-local variables, which tie the
language to the editor. One important pragmatic aspect of the use of the language was
extensibility of existing code via hooks, discussed in Section 4.8.

4.1 Lambda

Interestingly (unlike MacLisp), lambda was not technically part of the Elisp language until
around 1991 when it was added as a macro, early during the development of Emacs-19. In
Emacs-18, anonymous functions were written as quoted values of the form:

’(lambda (..ARGS..) ..BODY..)
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While the lambda macro has made this quote unnecessary for almost 30 years now, many
instances of this practice still occur in Elisp code, even though it prevents byte-compilation
of the body.

Somewhat relatedly, only in 1993 did Lucid Emacs 19.8 import the #’... reader shorthand
for (function ...) from MacLisp. Emacs followed suit the year after.

4.2 Strings

Elisp included support for string objects from the beginning of course. Originally, they were
just byte arrays.
In 1992, during the early development of Emacs-19, this basic type was extended by

Joseph Arceneaux with support for text-properties: each char of a string can be annotated
with a set of properties, which maps property names to values, where property names can
be any symbol. This can be used to carry information such as color and font to use when
displaying the various parts of the string.

XEmacs added a similar, though incompatible, feature to their strings at around the same
time, called extents. The incompatibility was due to a fundamental disagreement about how
those annotations should be propagated when strings are manipulated: XEmacs’s extents
cover a contiguous span of characters and they are objects in their own right with their own
identity, so they need to be duplicated when a substring is selected, with the new extents
not necessarily covering the same characters, and concatenation may end up bringing two
“identical” extents next to each other but cannot merge them into one. Richard Stallman felt
like this was introducing undesired complexities, and decided that Emacs’s text properties
should not have identity and should apply to the characters of the string so there is never a
question of splitting or merging text properties.
With buffer-local variables 4.7, this is one of the very rare cases where the core Elisp

language has been extended with a feature that specifically caters to the needs of the Emacs
text editor, to keep track of rendering information. It is more generally useful, of course, but
turns strings into a much fancier datatype than in most other languages.

Around 1994, support for arbitrary character sets was added to Emacs and XEmacs, which
required distinguishing between bytes and characters, and hence changing its string objects.
Characters are represented with a variable number of bytes, similar to utf-8, favoring a
compact representation at the cost of a slower random access. In practice, random access to
strings is fairly rare, so it works rather well, but it does impose a significant constraint: there
is an indirection between the string object and the bytes it holds because the aset primitive
which replaces one of the string’s characters with another by side-effect will sometimes
change the string’s length in bytes, which requires to relocate the string’s bytes elsewhere.

In XEmacs, strings have a “modified-tick” that is bumped every time a string is modified
in-place. This count can be retrieved with the new function string-modified-tick. The
XEmacs codebase never contained a user for this function, so the motivation for this is
unclear. It is a straightforward parallel to the buffer-modified-tick function that tracks
modifications to buffers, and which has many uses.

4.3 Backquote

Curiously, Elisp did not until 1994 include the reader syntax for quasiquotation common
to many other Lisps, including MacLisp [1]. Instead, the special forms that came with
quasiquotation—backquote (‘), unquote (,) and unquote-splicing (,@) were the names of
special forms. Thus, what is usually written as:
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‘(a b ,c)

was written in early Elisp as:

(‘ (a b (, c)))

The releases of Emacs-19.28 and XEmacs 19.12 in 1994 finally added the proper reader
support to generate the latter version from the first. The reader had to rely on a heuristic
for that, though, because (‘a) is valid in both syntaxes but means different things: It could
either denote an old-style backquote expression (denoting the backquoted symbol a) or a
single-element list containing the new-style backquoted symbol a.
So the old format, though obsolete, was still supported, and the new format was only

recognized in some cases; more specifically the new unquote was only recognized within
a new backquote, and the new backquote was only recognized if it occurred within a new
backquote or if it did not immediately follow an open parenthesis.

Seeing how uses of old-style backquotes were not going away, in 2007 Emacs-22.2 introduced
explicit tests and warnings to bring attention to uses of old-style backquotes, while still
keeping the actual behavior unchanged.
Then in 2012 with the release of Emacs-24.1, the behavior was changed so that the old

format is only recognized if it follows a parenthesis and is followed by a space. The main
motivation for this change was the introduction of the pcase macro where patterns can also
use the backquote syntax and are commonly placed right after a parenthesis so they were
otherwise mistaken for an old-style backquote syntax.
Finally in 2018 during the development of Emacs-27 the old-style backquote syntax was

removed.

4.4 Docstrings

An important feature of Emacs from the start was the idea of self-documentation [25]. To
that end, every definition form in Elisp can include documentation in the form of a string
after the signature:

(defun ignore (&rest _ignore)

"Do nothing and return nil.

This function accepts any number of arguments, but ignores them."

nil)

This docstring can be retrieved in various ways, in particular through the user interface.
This idea was apparently first introduced in the original Emacs implementation in TECO,
then adapted to Elisp. Many languages have since adopted them, notably Common Lisp [22]
and Clojure.

4.5 Interactive functions

The most direct method to make a function implemented in Elisp accessible to a user is to
provide a keybinding for it. This is not realistic for all functions, however—there are too
many of them.
A user can also invoke an function by typing M-x function-name. This only makes sense

for a certain subset of all defined functions, namely interactive functions, which are specially
marked with an interactive form at the beginning of the body, like this:

(defun forward-symbol (arg)

"Move point to the next position that is the end of a symbol.

A symbol is any sequence of characters that are in either the
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word constituent or symbol constituent syntax class.

With prefix argument ARG, do it ARG times if positive, or move

backwards ARG times if negative."

(interactive "^p")

(if (natnump arg)

(re-search-forward "\\(\\sw\\|\\s_\\)+" nil ’move arg)

(while (< arg 0)

(if (re-search-backward "\\(\\sw\\|\\s_\\)+" nil ’move)

(skip-syntax-backward "w_"))

(setq arg (1+ arg)))))

The interactive form also has an optional string operand that regulates how such a
function receives its arguments. (It can also be an expression that is evaluated to produce
a list of arguments.) In the above example, p means that the function accepts a prefix
argument : The user can type ESC number or C-u (to specify powers of 4) prior to invoking
the function, and the number will be passed to the function as an argument, in this case as
arg. (The ^ (a more recent addition) has to do with region selection with a pressed shift
key.)

4.6 Non-local exits

Very early on, Elisp featured a good set of primitives to handle non-local exits. Additionally
to the catch and throw primitives inherited from MacLisp, it came with unwind-protect,
which was inherited from TECO, as well as an error handling system.

MacLisp’s error-handling system was quite primitive, and had poor separation of signalling
and handling [21]. Elisp instead featured a condition system inspired from the Lisp Machine
although it did not cover all the features of the Lisp Machine system, such as the ability to
recover from an error.
The signal function takes an ERROR-SYMBOL classifying the exceptional situation and

an additional DATA argument. An error symbol is a symbol with an error-conditions

property that is a list of condition names. For example, the following invocation states that
a pixmap parameter is bound to an invalid argument, and should have fulfilled the predicate
stipple-pixmap-p:

(signal ’wrong-type-argument (list #’stipple-pixmap-p pixmap))

An invocation of signal escapes to the nearest use of condition-case in the call stack,
which dispatches on the condition name. These condition names can be used to dispatch on
the condition with the condition-case form which specifies a handler. Here is an example:

(condition-case err

(key-binding (this-command-keys))

(wrong-type-argument

<handle>))

This evaluates (key-binding ...). If a wrong-type-argument is signalled during evalua-
tion, <handle> is evaluated, with err bound to a pair consisting of the error symbol and
the data argument passed to signal.

Emacs comes with a set of standard errors, establishing a protocol between signaling and
handling code.
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4.7 Buffer-local variables

Buffer-local variables are the prominent feature marking Elisp as the extension language of
a text editor. In Emacs, buffers are objects that store the contents of a file while it’s being
edited. In addition to the file’s content, buffers store auxiliary information such as the name
of the associated file, the rules to use to highlight its contents, the editing mode to use, the
character encoding used etc. Additionally, there is a global reference managed by Emacs
called the current buffer, that determines the implicit target of editing operations.

Making a variable buffer-local associates the value of the variable with the current buffer.
An assignment to a buffer-local variable only affects dereferences with the same current
buffer in effect. Any variable can be made local to any buffer, so variables can take different
values in different buffers. For example, the variable buffer-file-name keeps the name of
the file associated with the corresponding buffer. This variable typically has a different value
in every buffer. In the absence of such a buffer-local assignment, a variable is said to have
its default or global value.

Variables can be both buffer-local and dynamically bound at the same time:

(let ((buffer-file-name "/home/rms/.emacs"))

(with-current-buffer "some-other-buffer"

buffer-file-name))

This example will not return "/home/rms/.emacs" but the buffer-local value of buffer-file-name
in the buffer "some-other-buffer" instead because with-current-buffer temporarily
changes which buffer is current.

The presence of buffer-local values significantly complicates the implementation of looking
up, setting, and let-binding a variable, so the code is optimized for the “normal” case of
variables that have not been made local to any buffer.

Over the years many bugs were fixed in the implementation of let-binding buffer-local
variables. The most famous one was fixed in Emacs-21.1. This bug affected code like

(let ((buffer-file-name "/home/rms/.emacs"))

...

(set-buffer other-buffer)

...)

where the current buffer was different when the let-binding is entered from when it is left1;
the bug was that this code ended up “restoring” the value of buffer-file-name into the
wrong buffer when exiting the let.

4.8 Hooks

One important aspect of the extensibility Richard Stallman originally conceived for Emacs
was the ability to make existing functions run additional code without having to change
them, so as to extend their behavior. Emacs supports this at well-defined points called hooks.
A hook is simply a variable bound to a list of functions. The add-hook function adds a

function to such a list by reassigning the variable. (This makes use of the ability to refer to
a variable by its name symbol.)
Hooks are not a core language feature, but their use has been a pervasive convention in

Emacs from the start. In particular, many libraries run a hook when they are loaded to
allow customization. Also, modes generally run hooks to allow modifying their behavior.

1set-buffer is like with-current-buffer except that it is not scoped, so it takes effect until the next
set-buffer.
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The old TECO version of Emacs also allowed attaching hooks to variable changes [25], but
this feature was not provided in Elisp because Richard Stallman considered it a misfeature,
which could make it difficult to debug the code. Yet this very feature was finally added to
Elisp in 2018 in the form of variable watchers, though they are ironically mostly meant to
be used as debugging aides.

