Inference in Bayesian networks

AIMA2e Chapter 14.4–5
Outline

◊ Exact inference by enumeration
◊ Exact inference by variable elimination
◊ Approximate inference by stochastic simulation
◊ Approximate inference by Markov chain Monte Carlo
Inference tasks

Simple queries: compute posterior marginal $P(X_i|E=e)$
 e.g., $P(\text{NoGas}|\text{Gauge = empty, Lights = on, Starts = false})$

Conjunctive queries: $P(X_i, X_j|E=e) = P(X_i|E=e)P(X_j|X_i, E=e)$

Optimal decisions: decision networks include utility information;
 probabilistic inference required for $P(\text{outcome}|\text{action, evidence})$

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:
\[
P(B|j, m) = P(B, j, m) / P(j, m) = \alpha P(B, j, m) = \alpha \sum_e \sum_a P(B, e, a, j, m)
\]

Rewrite full joint entries using product of CPT entries:
\[
P(B|j, m) = \alpha \sum_e \sum_a P(B) P(e) P(a|B, e) P(j|a) P(m|a)
\]
\[
= \alpha P(B) \sum_e P(e) \sum_a P(a|B, e) P(j|a) P(m|a)
\]

Recursive depth-first enumeration: \(O(n)\) space, \(O(d^n)\) time
Enumenration algorithm

\begin{algorithm}
\begin{algorithmic}
\Function{Enumeration-Ask}{X, e, bn} \Return{s a distribution over X}
\State \textbf{inputs:} X, the query variable
\State e, observed values for variables E
\State bn, a Bayesian network with variables $\{X\} \cup E \cup Y$
\State $Q(X) \leftarrow$ a distribution over X, initially empty
\For{each value x_i of X}
\State extend e with value x_i for X
\State $Q(x_i) \leftarrow$ \Call{Enumerate-All}{VARS[bn], e}
\EndFor
\State \Return{Normalize($Q(X)$)}
\EndFunction
\end{algorithmic}
\end{algorithm}

\begin{algorithm}
\begin{algorithmic}
\Function{Enumerate-All}{vars, e} \Return{s a real number}
\If{Empty?(vars)} \Return{1.0}
\State $Y \leftarrow \text{First}(vars)$
\If{Y has value y in e}
\State then \Return{$P(y \mid Pa(Y)) \times$ \Call{Enumerate-All}{Rest(vars), e}}
\Else \Return{$\sum_y P(y \mid Pa(Y)) \times$ \Call{Enumerate-All}{Rest(vars), e_y}}
\EndIf
\EndIf
\State \textbf{where e_y is e extended with }$Y = y$
\EndFunction
\end{algorithmic}
\end{algorithm}
Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes $P(j|a)P(m|a)$ for each value of e

```
  P(b)
    (+)
     P(e)
      (+)
       P(a|b,e)
         (+)
          P(j|a)
          P(m|a)
          P(b)
          P(e)
          P(\neg e)
          P(\neg a|b,\neg e)
          P(\neg a|b,e)
          P(a|b,\neg e)
          P(a|b,e)
          P(\neg e)
          P(e)
          P(b)
```
Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

\[
P(B|j, m) = \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B, e) P(j|a) P(m|a)
\]

\[
= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B, e) P(j|a) f_M(a)
\]

\[
= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B, e) f_J(a) f_M(a)
\]

\[
= \alpha P(B) \sum_{e} P(e) f_A(a, b, e) f_J(a) f_M(a)
\]

\[
= \alpha P(B) \sum_{e} P(e) f_{AJM}(b, e) \text{ (sum out } A)\]

\[
= \alpha P(B) f_{EAJM}(b) \text{ (sum out } E)\]

\[
= \alpha f_B(b) \times f_{EAJM}(b)
\]
Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

\[\sum_x f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \sum_x f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_X \]

assuming \(f_1, \ldots, f_i \) do not depend on \(X \)

