Adversarial Search

Chapter 6
Section 1 – 4
Outline

• Optimal decisions
• $\alpha-\beta$ pruning
• Imperfect, real-time decisions
Games vs. search problems

• "Unpredictable" opponent → specifying a move for every possible opponent reply
• Time limits → unlikely to find goal, must approximate
Game tree (2-player, deterministic, turns)
Minimax

- Perfect play for deterministic games
- Idea: choose move to position with highest minimax value
 = best achievable payoff against best play
- E.g., 2-ply game:
Minimax algorithm

\begin{verbatim}
function MINIMAX-DECISION(state) returns an action

 v ← MAX-VALUE(state)
 return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value

 if TERMINAL-TEST(state) then returnUTILITY(state)
 v ← -∞
 for a, s in SUCCESSORS(state) do
 v ← MAX(v, MIN-VALUE(s))
 return v

function MIN-VALUE(state) returns a utility value

 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← ∞
 for a, s in SUCCESSORS(state) do
 v ← MIN(v, MAX-VALUE(s))
 return v
\end{verbatim}
Properties of minimax

- **Complete?** Yes (if tree is finite)
- **Optimal?** Yes (against an optimal opponent)
- **Time complexity?** $O(b^m)$
- **Space complexity?** $O(bm)$ (depth-first exploration)

- For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games
 \rightarrow exact solution completely infeasible
α-β pruning example
α-β pruning example

```
MAX

MIN

3 12 8 2

3 12 8 2

≥3

≤2

X X
```
α-β pruning example
α-β pruning example

![Diagram of α-β pruning example]
α-β pruning example
Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = $O(b^{m/2})$
 → doubles depth of search

• A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)
Why is it called α-β?

- α is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for max
- If v is worse than α, max will avoid it → prune that branch
- Define β similarly for min
The α-β algorithm

function $\text{Alpha-Beta-Search}(\text{state})$ returns an action
inputs: state, current state in game

$v \leftarrow \text{Max-Value}(\text{state}, -\infty, +\infty)$

return the action in $\text{Successors}(\text{state})$ with value v

function $\text{Max-Value}(\text{state}, \alpha, \beta)$ returns a utility value
inputs: state, current state in game

α, the value of the best alternative for Max along the path to state
β, the value of the best alternative for Min along the path to state

if $\text{Terminal-Test}(\text{state})$ then return $\text{Utility}(\text{state})$

$v \leftarrow -\infty$

for a, s in $\text{Successors}(\text{state})$ do

$v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))$

if $v \geq \beta$ then return v

$\alpha \leftarrow \text{Max}(\alpha, v)$

return v
The α-β algorithm

```plaintext
function Min-Value(state, $\alpha$, $\beta$) returns a utility value
    inputs: state, current state in game
            $\alpha$, the value of the best alternative for MAX along the path to state
            $\beta$, the value of the best alternative for MIN along the path to state
    if Terminal-Test(state) then return Utility(state)
    $v \leftarrow +\infty$
    for $a, s$ in Successors(state) do
        $v \leftarrow \min(v, \max-Value(s, \alpha, \beta))$
        if $v \leq \alpha$ then return $v$
        $\beta \leftarrow \min(\beta, v)$
    return $v$
```
Resource limits

Suppose we have 100 secs, explore 10^4 nodes/sec
\[\rightarrow 10^6 \text{ nodes per move} \]

Standard approach:

• **cutoff test:**
 e.g., depth limit (perhaps add quiescence search)

• **evaluation function**
 = estimated desirability of position
Evaluation functions

• For chess, typically linear weighted sum of features

\[Eval(s) = w_1 \, f_1(s) + w_2 \, f_2(s) + \ldots + w_n \, f_n(s) \]

• e.g., \(w_1 = 9 \) with

\[f_1(s) = (\text{number of white queens}) - (\text{number of black queens}), \text{ etc.} \]
Cutting off search

MinimaxCutoff is identical to MinimaxValue except

1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?

\[b^m = 10^6, \ b=35 \rightarrow m=4 \]

4-ply lookahead is a hopeless chess player!

- 4-ply \(\approx\) human novice
- 8-ply \(\approx\) typical PC, human master
- 12-ply \(\approx\) Deep Blue, Kasparov
Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves.
Summary

- Games are fun to work on!
- They illustrate several important points about AI
- Perfection is unattainable → must approximate
- Good idea to think about what to think about