Of course, authors do not always have the foresight to place hooks where users need them,
so in 1992, the advice.el package was added to Emacs-19, providing a defadvice macro
duplicating a design available in MacLisp and Lisp Machines, that allowed attaching code
to functions even if they do not run hooks.
The way the defadvice macro gave access to function arguments did not work with

lexical scoping; furthermore time had shown that most of the non-core features of defadvice
were very seldom used, and even more seldom used properly. So in late 2012 a new package
nadvice.el was developed which provides the same core features but with a much simpler
design that tries to make better use of existing language features. It was released as part of
Emacs-24.4.

4.9 I/O

One of the ways Elisp distinguishes itself from most other programming languages is in
its treatment of input/output: rather than follow the usual design based on some kind of
file or stream object and primitives like open/read/write/close, Elisp only offers coarser
access to files via two primitive functions insert-file-contents and write-region which
transfer file contents between a file and a buffer. So all file manipulation takes place by
reading the file into a buffer, performing the desired manipulation in this buffer, and then
writing the result back into the file.

Since this approach does not extend naturally to interaction with external processes or
remote hosts, these are handled in a completely different way: there are primitive functions
that spawn a sub-process or open up a connection to a remote host and return a so-
called process object. These objects behave a bit like streams, with process-send-string

corresponding to the traditional write, but where the traditional read is replaced by
execution of a callback whenever data is received from the sub-process or the remote host.

5 BASE LANGUAGE IMPLEMENTATION

At least initially, the Elisp language was defined by its sole implementation. Various design
aspects had impact on the users of the language, and this section discusses some of them.
Section 5.1 describes the byte-code interpreter. Section 5.2 discusses tail-call optimization.
Section 5.2.1 touches on issues related to bootstrapping. Section 5.3 describes the essential
data representation of the implementation. The following sections touch on other issues
related to memory management: Section 5.4 describes the evolution of scanning GC roots.
Section 5.5 describes changes in XEmacs to simplify heap management. Section 5.6 describes
efforts in Emacs and XEmacs to reduce the tag bits. Improvements to the GC algorithm
are described in Section 5.7. Section 5.8 describes the image-dumping mechanism in Emacs
and XEmacs and how it changed over time. Sections 5.9 and 5.10 document debugging
and profiling efforts, respectively. Finally, Section 5.11 describes recent efforts to add JIT
compilation to Elisp.

5.1 Byte-code interpreter

Emacs has two execution engines for Elisp: The first is a very simple interpreter written in
C operating directly on the S-expression representation of the code. Some time before the
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release of Emacs-16.56 in July 1985, a byte-code function was added, which interpreted its
string argument as a sequence of stack-based byte codes to execute, along with a compiler,
written in Elisp, which translated Elisp code to that byte-code language.

While Elisp is basically a “run of the mill” programming language, just with some specific
functions tailored to the particular use of a text editor, this byte-code language is much
less standard since it includes many byte codes corresponding to Elisp primitives such as
forward-char, insert, or current-column.

While a systematic study would likely reveal that the operations that should deserve their
own byte-code in modern Elisp code are quite different, the byte-code language of Emacs
has changed very little over the years and is still essentially the same as that of 1985. The
main changes were those made to support lexical scoping; see Section 8.1.

5.2 Tail-call optimization

Elisp does not optimize away tail calls. With Scheme being familiar to many Elisp developers,
this is a disappointment for many. In 1991, Jamie Zawinski added an unbind all instruction
to the Lucid Emacs byte-code engine (which appears in both Emacs and XEmacs to this day)
that was intended to support tail-call optimization, but never implemented the optimization
itself.

There have been two patches developed independently and submitted to Emacs maintainers
in late 2012 (by Troels Nielsen first and Chris Gay two months later) to optimize away tail
calls in lexically-scoped byte-compiled code, but so far none of them have made it into an
official release.
The main reason for that is partly a chicken-and-eggs problem. Tail-call optimization

(TCO) is largely incompatible with dynamic scoping, so it was basically inapplicable until the
introduction of lexical scoping in 2012; furthermore, function calls are relatively expensive
in the current implementation of Elisp. Together, these two factors created a coding style
which favored the use of iteration over recursive definitions, which in turn makes TCO rarely
beneficial on existing code.

This said, there were other objections to those patches:

∙ They only affected byte-compiled code, and while it is expected that most code is
byte-compiled before being executed, it’s very common to run non-compiled Elisp
code, especially during development or debugging. So if Elisp code started to rely on
TCO, it would tend to cause problems when interpreted. One alternative is to always
byte-compile the code and get rid of the Elisp interpreter, but that’s a change that
would have much further consequences.

∙ The available implementations of TCO affect the behavior not only in terms of reducing
the stack allocation and increasing performance, but it would also eliminate some
activation frames from stack backtraces, which would be detrimental to debugging.
This is particularly true for tail-calls which are made to other functions, such as
non-recursive tail-calls.

5.2.1 Bootstrap. Since the Elisp compiler is itself written in Elisp, it requires a form of
bootstrap. Until 2002 during the development of Emacs-21, Emacs’s development was done
using the revision control system RCS [30], and changes were installed by logging remotely
into an FSF-owned machine and performing the commits there. This machine also kept the
(last) compiled form of the Elisp files and so naturally provided the needed compiled files for
bootstrap. When development moved to CVS [2] to ease collaboration between contributors,
another solution was needed.
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Of course, since Emacs also comes with a simple direct Elisp interpreter, bootstrapping is
not very difficult, but several changes were needed nevertheless because the previous use of
pre-compiled files had hidden some circular dependencies. Of those, the only one that was
not removed in Emacs-21.1 is that some Elisp code relies on the fact that some functions are
autoloaded, and some of that code is used to build the file that contains all those autoload
declarations. So instead, the solution found was to keep a pre-built copy of that file in the
CVS repository.

5.3 Data representation and memory management

Emacs started with a data representation of its boxed data based on 32bit words. Those
used a 7bit tag located in the most significant bits, 1 extra “mark” bit (see below), and 24bit
of immediate data: either an integer or a pointer. Not all the possible 128 tags were actually
used, but the 24 remaining bits where amply sufficient to represent the needed pointers and
integers for the typical available memory of the machines of that time.
The memory management used a simple mark&sweep garbage collection algorithm, and

allocated objects by blocs of 4KB dedicated to a particular kind of objects: one bloc each
for cons cells, floats, symbols, markers, and strings, all other objects were allocated directly
with malloc. To avoid fragmentation in the blocs of strings, those were compacted during
each GC. The “mark” bit in each 32bit box was not used for the object contained in the
32bit box. Instead it was used so that cons cells could occupy only 2 words: the extra bit
needed to store the mark&sweep’s markbit of each cons cell was stored in the “mark” bit of
the first word (i.e. of the car).
Over time, this tagging scheme became problematic, since it limited to 16 MB the size

of the Lisp heap and to 8MB the size of files that could be edited. The limit on file size is
fundamentally linked to the maximum representable integer since that is how buffer positions
are represented.
So in 1995, with the release of Emacs-19.29, the scheme was tweaked so that the tag

was reduced to 3 bits, pushing the maximum file size to a more comfortable 128MB and
the maximum heap size to 256MB. To reduce the tag to 3 bits, the less important object
types were placed into two groups: one group using the Lisp Misc tag and another using
the Lisp Vector tag. The Lisp Misc tag was used for objects that could share the same
heap size as Lisp markers (6 words), and hence be allocated from the same 4KB bloc. For
some of those objects, it imposed a slight waste of space, which was justified by the fact
that objects using the Lisp Vector tag had other extra costs: 2 words of header, plus the
overhead of having each object by allocated directly by malloc.

XEmacs implemented a similar change in 1993 with Lucid Emacs 19.8, giving Elisp 28-bit
integers and a 28-bit address space, and merged that data representation of Emacs 19.30
with the release of XEmacs 19.13, also in 1995.

5.4 Scanning the stack

Until Emacs-21, the mark phase of the GC was precise: the global roots were explicitly
registered, the GC knew all the types of Lisp objects and where were the fields that could
contain references, and the roots from the stack were also explicitly registered into a singly
linked list itself directly allocated on the stack.
The cost of properly registering/unregistering stack references was perceived to be high:

it slowed down execution, both directly by adding administrative code and indirectly by
preventing some variables from being kept in registers, and it was a source of bugs, especially
since some code tried to be clever and avoid registering local references under the assumption
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that the GC could not be triggered at that particular point. Similarly, the relocation of
strings was a frequent source of hard-to-track bugs because only the references known to the
GC were properly updated, so the programmer had to be careful not to keep unboxed or
unregistered references to a string at any point where a GC was possible.
To try and address those concerns, for Emacs-21.1, Gerd Möllmann changed the string

compaction code and implemented a conservative stack scan. Strings are split into the string
object itself, of fixed size and non-relocatable, and the relocatable string data to which the
code (almost) never keeps a direct reference. In order to find out if a given word found
on the stack might be a potentially valid reference to a Lisp object, it keeps a memory
map that records which regions of the memory contains which kinds of Lisp objects. This
conservative stack scanning could be used either in addition to the singly linked list of
registered references, as a kind of debugging aide, or replace it altogether.
Thanks to the interactive nature of Emacs and its opportunistic GC strategy which

ensures that the GC is often run when the stack is almost empty, the slower conservative
stack scanning and the potential false positives it introduces have not been a problem. The
maintenance of the memory map, implemented as a red-black tree, was hence the main
cost of this new stack scanning, which proved competitive with the previous scheme. The
previous scheme was kept in use on some rare systems until Emacs-25.1, where all the
register/unregister code of stack references could finally be removed.

5.5 Heap management in XEmacs

XEmacs has kept precise GC, and implemented a number of improvements in its memory
management. In particular, Markus Kaltenbach and Marcus Crestani implemented a scanning
algorithm that used the memory-layout descriptors that had been added to support the
portable dumper. (See Section 5.8.) Marcus Crestani also replaced the allocator: The new,
much simplified allocator eliminated the distinction between objects that were allocated in
blocks and those allocated via malloc, and would make the decision individually based on
size.
In the process of these GC improvements, Crestani and Michael Sperber also added

ephemerons to Elisp [13].