Pointwise product of factors \(f_1 \) and \(f_2 \):

\[f_1(x_1, \ldots, x_j, y_1, \ldots, y_k) \times f_2(y_1, \ldots, y_k, z_1, \ldots, z_l) = f(x_1, \ldots, x_j, y_1, \ldots, y_k, z_1, \ldots, z_l) \]

E.g., \(f_1(a, b) \times f_2(b, c) = f(a, b, c) \)
Variable elimination algorithm

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
 inputs: X, the query variable
 e, evidence specified as an event
 bn, a belief network specifying joint distribution P(X₁, ..., Xₙ)

 factors ← []; vars ← REVERSE(VARS[bn])
 for each var in vars do
 factors ← [MAKE-FACTOR(var, e)]|factors|
 if var is a hidden variable then factors ← SUM-OUT(var, factors)
 return NORMALIZE(POINTWISE-PRODUCT(factors))
Irrelevant variables

Consider the query $P(\text{JohnCalls}|\text{Burglary} = \text{true})$

$$P(J|b) = \alpha P(b) \sum_e P(e) \sum_a P(a|b,e)P(J|a) \sum_m P(m|a)$$

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in \text{Ancestors}({X} \cup E)$

Here, $X = \text{JohnCalls}$, $E = \{\text{Burglary}\}$, and

$$\text{Ancestors}({X} \cup E) = \{\text{Alarm, Earthquake}\}$$

so M is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
Irrelevant variables contd.

Defn: **moral graph** of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E

For \(P(\text{JohnCalls}|\text{Alarm} = \text{true}) \), both \textit{Burglary} and \textit{Earthquake} are irrelevant
Complexity of exact inference

Singly connected networks (or polytrees):
- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^n)$

Multiply connected networks:
- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to counting 3SAT models \Rightarrow $\#P$-complete

1. $A \lor B \lor C$
2. $C \lor D \lor \neg A$
3. $B \lor C \lor \neg D$
Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:
- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior
Sampling from an empty network

function PRIORITY-SAMPLE(bn) returns an event sampled from bn
 inputs: bn, a belief network specifying joint distribution P(X₁, …, Xₙ)
 x ← an event with n elements
 for i = 1 to n do
 xᵢ ← a random sample from P(Xᵢ | Parents(Xᵢ))
 return x
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |

P(C) = .50

Cloudy

Sprinkler

Rain

Wet Grass

=>?

=@

AB C D E F A G I J I K L T L
Example

P(C) = .50

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

Sprinkler

P(R|C) = .10

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

Rain

P(W|S,R) = .90

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |

Wet Grass

AIMA2e Chapter 14,4 5 16
Example

\[
P(C) = 0.50
\]

\[
\begin{array}{c|c}
C & P(S|C) \\
\hline
T & 0.10 \\
F & 0.50 \\
\end{array}
\]

\[
\begin{array}{c|c}
C & P(R|C) \\
\hline
T & 0.80 \\
F & 0.20 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
S & R & P(W|S,R) \\
\hline
T & T & 0.99 \\
T & F & 0.90 \\
F & T & 0.90 \\
F & F & 0.01 \\
\end{array}
\]

\[
\Rightarrow A \rightarrow C \rightarrow B
\]
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |

\[P(C) = .50\]
Example

- Cloudy
 - P(C) = 0.50

- Sprinkler
 - C | P(S|C)
 - T | 0.10
 - F | 0.50

- Wet Grass

- Rain
 - C | P(R|C)
 - T | 0.80
 - F | 0.20

- P(W|S,R)
 - S R | P(W|S,R)
 - T T | 0.99
 - T F | 0.90
 - F T | 0.90
 - F F | 0.01
Example

Cloudy

| C | P(S|C) |
|---|---|
| T | .10 |
| F | .50 |

Sprinkler

Rain

| C | P(R|C) |
|---|---|
| T | .80 |
| F | .20 |

Wet Grass

| S | R | P(W|S,R) |
|---|---|---|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |

=>?

