BAYESIAN NETWORKS

AIMA2e CHAPTER 14.1–3
Outline

◊ Syntax
◊ Semantics
◊ Parameterized distributions
Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx “directly influences”)
- a conditional distribution for each node given its parents:
 $$P(X_i|Parents(X_i))$$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values
Example

Topology of network encodes conditional independence assertions:

Weather \rightarrow Cavity

Toothache \leftarrow Cavity
Catch \leftarrow Cavity

Weather is independent of the other variables

Toothache and **Catch** are conditionally independent given **Cavity**
Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a burglar?

Variables: *Burglar, Earthquake, Alarm, JohnCalls, MaryCalls*

Network topology reflects “causal” knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call
Example contd.

| B | E | P(A|B,E) |
|---|---|---------|
| T | T | .95 |
| T | F | .94 |
| F | T | .29 |
| F | F | .001 |

| A | P(M|A) |
|-------|-------|
| T | .70 |
| F | .01 |

| A | P(J|A) |
|-------|-------|
| T | .90 |
| F | .05 |

P(B) = .001
P(E) = .002
Compactness

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values.

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just $1 - p$).

If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers.

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution.

For burglary net, $1 + 1 + 4 + 2 + 2 = 10$ numbers (vs. $2^5 - 1 = 31$).
Global semantics defines the full joint distribution as the product of the local conditional distributions:

\[P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | Parents(X_i)) \]

E.g., \[P(j \land m \land a \land \neg b \land \neg e) \]
“Global” semantics defines the full joint distribution as the product of the local conditional distributions:

\[P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | \text{Parents}(X_i)) \]

E.g., \(P(j \land m \land a \land \neg b \land \neg e) \)

\[= P(j | a) P(m | a) P(a | \neg b, \neg e) P(\neg b) P(\neg e) \]
Local semantics: each node is conditionally independent of its nondescendants given its parents.

Theorem: Local semantics \iff global semantics
Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

1. Choose an ordering of variables X_1, \ldots, X_n
2. For $i = 1$ to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that
 $$P(X_i|Parents(X_i)) = P(X_i|X_1, \ldots, X_{i-1})$$

This choice of parents guarantees the global semantics:

$$P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1})$$ \hspace{1cm} \text{(chain rule)}$$
$$= \prod_{i=1}^{n} P(X_i|Parents(X_i))$$ \hspace{1cm} \text{(by construction)}$$
Example

Suppose we choose the ordering M, J, A, B, E

$P(J|M) = P(J)$?
Example

Suppose we choose the ordering M, J, A, B, E

\[P(J|M) = P(J)? \quad \text{No} \]
\[P(A|J, M) = P(A|J)? \quad P(A|J, M) = P(A)? \]
Example

Suppose we choose the ordering M, J, A, B, E

$P(J|M) = P(J)$? No
$P(B|A, J, M) = P(B|A)$?
$P(B|A, J, M) = P(B)$?
Example

Suppose we choose the ordering M, J, A, B, E

\[
P(J|M) = P(J) \quad \text{No}
\]
\[
P(A|J, M) = P(A|J) \quad P(A|J, M) = P(A) \quad \text{No}
\]
\[
P(B|A, J, M) = P(B|A) \quad \text{Yes}
\]
\[
P(B|A, J, M) = P(B) \quad \text{No}
\]
\[
P(E|B, A, J, M) = P(E|A) \?
\]
\[
P(E|B, A, J, M) = P(E|A, B) ?
\]
Example

Suppose we choose the ordering M, J, A, B, E

$$P(J|M) = P(J)? \quad \text{No}$$
$$P(A|J, M) = P(A|J)? \quad P(A|J, M) = P(A)? \quad \text{No}$$
$$P(B|A, J, M) = P(B|A)? \quad \text{Yes}$$
$$P(B|A, J, M) = P(B)? \quad \text{No}$$
$$P(E|B, A, J, M) = P(E|A)? \quad \text{No}$$
$$P(E|B, A, J, M) = P(E|A, B)? \quad \text{Yes}$$
Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for humans!)

Assessing conditional probabilities is hard in noncausal directions

Network is less compact: $1 + 2 + 4 + 2 + 4 = 13$ numbers needed
Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters
Example: Car insurance
Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
\[X = f(\text{Parents}(X)) \] for some function \(f \)

E.g., Boolean functions
\[\text{NorthAmerican} \Leftrightarrow \text{Canadian} \lor \text{US} \lor \text{Mexican} \]

E.g., numerical relationships among continuous variables
\[\frac{\partial \text{Level}}{\partial t} = \text{inflow} + \text{precipitation} - \text{outflow} - \text{evaporation} \]
Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_1 \ldots U_k$ include all causes (can add *leak node*)
2) Independent failure probability q_i for each cause alone

$$\Rightarrow P(X|U_1 \ldots U_j, \neg U_{j+1} \ldots \neg U_k) = 1 - \prod_{i=1}^{j} q_i$$

<table>
<thead>
<tr>
<th>Cold</th>
<th>Flu</th>
<th>Malaria</th>
<th>$P(Fever)$</th>
<th>$P(\neg Fever)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.98</td>
<td>0.02 = 0.2 × 0.1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.94</td>
<td>0.06 = 0.6 × 0.1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.88</td>
<td>0.12 = 0.6 × 0.2</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.988</td>
<td>0.012 = 0.6 × 0.2 × 0.1</td>
</tr>
</tbody>
</table>

Number of parameters *linear* in number of parents
Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.:

\[
P(Cost = c | Harvest = h, Subsidy? = true) = \mathcal{N}(a_t h + b_t, \sigma_t)(c)
\]
\[
= \frac{1}{\sigma_t \sqrt{2\pi}} \exp \left(- \frac{1}{2} \left(\frac{c - (a_t h + b_t)}{\sigma_t} \right)^2 \right)
\]

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range
 but works OK if the likely range of Harvest is narrow
Continuous child variables

All-continuous network with LG distributions

⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values
Discrete variable w/ continuous parents

Probability of \(\text{Buys?} \) given \(\text{Cost} \) should be a “soft” threshold:

\[P(\text{Buys?}=\text{false}|\text{Cost}=c) \]

Probit distribution uses integral of Gaussian:

\[\Phi(x) = \int_{-\infty}^{x} N(0, 1)dx \]

\[P(\text{Buys?}=\text{true} \mid \text{Cost}=c) = \Phi((c + \mu)/\sigma) \]
Why the probit?

1. It’s sort of the right shape

2. Can view as hard threshold whose location is subject to noise

\[
\text{Cost} \rightarrow \text{Buys?} = \text{Cost} + \text{Noise}
\]
Sigmoid (or logit) distribution also used in neural networks:

\[P(Buys? = \text{true} \mid Cost = c) = \frac{1}{1 + \exp(-2\frac{c+\mu}{\sigma})} \]

Sigmoid has similar shape to probit but much longer tails:
Summary

Bayes nets provide a natural representation for (causally induced) conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables \(\Rightarrow \) parameterized distributions (e.g., linear Gaussian)