5.6 Squeezing the tag bits

Of course, a limit of 256MB was not actually comfortable.
XEmacs added a “minimal-tagbits” configure option with the release of XEmacs 21.0

in 1998, yielding 31-bit integers and a 1GB maximum file size. The mark bits moved to
the object headers, which were also added to cons cells, making them 3-word objects. The
mark bit was removed from the boxes, and the number of type tags was reduced to four:
records (heap-allocated objects, characters, even and odd fixnums.) This became default
with XEmacs 21.2 in 2002.

During the development of Emacs-22 in 2007, its tagging scheme was similarly reworked:
The mark bit was removed, and the tag bits were moved to the least significant bits, allowing
the Lisp heap to grow as large as the full address space allowed. Moreover, the markbit of
cons cells was moved to a separate bitmap stored alongside each bloc of cons cells, which
required allocating those blocs on 4KB alignment boundaries. This avoided the use of one
extra word per cons cell just to store the markbit, as was done previously for floats. This
same bitmap scheme was of course also used for floats, thus reducing the typical heap size
of floats from 96 bits to 64 bits. Reducing the heap size of floats to 64bits and avoiding the
use of 3 words for cons cells was not just motivated by thriftiness but rather by the need to
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enforce that all objects be aligned on a multiple of 8, so as to free the least significant 3 bits
for use as tag bits.

At that point, there was no illusion that a maximum file size of 256MB was sufficient, but
at the same time, the design of Emacs made it basically impossible to view files larger than
4GB or edit files larger than 2GB (on a 32bit system) anyway, no matter which tagging
scheme we used, so there was not a lot of room for improvement.

In Emacs-23.2 the tagging scheme was tweaked to use 2 tags for integers, hence pushing
the maximum file size to 512MB.

To cover the remaining space, a new compilation option --with-wide-int was introduced
in Emacs-24.1 to make the boxed data use 64bit on 32bit systems. This imposes a significant
extra cost in terms of space and time but makes it possible to edit files up to about 2GB.
When this compilation option is used, tag bits are placed in the most significant bits again,
so that the 32bit of pointers can be extracted at no cost at all.
In Emacs-24.3, the allocation of objects using the Lisp Vector tag (which is used for

many more object types than just vectors) was modified: instead of calling malloc for each
such objects, they are now allocated from “vector blocs”. The motivation was not that
malloc was too slow, but that the implementation of our conservative stack scanning keeps
track of every part of the Lisp heap allocated with malloc in a balanced tree, so every
such malloc costs us an 𝑂(𝑁 log𝑁) operation plus a heap allocation of an extra tree node,
which was very costly for small objects both in time and space. The reason why it took
until Emacs-24.3 to fix this performance issue is that objects using the Lisp Vector tag
were historically not used in large numbers in early Elisp code. There were two factors
that changed this situation: first, over time the style of Elisp coding evolved and the use
of cl.el’s defstruct (which internally represents those objects as vectors) became much
more common, and second the closures used in the lexical-scoping feature of Emacs-24.1
also use the Lisp Vector tag.

In Emacs-24.4, the representation of objects using the Lisp Vector tag (which is used for
many more object types than just vectors) was improved so as to reduce their header from 2
words down to a single word.

In Emacs-27.1, the object representation was changed again: the distinction between
Lisp Misc and Lisp Vector was dropped by making all objects use the Lisp Vector

representation since it had been improved sufficiently to be competitive with the special-
cased Lisp Misc representation.

5.7 New GC algorithms

During the learly years of Emacs, the main complaints from users about the simple
mark&sweep algorithm were the GC pauses. These were solved very simply in Emacs-
19.31 by removing the messages that indicated when GC was in progress. Since then
complaints about the performance of the GC have been rare. Most of them have to do with
the amount of time wasted in the GC during initialization phases, where a lot of data is
allocated without generating much garbage.

Over time, there have been several attempts to replace the GC.
Some time between 1996 and 1999, while waiting for Emacs-21 development to start to be

able to add his new redisplay engine, Gerd Möllman worked on a generational incremental
mostly-copying GC based on a read barrier implemented using the operating system’s VM
primitives, but it was never completed nor even actually integrated into Emacs’s code. Gerd
gave up on this work when he realized that it was infringing on a patent and hence wouldn’t
be distributable with Emacs anyway.
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During 2003, Dave Love worked on replacing Emacs’s GC with Boehm’s conservative GC.
The effort went far enough to get a usable Emacs but it was never completed, mostly because
the early performance results were disappointing. It also showed that such a replacement is
non-trivial. The first issue is that various parts of Emacs’s code assume that a collection
can only occur during Elisp code execution and not during heap allocation, and of course
those assumptions are not explicitly recorded in the code. The second issue is that Emacs
currently implements various forms of ad-hoc weak references which need to be adapted to
the more standard forms of weak references.
In XEmacs, GC pauses continued to be a perceived problem. In 2005, Marcus Crestani

developed an incremental collector for XEmacs, again using a VM-based write barrier. It was
released with XEmacs 21.5.21 in 2005 [7] and soon was turned on by default. It eliminates
GC pauses from the user experience, and its asymptotic performance is competitive with
the old collector.

5.8 Image dumping

An important feature of Elisp has been the dump-emacs function, which can be used to store
a heap image of the running Emacs into a file, which can later be restored. This is crucial
for Emacs’s usability, as it allows the editor to start up quickly, without having to load and
run all initialization code every time.

The implementation of dump-emacs started out as a set of highly platform-specific C files
that implemented a function called unexec. The unexec function turns the running process
back into an executable file. However, the implementations of unexec have been hard to
write and required frequent maintenance. For example, in 2016 the Glibc maintainers decided
to make internal changes to their malloc implementation which broke this functionality.
For XEmacs, in 1999, Olivier Galibert (based on initial work by Kyle Jones) started

writing a portable dumper that would serialize just the heap of the running XEmacs into
a file, which could later be mmaped. Galibert added explicit memory-layout descriptors for
all Lisp types to the system, which would later also benefit the new incremental garbage
collector. (See Section 5.7.) This required pervasive changes to the C code, and so it took
until 2001 for the first version of the portable dumper to be released.
The Glibc announcement re-ignited interest in implementing a more portable way to

dump and restore Emacs’s heap. Some experiments were first made to dump the heap in the
form of a “normal” byte-compiled Elisp file. While this solution proved easy to implement,
the time to load such a dumped heap remained too high to be acceptable. So the experiment
only resulted in the implementation of some improvements to the performance of the code
to read byte-compiled code. In parallel, Daniel Colascione worked on a different approach
more like that of XEmacs’s portable dumper. The code was basically finished, but Emacs
maintainers so far have not accepted it into the official release. The main reason for that
reluctance is that it trades off the brittle platform-dependence of the old unexec code for
more code which partly duplicates some of the GC’s code.

5.9 Debugging

Debugging support was added very early to Elisp: Emacs-16.56 already included the backtrace
debugger, which suspends execution at the time a condition is signaled, showing the current
stack backtrace and letting you examine the state of the application and place breakpoints
before pursuing execution.

For most developers, this is still the main debugger for Elisp. Of course, it has seen various
improvements over time, most of them affecting only the user interface. The main exceptions
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are: in 1995 (for Emacs-19.31), it was refined so that the debugger is only invoked for some
conditions, making it possible for developers to keep this debugger enabled all the time,
without impeding normal use, and in 2012 (for Emacs-24.1) it was improved so as to be
able to execute code in the context of any activation frame, which was necessary to allow
access to lexically scoped variables.

In 1998, Daniel Laliberte developed another Elisp debugger, called Edebug. It was included
into Emacs a few years later during the early development of Emacs-19. This one works
without any special support in the interpreter; instead it instruments the Elisp source
code you want to debug, such that running this code lets you step through this code and
displays the various values returned by the evaluation of each step. We do not know from
where Daniel took this idea, but Edebug was probably the inspiration for the Portable
Scheme Debugger [14], and the same basic technique was used (and significantly improved)
in SML/NJ [31].

One interesting feature of Edebug is that in the presence of arbitrary user-defined macros,
it is generally impossible to correctly instrument source code since Edebug cannot guess
which arguments to a macro are normal Elisp expressions and which ones play a different
role. By default Edebug works around this difficulty by leaving arguments to unknown
macros non-instrumented, which is safe but suboptimal. To improve on this default behavior,
the macro author can annotate its macro with a debug specification which describes the
role of each argument using a kind of grammar formalism, so Edebug can know which parts
should be instrumented.

5.10 Profiling

In 1992, during early development of Emacs-19, Boaz Ben-Zvi implemented the profile.el
package which implemented a fairly simple Elisp profiler all in Elisp. This implementation
was based on instrumenting a set of user-specified Elisp functions by modifying their bodies
in-place to keep track of time spent in those functions.

In 1994, Barry A. Warsaw implemented the elp.el package which took a similar approach
but without modifying functions’s bodies, which was brittle and inconvenient and only
worked for functions defined in Elisp. Instead it replaced the instrumented functions with
wrappers which counted the number of calls, along with the execution time, and internally
called the original function’s definition. This package was included in Emacs-19.29 and made
profile.el obsolete. Its implementation was significantly reworked for Emacs-24.4 to make
use of the new nadvice.el package in order to add/remove instrumentation instead of doing
it in its own ad-hoc way.

Ben Wing added an Elisp profiler to XEmacs 19.14 in 1996 by instrumenting entry points
in the byte-code interpreter. In profiling mode, the byte-code interpreter provides timing
information about function calls and allocation.

In early 2011, Tomohiro Matsuyama started implementing in Emacs’s C code a sampling-
based profiler for Elisp. He finished the implementation as part of Google’s Summer of Code
of 2012, and it was included in Emacs-24.3. The main advantage of this profiler compared
to elp.el is that it does not require instrumentation, and it collects (partial) stack traces.
This means that not only the user does not need to know beforehand which functions might
be involved but it can show a an actual call tree.

5.11 JIT compilation

The existing implementations of Elisp are relatively inefficient, all being based on fairly
naive interpretation techniques.
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5.11.1 First attempt. In 2004, Matthew Mundell developed the first JIT compiler for Elisp.
This took byte-compiled Elisp code and used the GNU Lightning library to turn it into
native machine code on the fly. The speedup obtained reached a factor of about 2 in the
best case, which was rather disappointing, so it was not included into Emacs since the extra
maintenance burden was not considered justified. An important reason for the disappointing
performance is that it only removed the immediate interpretation overhead, but did not
affect function calls nor was it able to remove redundant type checks.

5.11.2 Second attempt. Around 2012, Burton Samograd developed a second JIT compiler
for Elisp. This took a similar path, but using GNU Libjit instead. It was very simplistic,
turning each byte-code into a call to a C function. The resulting performance was not more
impressive, the author measuring a 25% speedup on a raytracer.el test.

5.11.3 Third attempt. In 2016, Nickolas Lloyd developed the third JIT compiler for Elisp,
again based on GNU Libjit and based on a similar approach. It improved on Burton’s
implementation by open-coding most common byte-codes instead, which avoided many C
function calls, but it obtained comparable results most likely because Libjit is not very good
at optimizing its code and C function calls aren’t that costly. but did get to the point of
being stable enough to be used globally.

5.11.4 Fourth attempt. In 2018, Tom Tromey took another stab at it, again using GNU
Libjit. Compared to Nickolas, it focuses exclusively on code using lexical binding, which
is likely to benefit more, and it implements additional optimizations by getting rid at
compile-time of all the manipulation of the Lisp stack. In the best case it reaches a speed up
factor of 3.5, which is not ideal, but is a bit more respectable. It can be used globally but is
still a very naive JIT compiler which requires further work to try and avoid pathological
behavior in some situations where the JIT compilation is performed too eagerly, leading to
significant slowdowns.

The discussion whether this last JIT compiler will be integrated as an experimental feature
into Emacs-27.1 is still on-going.

6 XEMACS PERIOD

In 1991, Lucid Inc., a software development company based in Menlo Park, Carlifornia,
started a project called Energize. Energize was to be a C/C++ integrated development
environment based on Emacs [10]. Lucid decided to use Emacs as the central component of
Energize. At the time, the current version of Emacs was 18, which was still essentially a
textual application. The then upcoming version of Emacs, Emacs 19, was to have a graphical
user interface and many other features that the developers at Lucid considered essential for
the development of Energize. However, at the time that Lucid needed Emacs 19, a release
was not in sight.2

While Lucid at first tried to support and thus speed up the development of Emacs 19, the
required cooperation between Lucid and the Free Software Foundation soon broke down. As
a result, Lucid forked Emacs development, creating its own Emacs variant Lucid Emacs.3

Jamie Zawinski was the primary developer of Lucid Emacs. In 1994, Lucid went bankrupt.
Sun subsequently wanted to ship Lucid Emacs with their operating system, and ended up
financing some of the continued development of Lucid Emacs, and effected a name change
to the current XEmacs.

2The first official release of Emacs 19, Emacs 19.28, came out in on November 1, 1994.
3The first release of Lucid Emacs came out in April, 1992.
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The focus of Lucid Emacs was on providing a proper graphical user interface. As a result,
most of the changes to Elisp in Lucid Emacs / XEmacs were to support the move from a
TTY-based purely textual model to a graphical model.

6.1 Event and keymap representations

One significant departure from Emacs in Lucid Emacs was the representation of keymaps:
Emacs, to this day, uses a transparent S-expression representation for keymaps. In early
Emacs in a keymap was simply a two-element list whose car is the symbol keymap and
whose second element is either a vector indexed by character code or an association list.
The current representation for keymaps in Emacs is richer but follows largely the same
design—here is an example [15]:

(keymap

(3 keymap

;; C-c C-z

(26 . run-lisp))

(27 keymap

;; ‘C-M-x’, treated as ‘<ESC> C-x’

(24 . lisp-send-defun))

;; This part is inherited from ‘lisp-mode-shared-map’.

keymap

;; <DEL>

(127 . backward-delete-char-untabify)

(27 keymap

;; ‘C-M-q’, treated as ‘<ESC> C-q’

(17 . indent-sexp)))

This creates problems with software evolution: While Emacs offered constructors and
mutators for keymaps, Emacs code could, in principle, just use the tools for manipulating
S-expressions for creating them—cons, rplaca, rplacd etc. Emacs-19 tried to keep such
code working to some extent by merely extending the previous list representation. Eventually
however such code would break in the face of representation changes, but would not
immediately trigger an error. Furthermore, the support for inheritance was fundamentally
flawed until Emacs-24.1 where it was extended to multiple-inheritance, but at the cost of a
fairly significant and delicate rewrite of the code.
The developers Lucid Emacs of Lucid Emacs foresaw these problems, and instead made

keymaps into an opaque datatype, forbidding manipulation via the S-expression primitives
and giving themselves a lot more implementation freedom. This allowed Lucid Emacs to
evolve more rapidly the representations of keymaps to cater to a richer set of input events
(including mouse events, for instance).

This step reflected a general difference in philosophy. Lucid Emacs also used opaque data
types for case tables and input events, both of which retain transparent representations in
Emacs to this day.

6.2 Character representation

Another instance of a change in representation happened with the release of XEmacs 20,
the first release of XEmacs with support for MULE (Multi-Lingual Emacs).
Previous versions of Emacs and XEmacs were inherently tied to an 8-bit representation

of characters. Moreover, they had used strings not only for representing text but also for
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representing key sequences. In strings, the high bit represented “meta,” basically restricting
Emacs to ASCII. Characters outside of strings could have more modifiers in higher bits.

This situation was no longer tenable when multi-language support came to XEmacs. The
work on MULE [19] predates widespread adoption of Unicode, and at the time XEmacs
adopted MULE (around 1994), a number of other text encodings were still in use. The
MULE character representation encoded a character as an integer that represented two
numbers, in the high and low bits respectively: One represented the national character set,
the other the associated codepoint.
To enforce the separation between characters and their associated encodings, XEmacs

20 made characters a separate data type. XEmacs had functions to convert between a
character and its numerical representation (make-char and char-int). Generally, Elisp
allows programs to mostly handle text as strings, and avoid manipulating the numerical
representation. Making characters an opaque type additionally discouraged the practice.

6.3 C FFI

As the Elisp runtime was written in C, it was always possible to add new Elisp functions
written in C to the system. Those C functions could also call Elisp functions.

However, functions written in C originally lacked the dynamic nature of Elisp, as they
had to be linked into the Emacs executable. Starting in 1998, J. Kean Johnston added
facilities to XEmacs (released with version 21.2 in 1999), which allowed Elisp code to build
and dynamically load shared libraries (called modules) written in C into running editor and
call the functions defined therein. Starting in 2002 with XEmacs 21.5.5, a number of such
modules were distributed with XEmacs, among them bindings for existing C libraries such
as Zlib, Ldap, PostgreSQL.
Even with modules in place, developers still had to create wrappers to make existing

C libraries accessible in Elisp. In 2005, Zajcev Evgeny wrote an FFI for SXEmacs [28], a
fork of XEmacs. This FFI allows loading and calling existing C libraries directly, without
intervening wrappers, by declaring the type signatures of C functions in Elisp. For example,
the FFI allows using Curl like this:

(ffi-load "libcurl.so")

(setq curl:curl_escape

(ffi-defun ’(function c-string c-string int) "curl_escape"))

(let* ((url "http://foo.org/please escape this<$!=3>")

(str (ffi-create-fo ’c-string url))

(len (ffi-create-fo ’int (length url)))

(result (ffi-call-function curl:curl_escape str len))

(ffi-get result))

Richard Stallman refused to incorporate XEmacs’s FFI into Emacs for fear that it would
open up a backdoor with which developers would be able to legally circumvent the GNU
General Public License (GPL) and thus link Emacs’s own code with code that does not
abide by these licensing terms. After many years of pressure on this issue (not just within
the Emacs project, since this affected several other GNU projects, most notably GCC), a
solution was agreed to, which was to implement an FFI that would only accept to load
libraries that came with a special symbol attesting that this library is compatible with the
GPL. As a result, after a very long wait, 2016 finally saw the release of Emacs-25.1 with an
FFI comparable in functionality to that of XEmacs. So far, we do not know of any publicly
available package which makes use of this new functionality, sadly. But rumors indicate that
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it has been used in a few private projects, either to link Emacs with another language or to
extend Emacs with ad-hoc functionality implemented in C for performance reasons.

6.4 Aliases

During the development of XEmacs 19.12, which was 1995, the first official release of Emacs
19 appeared, Emacs-19.28. Emacs had implemented some XEmacs functionality, notably
the support for multiple open GUI windows. XEmacs had called these windows “screens,”
while Emacs called them “frames.” Compatibility with Emacs was an important goal for the
XEmacs developers at the time. Consequently, they renamed the associated functionality.

To preserve compatibility for Elisp code written for previous versions of XEmacs, XEmacs
introduced forms define-obsolete-functional-alias and define-obsolete-variable-alias.
The byte-code compiler would emit warnings if these aliases were used, but still compile the
code.
Emacs had long had a defalias form to declare function aliases, on which the define-

obsolete-function-alias functionality could be based.4 XEmacs 19.12 added a corre-
sponding primitive form for variable aliases, defvaralias, and functions variable-alias
and indirect-variable to examine the alias chains.

These additions were only merged into Emacs-22.1 in 2007.

7 EMACS/XEMACS CO-EVOLUTION

Some aspects of Elisp evolved in both Emacs and XEmacs, with both versions borrowing
design and code from the other.

7.1 Performance improvements

Both Emacs and XEmacs made various performance improvements, most of which were
merged back and forth between the two versions.
Jamie Zawinski and Hallvard Furuseth wrote a new optimizing byte-compiler for Lucid

Emacs, which, after some initial resistance, was merged into the Emacs codebase by 1992.
Also around 1992, during the early development of Emacs-19, the implementation of the

byte-code interpreter was rewritten, and the result ended up in both in Emacs and XEmacs.
As part of this rewrite, new object type for byte-compiled Elisp functions was introduced;
before that, a byte-compiled function looked like:

(lambda (..ARGS..) (byte-code "..." ...))

Then in Emacs-19.29 in an attempt to speed up loading of Elisp packages as well as reduce
the memory use of Emacs processes, a mechanism was added so that documentation strings
as well as byte-code could be lazily fetched from compiled Elisp files. This can introduce
problems if the file is modified while Emacs is running, so while this feature is always used
for documentation strings it’s very rarely used for byte-code.
XEmacs added a just-in-time optimization pass to the byte code. This would perform

some validity checks ahead (eliding them from the actual execution), pre-compute stack
use, make byte-code jumps relative (saving a register), and optimize relative jumps with
short offsets. This effectively created an alternative byte-code dialect, which XEmacs would
convert back to the “standard” representation on demand. During the XEmacs 19 and
much of the XEmacs 20 cycle, developers avoided changing the byte-code format to make
byte-code files interchangeable between Emacs and XEmacs. While no significant changes

4Curiously, defalias was elided from the Emacs code base in 1986 and reintroduced in 1993.
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were made to the byte-code format in XEmacs, the two instruction sets eventually drifted
and became incompatible.

In late 2009, the Emacs byte-code interpreter was modified by Tom Tromey to implement
token threading using GCC’s computed goto feature, when available. A patch for this feature
had been submitted in May 2004 by Jaeyoun Chung, but the speed improvement was not
even measured at that time so it had not raised much enthusiasm. Tom’s implementation
was no better, and the speed up was a meager 5% but he pushed stronger for its inclusion,
which only happened with Emacs-24.3, in 2012. The reason why the speed improvement is a
bit disappointing was not really investigated, but the general consensus is that the byte-code
interpreter is simply not very optimized, so the relative cost of the switch is not as high as
it could (or, arguably, should) be.

7.2 Unicode

As Unicode [29] became universally adopted, Emacs and XEmacs both supported the
standard. Emacs 21.1 supported the utf-8 coding-system, but it was not unified with other
charsets. In 2001, Emacs 22.1 introduced a form of unification between the Unicode charset
and several other charsets. XEmacs did the same in 2001 with release 21.4.
As Unicode evolved a universal text representation and supplanted many of the earlier

encodings,, Emacs and XEmacs both started efforts to replace the internal MULE represen-
tation by Unicode altogether. This appeared in Emacs 23 (2007) and XEmacs 21.5 (starting
about 2010 in a separate branch). As a result, the integer representation of a character in
both Emacs and XEmacs is its Unicode scalar value.

7.3 Bignums

Somewhat surprisingly for Lisp, Elisp had no support for arbitrarily large integers (bignums)
for many years. Integer range was restricted by word size on the underlying machine, and
representation changes over time have affected the exact range available in Elisp. As a
result, various functions dealing with numbers beyond the fixnum range had to implement
workarounds. Notable are file-attributes (which may use a pair of two fixnums for inode
numbers, device numbers, user id, and group id, and may use a float for the file size) and
current-time, which returns a list of numbers to encode the time. Another place where
the limited range of integers has caused friction has been in the fact that it also limits the
maximum size of file that can be edited.
Moreover, Elisp was used for more and more applications beyond text editing, and also

had to implement workarounds. As a result, Calc, an advanced calculator and computer
algebra tool, which has shipped with the Emacs distribution since 2001, had to implement
bignum arithmetic in Lisp.
Jerry James added bignums to XEmacs 21.5.18 in 2004, using the GMP library [11].

In Emacs, Gerd Möllman started work on adding support for bignums via GMP around
October 2001, but never finished it. It’s only in August 2018 that Tom Tromey, with the help
of Paul Eggert and several other developers, finally added support for bignums to Emacs
(again, using GMP).

The support for bignums in XEmacs includes arbitrary-precision integers, rationals, and
floating point numbers and is optional at build time, so while it is fairly complete, XEmacs’s
Elisp programs still cannot rely on bignum support. Consequently, file-attributes,
current-time, and Calc still do not take advantage of bignums.

In contrast, Emacs’s bignum support is currently restricted to arbitrary-precision integers
but the feature is provided unconditionally by bundling the mini-gmp library with Emacs for
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those systems where GMP is not installed. The lack of support for rationals and arbitrary-
precision floats is only a reflection of the lack of interest for these features. The support was
made unconditional so that the code does not need to keep alternate code paths for when
bignums are not available. As a result, file-attributes and Calc have been modified to
use native bignums (but not current-time which would need arbitrary-precision rationals
or floating points).
The introduction of bignums raises some design issues in Elisp, as previously integers

were always unboxed. This meant that the fast eq only behaved differently from eql on
floating point numbers. As a result, Elisp could assume that, if two integers represented the
same number, eq would return true on them. Bignums are heap-allocated, so the same is
not necessarily true for two bignums. In XEmacs, eq can return nil in this case, and this
seems to have caused no serious problems. This issue is still being discussed with Emacs.

7.4 Terminal-local and frame-local variables, specifiers

In 1995, Emacs-19.29 added the ability to have frames on several different X11 servers at
the same time. XEmacs evolved similarly. This led to a requirement that certain aspects of
display should be local to a frame or an output device. Emacs calls GUI windows frames
and as with buffers, Emacs maintains a reference to the current frame which determines the
implicit target of GUI operations. XEmacs also maintained devices as part of the display
context, to distinguish, say, between different TTYs and different X11 servers.
As buffer-local variables already allow settings that are sentitive to context, Emacs

furthered the analog by adding the notion of terminal-local variables, which are variables
which take different values depending on the X11 server (the terminal) to which the current
frame belongs. The set of terminal-local variables is small and predefined in the C code;
they are mostly used internally to keep track of things like keyboard state; there is no way
for Elisp programs to create others.

XEmacs chose a different route: Starting in 1995, Ben Wing (working from a prototype by
Chuck Thompson) implemented specifiers. which are objects that manage properties that
depend on a generalized notion of display context [32]. The first prototype implementation
was released with XEmacs 19.12.

A specifier’s value (its instance) depends on its locale, which can be buffer, a window,
a frame, a device, or a MULE character set, or certain properties of these. For example,
default-toolbar is a specifier that could be created with:

(defvar default-toolbar (make-specifier ’toolbar))

(The ’toolbar is a type argument that the specifier system uses for validation.)
Elisp code could retrieve a specifier’s value (its instantiator) like this:

(specifier-instance default-toolbar)

Code can modify a specifier with a value that is buffer-local as follows:

(set-specifier default-toolbar <value> (current-buffer))

Emacs-20 in 1998 added the ability to set variable to a frame-local value. Contrary to
terminal-local variables, any variable can be made frame-local, and additionally, a variable
can be both frame-local and buffer-local at the same time.
In 2008, during the development of Emacs-23.1 several bugs were found and fixed in

corner case interactions between let-bindings and buffer-local and frame-local variables (for
example, when a variable is made buffer-local between the moment a let-binding is entered
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and when it is left), and at that occasion it was decided that variables should not be allowed
to be both buffer-local and frame-local.

The work on those bugs made it clear that the implementation of buffer-local and frame-
local bindings was too hard to follow, so in 2010 the implementation was reworked to
make the different possible states more explicit in the code, and at the same time it was
decided that frame-local variables should be deprecated: while buffer-local variables are used
extensively in Elisp and replacing them with explicit accesses to fields or properties of buffer
objects would make Elisp code heavier, frame-local variables were not in widespread use and
could easily be replaced by more traditional use of accessors to frame properties, making it
hard to justify the extra complexity in the implementation. So in 2012 with the release of
Emacs-24.1, it became impossible to let-bind frame-local variables any more, and in 2018
with the release of Emacs-26.1 frame-local variables have been removed altogether.

8 POST-XEMACS

Between 1991 and 2001, Emacs improved rather slowly compared to XEmacs. But starting
around 2001, Emacs’s pace picked up again. In 2008 Richard Stallman stepped down (again)
from the maintainership of Emacs, and the new maintainers have proved more eager to
make Elisp evolve, whereas XEmacs started to lose momentum starting about 2010.
This section discusses some notable evolution of the design of Elisp during that time:

lexical scoping (Section 8.1), Common Lisp compatibility (Section 8.4), generalized variables
(Section 8.5), object-oriented programming (Section 8.6), native support for objects (Sec-
tion 8.7), generators (Section 8.8), concurrency (Section 8.9), inline functions (Section 8.10)
and various attempts at module systems (Section 8.11).

8.1 Lexical scoping

While Scheme was already about to get its second revision when Richard Stallman started
to work on GNU Emacs, and he obviously knew about Scheme, being developed in a
nearby office, Elisp was mostly derived from MacLisp and used exclusively dynamic scoping.
Dynamic scoping is used extensively to add “hidden” configuration options to existing
functions without passing explicit arguments [25].
Eventually, lexical scoping became the established standard in the Lisp family in both

Common Lisp and Scheme. So of course, the question of adding lexical scoping to Elisp has
been brought up many times.
The first implementation appeared quite early, in the form of the lexical-let macro,

which was part of the new cl.el by Dave Gillespie introduced in 1993 and which performed
a local form of closure-conversion. While this macro was used in many packages, it was never
considered as a good solution to the problem of providing lexical scoping. The somewhat long
name was likely a factor, but the reason was more probably due to the fact that the code
generated by the macro was less efficient than equivalent dynamically-scoped code and was
more difficult to debug because the backtrace-based debugger showed you the gory details of
the macro-expansion rather than the corresponding source. For these reasons, lexical-let
was only used in those particular cases where lexical scoping was really beneficial.

Dynamic scoping had two main drawbacks in practice:

∙ The lack of closures. Some packages circumvented the lack of closures by building
lambda expressions on the fly with constructs like ‘(lambda (x) (+ x ’,y)), which
suffered from various problems such as the fact that macros within that closure
were expanded late, and its code was not seen by the byte-compiler. Emacs-23.1
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introduced the curry operator apply-partially to cover similar use cases without
those drawbacks.

∙ The global visibility of variable names, requiring more care with the choice of local
names. The convention followed in Emacs to name all global variables with a package-
specific prefix works well to avoid name conflicts, except in the presence of higher-order
functions, like reduce, and it was also problematic in a few other cases such as in the
byte-compiler: in order to emit warnings about the use of undeclared variables, the
byte-compiler just tested whether that variable was already known to Emacs, which
always returned true for those variables locally bound by one of the functions on the
call stack, such as the functions in the byte-compiler itself. So some code was made
uglier with long local variable names in order not to interfere with other local bindings.
Worse: these “solutions” were never really complete.

The only fully satisfactory solution to the desire for lexical scoping in Elisp was that it
should be the scoping used by default by all binding constructs, as is the case in Common
Lisp. But at the same time, there was a non-negotiable need to preserve compatibility with
existing Elisp code, although some limited breakage for rare situations could be tolerated.

The vast majority of existing Elisp code was (and still is) agnostic to the kind of scoping
used in the sense that either dynamic or lexical scoping gives the same result in almost
all circumstances. This was true of early Elisp code and has become even more true over
time as the byte-compiler started to warn about references to undeclared variables. Warning
about unused variables would have probably pushed even more Elisp code to be agnostic.
But in any case, it seemed clear that despite the above, the majority of Elisp packages relied
somewhere on dynamic scoping. So while there was hope to be able to switch Elisp to use
lexical scoping, it was not clear how to find the few places where dynamic scoping is needed
so as to avoid breaking too many existing packages.
In 2001, Matthias Neubauer implemented a code analysis that, instead of trying to find

the places where dynamic scoping is needed, tries to find those bindings for which lexical
scoping would not change the resulting semantics [18]. This tool could have been used to
mechanically convert Elisp packages to a lexically scoped version of Elisp, while preserving
the semantics. The plan with this approach was to facilitate moving Elisp code to Scheme
eventually, but the overall project was too large to ever be realized.

Around 2002, Miles Bader started working on a branch of Emacs with support for lexical
scoping. His approach to the problem was to have two languages: an Elisp with dynamic
scope and another with lexical scope. Each file was tagged to indicate which language was
to be used, and in turn, each function was tagged with which language it was using, so
functions using dynamic scope could seamlessly call functions with lexical scope and vice
versa. This way, old code would keep working exactly as before and any new code that
wanted to benefit from lexical scoping would simply have to add the corresponding “-*-
lexical-binding:t -*-” at the beginning of the file.
The two languages were sufficiently similar that the new lexically scoped variant only

required minor changes to the existing interpreter. But the changes needed to support this
new language in the byte-compiler were more problematic, causing progress on this branch
to be slow. This branch was kept up-to-date with the main Emacs development but the
work was never completed.

It was only in 2010 that Stefan Monnier’s student Igor Kuzmin worked on a summer project
in which he tried to solve the problem differently: instead of directly adding support for
lexical scoping and closures to the single-pass byte-compiler code (which required significant
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changes to the code), the idea was to implement a separate pass to perform closure conversion
as a pre-processing step. This freed the closure conversion from the constraints imposed by
the design of the single-pass byte-compiler, making it much easier to implement, and it also
significantly reduced the amount of changes needed in the byte-compiler, thus reducing the
risk of introducing regressions.

Two years later, Emacs-24.1 was released with support for lexical scoping based on Miles
Bader’s lexbind branch combined with Igor’s closure conversion. The main focus at that
point was to:

∙ minimize the changes to the existing code to limit incompatibility with existing Elisp
packages;

∙ make sure performance of existing code was not affected by the new feature;
∙ provide reliable support for the new lexical scoping mode, though not necessarily with
the best performance.

Changes to the byte code were introduced as part of the lexical scoping feature that appeared
in 2012 in Emacs-24.1, but were actually developed much earlier, probably around 2003.
Until the introduction of lexical-scoping, the stack-based byte-code only used its stack in
the most simple way, and did not include any stack operation beyond pop/dup/exch, so to
better support lexical scoping where the lexical variables are stored on the stack, several
byte-codes were added to index directly into the stack, to modify stack slots, and to discard
several stack elements at once.

Performance of the new lexical scoping mode proved to be competitive with the performance
of the dynamic scoping mode except for its interaction with the catch, condition-case,
and unwind-protect primitives whose underlying byte-codes were a poor fit, requiring
run-time construction of Elisp code to propagate the lexical context into the body of those
constructs. So in Emacs-24.4, new byte codes were introduced and the byte-code compiler
was modified to be able to make use of them. Nowadays, code compiled using lexical scoping
is generally expected to be marginally faster than if compiled with dynamic scoping.

8.2 Eager macro-expansion

The exact time at which a macro is expanded has never been clearly specified in Elisp.
Until Emacs-24, macro-expansion usually took place as late as possible for interpreted code,
whereas for byte-compiled code, macro-expansion always took place during byte-compilation,
with some notable exceptions where the code was “hidden” from the byte-code compiler. In
the byte-code compiler, the macro-expansion was also done “lazily” in that it was done on
the fly during the single pass of compilation.

In order to implement the separate closure conversion phase for Emacs-24, this had to be
changed so that the code is macro-expanded in a separate phase before closure conversion
and the actual byte-compilation, using a new macroexpand-all function. This caused some
visible differences in corner cases where some macros ended up expanded in code which
earlier was eliminated by optimizations before getting to the point of macro-expansion, but
in practice this did not cause any serious regression.
This use of the new macroexpand-all function was made yet a bit more prevalent in

Emacs-24.3 which applies it when loading a non-compiled file, so that macro-expansion
now happens “eagerly” when loading a file rather than lazily when Emacs actually runs
the code. This eager macro-expansion occasionally bumps into problematic dependencies
(typically in files which were never compiled), so it fails gracefully: if an error is signaled
during the macro-expansion that takes place while loading a file, Emacs just aborts the
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macro-expansion and continues with the non-expanded code as in the past, though not
without duly notifying the user about the problem.

Emacs-25.1 additionally fine-tuned these macro-expansion phases (both while loading
a file and while compiling them) according to the section 3.2.3.1 of the Common Lisp
HyperSpec [22], so as to improve the handling of macros that expand to both definitions
and uses of those definitions.

8.3 Pcase

While working on the lexical-binding feature, Stefan Monnier grew increasingly frustrated
with the shape of the code used to traverse the abstract syntax tree, littered with car, cdr
carrying too little information, compared to the kind of code he would write for that in
statically typed functional languages with algebraic datatypes.

So he started working on a pattern matching construct inspired by those languages. Before
embarking on this project, he looked for existing libraries providing this kind of functionality,
finding many of them for Common Lisp and Scheme, but none of them satisfying his
expectations: either the generated code was not considered efficient enough, or the code
seemed too difficult to port to Elisp, or the set of accepted patterns was too limited and not
easily extensible.
So the pcase.el package was born, being first released as part of Emacs-24.1, and used

extensively in the part of the byte-code compiler providing support for lexical binding.
Additionally to the pcase macro itself that provides a superset of Common Lisp’s case

macro, this package also provides the pcase-let macro, which uses the same machinery
and supports the same patterns in order to deconstruct objects, but where it is allowed
to assume that the pattern does match and hence can skip all the tests, leaving only the
operations that extract data.
After the release of Emacs-24.1, Stefan was made aware of Racket’s match construct [8],

which somehow eluded his earlier search for existing pattern matching macros and whose
design makes it easy to define new patterns. The implementation of Racket’s match could
not be easily reused in Elisp because it relies too much on the compiler’s efficient handling
of locally defined functions, but pcase.el was improved to follow some of the design of
Racket’s match. The new version appeared in Emacs-25.1 and the main resulting novelty
was the introduction of pcase-defmacro which can define new patterns in a modular way,
often using the new low-level pattern app.

8.4 CL-lib

While the core of Elisp has evolved very slowly over the years, the evolution of other Lisps
(mostly Scheme and Common Lisp) has put pressure to try and add various extensions
to the language. As it turns out, Elisp, to a first approximation, can be seen as a subset
of Common Lisp, so already in 1986 Cesar Quiroz wrote a cl.el package which provided
various Common Lisp facilities implemented as macros.

Richard Stallman never wanted Elisp to morph into Common Lisp, but he saw the value
of offering such facilities, so this cl.el package was included fairly early on into Emacs, and
has been one of the most popular packages, used by a large proportion of Elisp packages.
Yet, Richard did not want to impose cl.el onto any Emacs user, so he imposed a policy
where the use of cl.el was restricted within Emacs itself. More specifically, Elisp packages
bundled with Emacs were restricted to limit their use of cl.el in such a way that cl.el
never needed to be loaded during a normal editing session. Concretely, this meant that the
only features of cl.el that could be used were: macros and inlined functions.
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The reasons why Richard did not want to use cl.el and turn Elisp into Common Lisp are
not completely clear, but the following elements seem to have been part of the motivation:

(1) Common Lisp was considered a very large language back then, so in all likelihood it
would have taken a significant effort to really make Elisp into a reasonably complete
implementation of Common Lisp.

(2) Many aspects of Common Lisp design did not make consensus, as evidenced by the
divide between Common Lisp and of Scheme. Richard disliked several aspects of
Common Lisp’s design, such as the use of keyword arguments, especially in low-level
primitives like mapcar.

(3) Some aspects of Common Lisp’s design can incur an important efficiency cost, and
Emacs already carried the stigma of eight megabytes and constantly swapping, so there
were good reasons to try and not make Elisp’s efficiency any worse.

(4) Keeping Elisp small meant that users could participate in its development without
having to learn all of Common Lisp. When inclusion of Common Lisp features was
discussed, Richard would often point out the cost in terms of the need for more, and
more complex, documentation.

(5) The implementation of cl.el was fairly invasive, redefining some core Elisp functions.
(6) Finally, turning Elisp into Common Lisp would imply a loss of control, in that Emacs

would be somewhat bound to Common Lisp’s evolution and would have to follow the
decisions of the designers of Common Lisp on most aspects.

Over the years, the importance of the first two points has waned to some extent. Also the
popularity of the cl.el package, as well as the relentless pressure from Emacs contributors
asking for more Common Lisp features has also reduced the relevance of the third point.

XEmacs took the easy route on this and loaded cl.el into the standard XEmacs image,
starting with XEmacs 19.14 in 1996. Emacs instead took a longer road, where over the years,
various macros and functions from cl.el were found to be sufficiently popular to move
them into Elisp proper:

1997 The release of Emacs-20.1 sees the move of the macros when and unless as well as
the functions caar, cadr, cdar, and cddr.

2001 Emacs-21.1 includes the hash-table functions, reimplemented in C, as well as the
Common Lisp concept of keywords (though only as objects, not as arguments). Addi-
tionally the macros dolist, dotimes, push, and pop are also added to Elisp, which
introduced some difficulties: in cl.el those macros included extra functionality which
relied on parts of cl.el which we did not want to move to Elisp proper, specifically
block/return and generalized references. For that reason the macros added to Elisp
do not actually replace those of cl.el; instead when cl.el is loaded, it overrides the
original macros with its own version.

2007 Emacs-22.1 adds delete-dups, which provides a subset of cl.el’s delete-duplicates.
2012 Emacs-24.1 adds macroexpand-all and lexical scoping, which obsoletes cl.el’s

lexical-let.
2013 Emacs-24.3 adds compiler macros, setf and generalized references.
2018 To the cXXr functions incorporated in Emacs-20.1, Emacs-26.1 adds the remaining

cXXXr functions. The resistance against those was mostly one of style, since they tend
to lead to poorly readable code.

During the development of Emacs-24.3 the issue of better integration of the cl.el package
came up again. The main point of pressure was the desire to use cl.el functions within
packages bundled with Emacs. The main resistance from Richard Stallman was coming from
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the last point above, but this time, a compromise was found: replace the cl.el package with
a new package (called cl-lib.el) which provides the same facilities but with names which
all use the cl- prefix. This way, the cl-lib.el package doesn’t turn Elisp into the Common
Lisp language, but instead provides Common Lisp facilities under its own namespace, leaving
Elisp free to evolve in its own way.

On that occasion, some details of cl.el’s implementation were reworked to be less invasive.
The main aspect was that cl.el redefined Emacs’s macro-expansion wholesale with its own
implementation, which incorporated support for lexical-let, flet, and symbol-macrolet,
so this was reworked in cl-lib.el to provide those features while still using the standard
macro-expansion code.

To encourage adoption of this new library, a forward compatibility version of cl-lib.el
for use on older Emacs and XEmacs versions was released at the same time as Emacs-24.3.
Despite the annoyance of having to use a cl- prefix, which caused some resistance to this
new library, the change has been surprisingly successful if we look at the proportion of new
packages which use cl-lib.el instead of cl.el.

8.5 Generalized variables

To facilitate the move to cl-lib.el, some frequently used functionality from cl.el was
moved directly to Elisp. The most visible one is the support for generalized variables, also
variously known as places, generalized references, or lvalues. A generalized variable is a form
that can be used as an expression and an updateable reference. The concept comes from
Common Lisp, and the Emacs implementation originally a part of cl.el. In both Common
Lisp and Emacs, a number of special forms take generalized variables as operands—in
particular, setf, which treats a generalized variable as a reference and sets its value.

In Common Lisp, macros accepting a place can ask get-setf-expansion to turn it into
a list of five elements:

(VARS VALS STORE-VAR STORE-FORM ACCESS-FORM)

such that for example (push EXP PLACE) turns into:

(let ((v EXP))

(let* (VARS = VALS)

(let ((STORE-VAR (cons v ACCESS-FORM)))

STORE-FORM)))

This imposes a fairly rigid structure which, while general enough to adapt to most needs, can
be burdensome and leads to verbose code with a lot of plumbing, both in the implementation
of places and in the implementation of macros which take places as arguments.

The original cl.el code followed this Common Lisp design. But when implementing the
support for setf and friends in Elisp, a fresh new implementation of the concept was used.
The reasons for this new implementation were:

∙ NIH syndrome: the existing code was hard to follow.
∙ The previous code made use of internal helper functions from cl.el which we wanted
to keep in cl.el, so some significant massaging was needed anyway.

∙ the implementor of cl-lib considered this part of Common Lisp’s design ugly.

So the reimplementation uses a different design: instead of a five element list, a place maps
to a single higher-order function. This higher-order function takes as its sole argument a
DO function of two arguments, the ACCESS-FORM and the STORE-FUNCTION. For
example, the push macro could be naively implemented as:
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(defmacro push (EXP PLACE)

‘(let ((x ,EXP))

,(funcall (gv-get-place-function PLACE)

(lambda (ACCESS-FORM STORE-FUNCTION)

(funcall STORE-FUNCTION ‘(cons x ,ACCESS-FORM))))))

instead, Elisp provides a macro gv-letplace which lets us write the above as:

(defmacro push (EXP PLACE)

‘(let ((x ,EXP))

,(gv-letplace (ACCESS-FORM STORE-FUNCTION) PLACE

(funcall STORE-FUNCTION ‘(cons x ,ACCESS-FORM)))))

This design generally leads to cleaner and simpler code, and we can easily provide backward
compatibility wrappers for most of Common Lisp’s primitives.
Any 5-tuple representation of a place can easily be turned into a corresponding higher-

order function. The reverse is not true, however, so this design precludes compatibility
with Common Lisp and cl.el’s get-setf-expansion, which must produce the five values
described above. Breaking compatibility with get-setf-expansion was of course a downside,
but in practice this function was almost never used outside of cl.el itself so very few packages
were impacted by this incompatibility.

8.6 Object-oriented programming

While cl.el early on (originally developed in 1986 by Cesar Quiroz , and included in
Emacs-18.51 in 1988) provided compatibility with Common Lisp’s defstruct, including
the ability to define new structs as extensions/subtypes of others, thus providing a limited
form of inheritance, actual support for object-oriented programming in the form of method
dispatch has been historically limited in Emacs.
The first real step in that direction was the development of EIEIO by Eric Ludlam

around the end of 1995, beginning of 1996. The official name “Enhanced Implementation
of Emacs Interpreted Objects” hints at the earlier existence of some “Emacs Interpreted
Objects” package but in reality the acronym came before its expansion. EIEIO started as an
experiment to try use an object system in Emacs, first following a model like that of C++,
but very soon switching to a CLOS-inspired model.

EIEIO is an implementation of a subset of CLOS. Its development was mostly driven by
actual needs more than as an end in itself: the original motivation was to try and play with an
object request broker, then a widget toolkit, and later switched to providing support for the
CEDET package. It included support for most of CLOS’s defclass, as well as support for a
subset of defmethod, more specifically it was limited to single-dispatch methods, dispatching
on the first argument, and it could only dispatch based on types of defclass objects. It
also had incomplete support for method combinations, only allowing :before and :after

methods but not :around nor any user-defined additional qualifiers.
EIEIO spent most of its life as part of the CEDET package (a package providing IDE-like

features) before being integrated into Emacs-23.2 in 2010, along with most of CEDET. Use
of EIEIO within Emacs stayed fairly limited, partly for reasons of inertia, but also because
EIEIO suffered some of the same problems as cl.el in that it was not “namespace clean”.

At the end of 2014, Stefan Monnier started to try and clean up EIEIO so as to be able to
use it in more parts of Emacs. The intention was basically to add a “cl-” prefix as was done
for cl-lib (because it was perceived that an “eieio-” prefix would be too verbose to be
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popular), but there was also a desire to improve the defmethod with support for :around
methods and dispatch on other types than those defined with defclass.

It became quickly evident that the implementation of method dispatch needed a complete
overhaul: rather than constructing combined methods up-front and memoizing the result, as
in typical CLOS implementations, EIEIO’s dispatch and call-next-method did all their
work dynamically, relying on dynamically-scoped variables to preserve state in a way that
was both brittle and somewhat inefficient.

So, instead of improving EIEIO’s defmethod, a completely new version of CLOS’s
defmethod was implemented in the new cl-generic.el package, which appeared in Emacs-
25.1. The main immediate downside was that the idea to cleanup the rest of EIEIO (which
implements defclass objects) ended up forgotten along the way. The implementation is
not super efficient, but it’s already several times faster than the previous one in EIEIO.
This package provides largely the same featureset as CLOS’s defmethod, except for some
important differences:

(1) Method combinations cannot be specified per method like in CLOS, but instead new
method combinations can be added globally by adding appropriate methods to cl-

generic-combine-methods. This seemed like a good idea, but there is no known user
of this feature at this time, not even internal.

(2) The set of supported specializers is not hard-coded. Instead, they can be defined in
a modular way via the notion of generalizer inspired from [23]. This is used both
internally (to define all the standard specializers) as well as in some external packages,
most notably in EIEIO to support dispatching on defclass types.

The main motivation for the first difference above was that CLOS’s support for method
combinations seemed too complex: the cost of implementation was not justified by the
expected use of the feature, so it was replaced by a much simpler mechanism.
As for the second difference, it was made necessary by the need to dispatch on EIEIO

objects even though cl-generic.el could not depend on EIEIO since it was not clean
enough. There were additional motivations for it, though: not only it was clearly desirable
to be able to define new specializers, but it also made the implementation of the main
specializers cleaner, and most importantly it seemed like an interesting problem to solve.

Existing code that could make use of this new machinery, required dispatching on contex-
tual information (i.e. on the current state) rather than only on arguments. Consequently,
cl-generic.el also adds support to its cl-defmethod for pseudo-arguments of the form
“&context (EXP SPECIALIZER)”. This is used for methods which are only applicable in
specific contexts, such as in specific major modes or in frames using a particular kind of
GUI.
The implementation of cl-generic.el was accompanied by an extension of the on-line

help system so as to be able to give information not just about Elisp variables, functions, and
faces but also other kinds of named elements, starting with types. And to go along with that,
the implementation of cl-defstruct was improved to better preserve information about
the type hierarchy so that the on-line help system can be used to traverse it. This started as
an attempt to adapt to cl-generic.el the EIEIO facilities to explore interactively EIEIO
objects and methods, but is more modular and better integrated with the rest of Emacs’s
on-line help system.
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8.7 Actual objects

While Emacs-25’s cl-generic.el introduced object-oriented programming facilities into
Elisp, objects (whether defined via cl-lib’s cl-defstruct or EIEIO’s defclass) were still
represented as vectors and hence couldn’t be reliably distinguished from vectors, for example
to pretty-print them.
This was addressed in Emacs-26 by the introduction of the make-record primitive and

corresponding new object type. Those records are implemented just like the vectors used
previously, except that their tag indicates that they should be treated as records instead
of vectors, and that by convention the first field of a record is supposed to contain a type
descriptor, which can be just a symbol.
The main complexity introduced by this change was the need for a new syntax to print

and read those new objects, as well as the incompatibility between the printed representation
of objects using the old vector-based encoding and those using the new encoding.

8.8 Generators

With the success of Python’s and Javascript’s iterators and generators, some Emacs users
felt like Elisp was lacking in abstraction, so in 2015, Daniel Colascione developed the
generator.el, which was included into Emacs-25.1. It makes it easy and convenient to
write generators using macros iter-lambda and iter-yield. Its implementation is based
on a kind of local conversion to continuation-passing style (CPS) and hence relies extensively
on the use of lexical scoping, to work around the fact that Elisp does not directly provide
something like call/cc to access underlying continuations. It only handles a (relatively
large) subset of Elisp, because CPS conversion of forms like unwind-protect cannot be
defined in general in Elisp.

8.9 Concurrency

Elisp is a fundamentally sequential language, and it relies very heavily on side-effects to
a global state. Yet, its use in an interactive program has inevitably lead to a desire for
concurrency to try and improve responsiveness. So concurrency appeared very early on:
already in Emacs-16.56 Emacs included support for asynchronous processes, i.e. the execution
of separate programs whose output was processed by so-called process filters whenever the
Elisp execution engine is idly waiting for the next user command.
While this very limited form of cooperative concurrency was slightly improved in 1994’s

Lucid Emacs 19.9 and 1996’s Emacs-19.31 by adding native support for timers (they were
earlier implemented as an asynchronous process sending Emacs output at the requested
time), it has been the only form of concurrency available for most of Emacs’s life.
Adding true shared-memory concurrency to Elisp is very problematic because of the

pervasive reliance on a shared state in all of existing Elisp code, but the limited existing
support was limiting even in those cases where it was technically sufficient: many Elisp
packages which interact with external programs block many more times than really necessary,
simply because in order to avoid it the coder needs to write their code in a continuation-
passing style, which interacts poorly with dynamic scoping and requires significant surgery
to retro-fit to existing code.

So, shared-memory concurrency was largely considered as inapplicable to Elisp. Neverthe-
less, in November 2008, Giuseppe Scrivano posted a first naive attempt at adding threads to
Elisp. This effort did not go much further, but it inspired Tom Tromey to try its own luck
at the game. In 2010, he started to work on adding shared-memory cooperative concurrency
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primitives like make-thread to Emacs. Interaction with the implementation of dynamic
scoping, which is based on a global state for speed, required experimentation with various
approaches. Correctly handling buffer-local and frame-local bindings without a complete
rewrite was particularly painful and many approaches were abandoned simply because it
was too difficult to keep them up-to-date with the evolving Emacs codebase.

This result of this was finally released in 2018, as part of Emacs-26.1. Context switches
still only take place at a few known points where Elisp is idle (or via explicit calls to
thread-yield). The current implementation of this feature makes context switches take
time proportional to the current stack depth, because the dynamic bindings of the old thread
need to be saved and removed, after which the dynamic bindings of the new thread need
to be restored. Earlier implementation approaches tried to avoid this expensive form of
context switching, by making global variable lookups a bit more expensive instead, but
these required much more extensive and delicate changes to existing code, so while they may
still be good options for the future, this first implementation favored a simpler and safer
approach.
Over the years, other approaches to concurrency and parallelism have been developed

as Elisp packages, most notably the async.el package developed in 2012 which runs Elisp
code in parallel in a separate Emacs subprocess.

8.10 Inline functions

Function calls are fairly expensive in Elisp, and their semantics involves looking up the
current definition in the global name space, so function inlining is at the same time important
for performance and semantically visible.

So during the development of the new byte-code compiler for Emacs-19, a new defsubst

macro was added which works like defun except that it annotates the function so the
byte-code compiler inlines it whenever it can. This inlining was fairly naive, but worked
both for compiled and non-compiled functions (by either inlining the function’s body into
the source code or into the generated byte-code of the caller).
The new cl.el package by Dave Gillespie included in 1993 introduced a new form of

inlining in the form of the defsubst* macro, which is almost identical to defsubst from the
outside, except for including support for Common Lisp extensions like keyword arguments,
but its implementation is different and does not correctly preserve the semantics of the
dynamically scoped formal arguments, which are instead replaced by substitution with the
actual arguments.
Of course, additionally to those two, Elisp came with a third way to implement an

“inlinable function”, namely by defining it as a macro.
In late 2014, while working to adapt the cl-lib library to the changes in EIEIO and

cl-defstruct objects, Stefan Monnier became frustrated by the redundancy between
cl-typep’s definition and its compiler macro. The cl-typep function takes two arguments
and tests if the first is a value of the type specified by the second. The function definition
takes care of the general case where the type argument is only known at run-time, but
the compiler-macro is important to optimize for example (cl-typep x ’integer) into
(integerp x). While this optimization could arguably be performed automatically by a
sufficiently sophisticated compiler, the Elisp compiler is much too naive for that. So he
developed the new macro define-inline, which was included in Emacs-25.1. It lets one
define a function in such a way that from its definition the macro can extract both a normal
function body and a corresponding compiler-macro.
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8.11 Module system

While Elisp was designed from the beginning as a real programming language rather than
a tiny ad-hoc extension language, it was not designed for “programming in the large” as
witnessed by the lack of module or namespace system.

Yet, the Elisp side of Emacs is now a rather large system, so in order to avoid name
conflicts, Elisp relies on a poor man’s namespace system, as mentioned in Sec. 8.1, where
code loosely follows a convention where global functions and variables belonging to package
¡pkg¿ will define identifiers starting with a <pkg>- prefix (and use a prefix of <pkg>-- in
order to indicate that this identifier should be considered an internal definition).

There have been many attempts to remedy this situation by providing support for some
form of namespacing:

∙ In May 2011, Christopher Wellons developed the Fakespace package which lets one
define private variables and functions and then prevents them from escaping into the
global namespace. Non-private definitions still rely on the usual package-prefix naming
convention to avoid conflicts.

∙ In October 2012, Chris Barrett developed the Namespaces package which provides an
extensive set of new macros to define namespaces, define functions and variables in
those namespaces, and use them from other namespaces.

∙ In March 2013, Wilfred Hughes developed the proof-of-concept with-namespace macro
which basically adds the specified namespace prefix to all the elements defined in its
body.

∙ At the same time, Yann Hodique developed the proof-of-concept Codex package which
instead tries to provide a functionality similar to Common Lisp’s packages, where each
package has its own obarray.

∙ In early 2014, Artur Malabarba developed the Names package, which takes the approach
of with-namespace, but doing a much more thorough job.

∙ In 2015, the same Artur Malabarba developed the Nameless package which takes a
completely different approach: it does not provide any new Elisp construct and instead
focuses on making Emacs hide the package prefixes from the user while working on
the code.

To date, no namespacing facility has been incorporated into Emacs, nor seen much use in
other packages. The last time this subject was (hotly) debated among Emacs maintainers
and contributors, around 2013 following a blog post by Nic Ferrier, no consensus appeared,
but other than inertia one of the main arguments in favor of the status quo was that Elisp’s
poor man’s namespacing makes cross-referencing easier: any simple textual search can be
used to find definitions and uses of any global function or variable, including filesystem-wide
searches or even web searches, whereas all the alternatives introduce names that need to be
interpreted relative to their context forcing the reliance on an IDE that understands the
particular namespacing used when browsing the code.

9 ALTERNATIVE IMPLEMENTATIONS

Implementation of Elisp have not been confined to Emacs and its derivatives. Two implementations—
Edwin and JEmacs—are notable for running Elispcode on editors implemented independently
from Emacs. Moreover, a Common Lisp package emulates Emacs Lisp, and Guile Scheme
also comes with support for the Elisp language. These implementations all aim at running
existing Elisp code in alternative environments, and consequently feature no significant
language changes.
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9.1 Edwin

Edwin is the editor that ships with MIT Scheme [16]. Its user interface is based on that of
Emacs. Edwin is implemented completely in Scheme, and Scheme is its native extension
language. Additionally, Matthew Birkholz implemented an Elisp interpreter in Scheme that
was able to run substantial Elisp packages [3] at the time, among them the Gnus news
reader.

9.2 Librep

In 1993, John Harper started working on an embeddable implementation of Elisp called
Librep, which is most famously used as the extension language of the Sawfish window
manager. While Librep started as a Lisp dialect that was mostly compatible with Elisp,
it has since significantly diverged, including a module system, lexical scoping, tail-call
elimination, and first-class continuations.

9.3 Elisp in Common Lisp

In 1999, Sam Steingold also implemented the Elisp language as a Common Lisp package [27].
He was motivated by the hope of moving Emacs to work with a Common Lisp language
instead of Elisp. His elisp.lisp package does not attempt to reimplement the library of
functions provided in Emacs to manipulate buffers and other related objects, so it focuses on
the “pure” Elisp language; but it was able to run the non-UI parts of the Emacs Calendar,
which provides sophisticated functions to manipulate and convert dates between many
historical calendars.

9.4 JEmacs

JEmacs [5] is an editor that ships with Kawa Scheme [4]. JEmacs comes with support for
running some Elisp code. Its implementation (written partly in Java and partly in Scheme)
works by translating Elisp code to Scheme, and running the result.

9.5 Guile

Guile Scheme [9] was conceived as the universal extension language of the GNU project, with
the specific intention of replacing Elispin Emacs at one point. This has not happened (yet),
but Guile does ship with a fairly complete implementation of Elisp that translates Elisp
programs to Guile’s intermediate language. It is used in the Guile-Emacs system, which is a
work-in-progress modification of Emacs where the Elisp engine is provided by Guile.

9.6 Emacs-Ejit

In 2013, Nic Ferrier implemented in Elisp a compiler from Elisp to Javascript. This was
designed so as to be able to write complete web sites all in Elisp, using the Elnode Elisp
package to do the server-side processing and using Emacs-Ejit to write the client-side code in
Elisp as well. It does not really aim to run any Elisp package in your browser, so its runtime
library only provides a small subset of Elisp’s standard primitives.

10 CONCLUSION

Many steps of Elisp’s evolution have been the result of efforts of single individuals, driven by
a specific purpose, yet it has managed to keep an arguably sane and cohesive overall design,
thanks on the one hand to a maintainership which was more interested in improving the
text editor than the language and kept an eye on the longer term, and on the other to the
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willingness to break backward compatibility in specific cases, in order to gradually address
problems encountered over time.

Like Lisp in general the development of Emacs has seen plenty of discord, with unbridgeable
personal differences, heated debates, and forks along the way. However, througout these
differences, Elisp has steered a remarkably stable course of conservative development and
gradual extension. It has mostly grown by slowly incorporating popular features from other
languages, both in the language itself and in its implementation. But it has also come up with
its own features, such as docstrings, buffer-local variables, and the addition of text-properties
to strings.

Possibly, the organic growth of all the Elisp packages developed within the community of
Emacs users and developers, whose composability relies on social mechanisms, has provided
enough cohesive force to keep balkanization at bay for more than 30 years. Given the amount
of changes it went through over the last decade, we are looking forward to the Elisp of the
next 30 years.
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