AIMA2e Chapter 14.4 5
Sampling from an empty network contd.

Probability that `PriorSample` generates a particular event
\[S_{PS}(x_1 \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{Parents}(X_i)) = P(x_1 \ldots x_n) \]
i.e., the true prior probability

E.g., \[S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t) \]

Let \(N_{PS}(x_1 \ldots x_n) \) be the number of samples generated for event \(x_1, \ldots, x_n \)

Then we have
\[
\lim_{N \to \infty} \hat{P}(x_1, \ldots, x_n) = \lim_{N \to \infty} \frac{N_{PS}(x_1, \ldots, x_n)}{N} \\
= S_{PS}(x_1, \ldots, x_n) \\
= P(x_1 \ldots x_n)
\]

That is, estimates derived from `PriorSample` are consistent

Shorthand: \[\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n) \]
Rejection sampling

\(\hat{P}(X|e) \) estimated from samples agreeing with \(e \)

```
function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of \( P(X|e) \)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
  x ← PRIOR-SAMPLE(bn)
  if x is consistent with e then
    N[x] ← N[x]+1 where x is the value of X in x
return NORMALIZE(N[X])
```

E.g., estimate \(P(Rain|Sprinkler=true) \) using 100 samples
27 samples have \(Sprinkler=true \)
Of these, 8 have \(Rain=true \) and 19 have \(Rain=false \).

\(\hat{P}(Rain|Sprinkler=true) = \text{NORMALIZE}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle \)

Similar to a basic real-world empirical estimation procedure.
Analysis of rejection sampling

\[\hat{P}(X|e) = \alpha N_{PS}(X, e) \quad \text{(algorithm defn.)} \]
\[= N_{PS}(X, e)/N_{PS}(e) \quad \text{(normalized by } N_{PS}(e)) \]
\[\approx P(X, e)/P(e) \quad \text{(property of PRIORSAMPLE)} \]
\[= P(X|e) \quad \text{(defn. of conditional probability)} \]

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if \(P(e) \) is small

\(P(e) \) drops off exponentially with number of evidence variables!
Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of $P(X | e)$
local variables: W, a vector of weighted counts over X, initially zero

for $j = 1$ to N do
 x, w ← WEIGHTED-SAMPLE(bn)
 $W[x] ← W[x] + w$ where x is the value of X in x
return NORMALIZE($W[X]$)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

x ← an event with n elements; $w ← 1$
for $i = 1$ to n do
 if X_i has a value x_i in e
 then $w ← w × P(X_i = x_i | Parents(X_i))$
 else $x_i ←$ a random sample from $P(X_i | Parents(X_i))$
return x, w
Likelihood weighting example

\[
P(C) = 0.50
\]

\[
\begin{array}{c|c}
C & P(S|C) \\
\hline
T & 0.10 \\
F & 0.50 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
S & R & P(W|S,R) \\
\hline
T & T & 0.99 \\
T & F & 0.90 \\
F & T & 0.90 \\
F & F & 0.01 \\
\end{array}
\]

\[
P(R|C)
\]

\[
\begin{array}{c|c}
C & P(R|C) \\
\hline
T & 0.80 \\
F & 0.20 \\
\end{array}
\]

\[w = 1.0\]
$w = 1.0$
\[
\begin{align*}
\text{Cloudy} & \quad \text{Sprinkle} \\
\text{Rain} & \quad \text{Wet Grass}
\end{align*}
\]

\[\begin{array}{c|c}
C & P(S|C) \\
T & .10 \\
F & .50
\end{array}\]

\[\begin{array}{c|c}
C & P(R|C) \\
T & .80 \\
F & .20
\end{array}\]

\[\begin{array}{c|c|c}
S & R & P(W|S,R) \\
T & T & .99 \\
T & F & .90 \\
F & T & .90 \\
F & F & .01
\end{array}\]

\[w = 1.0\]
Likelihood weighting example

\[
\begin{array}{c|c}
C & P(S|C) \\
\hline
T & .10 \\
F & .50 \\
\end{array}
\]

\[
\begin{array}{c|c}
C & P(R|C) \\
\hline
T & .80 \\
F & .20 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
S & R & P(W|S,R) \\
\hline
T & T & .99 \\
T & F & .90 \\
F & T & .90 \\
F & F & .01 \\
\end{array}
\]

\[w = 1.0 \times 0.1\]
Likelihood weighting example

\[
\begin{array}{c|c}
C & P(S|C) \\
T & .10 \\
F & .50 \\
\end{array}
\]

\[
\begin{array}{c|c}
C & P(R|C) \\
T & .80 \\
F & .20 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
S & R & P(W|S,R) \\
T & T & .99 \\
T & F & .90 \\
F & T & .90 \\
F & F & .01 \\
\end{array}
\]

\[
w = 1.0 \times 0.1
\]
Cloudy

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

Sprinkle

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |

Rain

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

Wet Grass

$w = 1.0 \times 0.1$
Likelihood weighting example

\[
P(C) = 0.50
\]

\[
\begin{array}{c|c}
C & P(S|C) \\
\hline
T & 0.10 \\
F & 0.50 \\
\end{array}
\]

\[
\begin{array}{c|c}
C & P(R|C) \\
\hline
T & 0.80 \\
F & 0.20 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
S & R & P(W|S,R) \\
\hline
T & T & 0.99 \\
T & F & 0.90 \\
F & T & 0.90 \\
F & F & 0.01 \\
\end{array}
\]

\[
w = 1.0 \times 0.1 \times 0.99 = 0.099
\]
Likelihood weighting analysis

Sampling probability for WEIGHTEDSAMPLE is

\[S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i|Parents(Z_i)) \]

Note: pays attention to evidence in ancestors only
\[\Rightarrow \text{ somewhere “in between” prior and posterior distribution} \]

Weight for a given sample \(\mathbf{z}, \mathbf{e} \) is

\[w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i|Parents(E_i)) \]

Weighted sampling probability is

\[S_{WS}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e}) \]
\[= \prod_{i=1}^{l} P(z_i|Parents(Z_i)) \prod_{i=1}^{m} P(e_i|Parents(E_i)) \]
\[= P(\mathbf{z}, \mathbf{e}) \text{ (by standard global semantics of network)} \]

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

```plaintext
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)
    local variables: N[X], a vector of counts over X, initially zero
                    Z, the nonevidence variables in bn
                    x, the current state of the network, initially copied from e

    initialize x with random values for the variables in Y
    for j = 1 to N do
        N[x] ← N[x] + 1 where x is the value of X in x
        for each Z_i in Z do
            sample the value of Z_i in x from P(Z_i|MB(Z_i)) given the values of
            MB(Z_i) in x
        return normalize(N[X])
```

Can also choose a variable to sample at random each time
The Markov chain

With $Sprinkler = true$, $WetGrass = true$, there are four states:

Wander about for a while, average what you see
MCMC example contd.

Estimate $P(Rain|Sprinkler = true, WetGrass = true)$

Sample $Cloudy$ or $Rain$ given its Markov blanket, repeat.
Count number of times $Rain$ is true and false in the samples.

E.g., visit 100 states

31 have $Rain = true$, 69 have $Rain = false$

$\hat{P}(Rain|Sprinkler = true, WetGrass = true)$
$= \text{NORMALIZE}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
Markov blanket sampling

Markov blanket of *Cloudy* is *Sprinkler* and *Rain*

Markov blanket of *Rain* is *Cloudy, Sprinkler, and WetGrass*

Probability given the Markov blanket is calculated as follows:

\[P(x'_i|MB(X_i)) = P(x'_i|Parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|Parents(Z_j)) \]

Easily implemented in message-passing parallel systems, brains

Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

\[P(X_i|MB(X_i)) \] won’t change much (law of large numbers)
Summary

Exact inference by variable elimination:
- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:
- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables