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ABSTRACT
Learning to rank refers to machine learning techniques for training the model in a ranking task.
Learning to rank is useful for many applications in information retrieval, natural language processing,
and data mining. Intensive studies have been conducted on the problem recently and significant
progress has been made. This lecture gives an introduction to the area including the fundamental
problems, existing approaches, theories, applications, and future work.

The author begins by showing that various ranking problems in information retrieval and
natural language processing can be formalized as two basic ranking tasks, namely ranking creation
(or simply ranking) and ranking aggregation. In ranking creation, given a request, one wants to
generate a ranking list of offerings based on the features derived from the request and the offerings.
In ranking aggregation, given a request, as well as a number of ranking lists of offerings, one wants
to generate a new ranking list of the offerings.

Ranking creation (or ranking) is the major problem in learning to rank. It is usually formalized
as a supervised learning task.The author gives detailed explanations on learning for ranking creation
and ranking aggregation, including training and testing, evaluation, feature creation, and major
approaches.Many methods have been proposed for ranking creation.The methods can be categorized
as the pointwise, pairwise, and listwise approaches according to the loss functions they employ.They
can also be categorized according to the techniques they employ, such as the SVM based, Boosting
SVM, Neural Network based approaches.

The author also introduces some popular learning to rank methods in details. These in-
clude PRank, OC SVM, Ranking SVM, IR SVM, GBRank, RankNet, LambdaRank, ListNet &
ListMLE, AdaRank, SVM MAP, SoftRank, Borda Count, Markov Chain, and CRanking.

The author explains several example applications of learning to rank including web search,
collaborative filtering, definition search, keyphrase extraction, query dependent summarization, and
re-ranking in machine translation.

A formulation of learning for ranking creation is given in the statistical learning framework.
Ongoing and future research directions for learning to rank are also discussed.

KEYWORDS
learning to rank, ranking, ranking creation, ranking aggregation, information retrieval,
natural language processing, supervised learning, web search, collaborative filtering,
machine translation.
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Preface
This book presents a survey on learning to rank and describes methods for learning to rank

in detail. The major focus of the book is supervised learning for ranking creation.
The book targets researchers and practitioners in information retrieval, natural language pro-

cessing, machine learning, data mining, and other related fields. It assumes that the readers of the
book have basic knowledge of statistics and machine learning.

Chapter 1 gives a formal definition of learning to rank. Chapter 2 describes learning for
ranking creation, and Chapter 3 describes learning for ranking aggregation. Chapter 4 explains in
details about state-of-the-art learning to rank methods. Chapter 5 presents applications of learning
to rank. Chapter 6 introduces theory of learning to rank. Chapter 7 introduces ongoing and future
research on learning to rank.
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1

C H A P T E R 1

Learning to Rank
1.1 RANKING

There are many tasks in information retrieval (IR) and natural language processing (NLP), for
which the central problem is ranking. These include document retrieval, entity search, question
answering, meta-search, personalized search, online advertisement, collaborative filtering, document
summarization, and machine translation.

In our view, there are basically two types of ranking problems: ranking creation1 (or simply
ranking) and ranking aggregation. Ranking creation is to create a ranking list of objects using the
features of the objects, while ranking aggregation is to create a ranking list of objects using multiple
ranking lists of the objects, as will be formally described later in this chapter.

Document retrieval, collaborative filtering, re-ranking in machine translation are examples of
ranking creation, and meta-search is an example of ranking aggregation.

DOCUMENT RETRIEVAL
Document retrieval includes web search, enterprise search, desktop search, etc. Although having
limitations, it is still the most practical way for people to access the enormous amount of information
existing on the web and computers. For example, according to a report by IProspect 2, 56% of the
internet users use web search every day and 88% of the internet users use web search every week.

Document retrieval can be described as the following task (cf., Fig. 1.1), in which ranking
plays a key role. The retrieval system maintains a collection of documents. Given a query from
the user, the system retrieves documents containing the query words from the collection, ranks
the documents, and presents the top ranked list of documents (say, 1,000 documents) to the user.
Ranking is performed mainly based on the relevance of the documents with respect to the query.

COLLABORATIVE FILTERING
Collaborative filtering is the most fundamental model for computer systems to make recommen-
dations to the users in electronic commerce, online advertisement, etc. For example, if the users’
preferences on some of the movies in a database are known, then we can employ collaborative fil-
tering to recommend to the users movies which they might have not seen and might be interested
in.

1Ranking creation is a term coined by the author of this book.
2http://www.iprospect.com/premiumPDFs/iProspectSurveyComplete.pdf
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Figure 1.1: Document Retrieval. Downward arrow represents ranking of documents

The data in collaborative filtering is given in a matrix, in which rows correspond to users and
columns correspond to items (cf., Fig. 1.2). Some elements of the matrix are known, while the others
are not. The elements represent users’ ratings on items where the ratings have several grades (levels).
The question is how to determine the unknown elements of the matrix. One common assumption
is that similar users may have similar ratings on similar items. When a user is specified, the system
suggests a ranking list of items with the high grade items on the top.

Item1 Item2 Item3 ... ItemN

User1 5 4

User2 1 2 2

... ? ? ?

UserM 4 3

Figure 1.2: Collaborative Filtering
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MACHINE TRANSLATION
Machine translation can help people to access information cross languages and thus is very important.
Given a sentence in the source language, usually, there are a large number of possible translations
(sentences) in the target language. The quality of translations can vary, however. How to select the
most plausible translation(s) is the key question.

A popular approach to machine translation consists of two phases: candidate generation and
re-ranking (see Fig. 1.3).Given a sentence in the source language, the system first generates and ranks

2

1

e
e

ranked translation

Generation
Module

f
sentence in source language

Re-Ranking 
Module

1000e
M

ranked translation
candidates in target 
language

e~
re-ranked top
sentence in target
language 

Figure 1.3: Machine Translation

all possible candidate translations in the target language using a generative model, then it conducts
re-ranking on the top candidate translations (say, 1,000 candidates) using a discriminative model,
and, finally, it chooses the top ranked candidate as output. The re-ranking process is performed
based on the likelihood of candidates’ being good translations, and it is critical to the performance
of machine translation.

META-SEARCH
A meta-search system is a system that sends the user’s request to several search systems and aggregates
the results from those search systems. Meta-search is becoming more and more important when web
continues to evolve, and more and more search systems (sometimes in different domains) become
available.

More formally, in meta-search, the query is submitted to several search systems and ranking
lists of documents are returned from the systems. The meta-search system then combines all the
ranking lists and generates a new ranking list (meta ranking list),which is better than all the individual
ranking lists. In practice, the sets of documents returned from different systems can be different.
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One can take the union of the sets of documents as the final set of documents. Figure 1.4 illustrates
the process of meta-search.

query

rankings of 
documentsSearch

System 1 

Search Meta Search meta ranking 

Search
System k

query Search
System 2 System

…
…

.

of documents

Figure 1.4: Meta-Search

1.2 LEARNING TO RANK

Recently, a new area called learning to rank has emerged in the intersection of machine learning,
information retrieval, and natural language processing. Learning to rank is about performing ranking
using machine learning techniques. It is based on previous work on ranking in machine learning and
statistics, and it also has its own characteristics.

There may be two definitions on learning to rank. In a broad sense, learning to rank refers to
any machine learning techniques for ranking. In a narrow sense, learning to rank refers to machine
learning techniques for building ranking models in ranking creation and ranking aggregation de-
scribed above. This book takes the latter definition (narrow sense). Figure 1.5 gives a taxonomy of
problems in learning to rank.

Recent years have seen significant efforts on research and development of learning to rank
technologies. Many powerful methods have been developed and some of them have been successfully
applied to real applications such as web search. Over one hundred papers on the topic have been
published. Benchmark data sets have been released (e.g., [70]), and a competition on the task 3 has
also been carried out. Workshops (e.g., [58, 64, 65]) and journal special issues have been organized
(e.g., [69]). A book devoted to the topic has also been published [68].

3Yahoo Learning to Rank Challenge. http://learningtorankchallenge.yahoo.com/
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Learing to Rank
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Supervised (e.g., Ranking SVM)

Unsupervised (e.g., BM25)

Ranking Aggregation






Supervised (e.g., CRank)

Unsupervised (e.g., Borda Count)

Figure 1.5: Taxonomy of Problems in Learning to Rank

1.3 RANKING CREATION
We can generalize the ranking creation problems already described as a more general task.
Suppose that there are two sets. For simplicity, we refer to them as a set of requests Q =
{q1, q2, · · · , qi, · · · , qM} and a set of offerings (or objects) O = {o1, o2, · · · , oj , · · · , oN }, respec-
tively4. Q can be a set of queries, a set of users, and a set of source sentences in document retrieval,
collaborative filtering, and machine translation, respectively. O can be a set of documents, a set of
items, and a set of target sentences, respectively. Note that Q and O can be infinite sets. Given an
element q of Q and a subset O of O (O ∈ 2O), we are to rank the elements in O based on the
information from q and O.

Ranking (ranking creation) is performed with ranking (scoring) function F(q, O) : Q×
On → $n

SO = F(q, O)

π = sortSO (O),

where n = |O|, q denotes an element of Q, O denotes a subset of O, SO denotes a set of scores of
elements in O, and π denotes a ranking list (permutation) on elements in O sorted by SO . Note
that even for the same O, F can give two different ranking lists with two different q ’s. That is to
say, we are concerned with ranking on O, with respect to a specific q.

Instead of using F(q, O), we usually use ranking (or scoring) function f (q, o) for ease of
manipulation, where q is an element of Q, o is an element of O, and so is a score of o. The ranking
function f (q, o) assigns a score to each o in O and the elements in O are then sorted by using the
scores. That means ranking is actually performed by sorting with f (q, o) : Q×O → $

so = f (q, o)

π = sortso,o∈O(O).

4The naming of request and offering is proposed by Paul Kantor.
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We refer to F(q, O) as global ranking function, f (q, o) as local ranking function because the
former works on a subset of objects while the latter works on a single object (cf., Figs. 1.6 and 1.7).

1.4 RANKING AGGREGATION
We can also define the general ranking aggregation task. Again, suppose that Q =
{q1, q2, · · · , qi, · · · , qM} and O = {o1, o2, · · · , oj , · · · , oN } are a set of requests and a set of of-
ferings, respectively. For an element q of Q and a subset O of O, there are k ranking lists on O:
" = {πi |π ∈ #, i = 1, · · · , k}, where # is the set of all ranking lists on O. Ranking aggregation
takes request q and ranking lists of offerings " as input and generates a new ranking list of offerings
π as output with ranking function F(q,") : Q×#k → $n

SO = F(q,")
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π = sortSO (O).

We usually simply define
F(q,") = F(").

That is to say, we assume that the ranking function does not depend on the request.
Ranking aggregation is actually a process of combining multiple ranking lists into a single

ranking list, which is better than any of the original ranking lists, as shown in Figure 1.8.The ranking
model is a global ranking model.

Ranking 
Aggregation

1!
),,( 21 kF !!! L

2! Aggregation
System

…
…

.

2!

k!

Figure 1.8: Ranking Aggregation. Downward arrows represent rankings of objects

Ranking creation generates ranking based on features of request and offerings, while ranking
aggregation generates ranking based on rankings of offerings.Note that the output of ranking creation
can be used as the input of ranking aggregation.

1.5 LEARNING FOR RANKING CREATION
When learning to rank is mentioned, it usually means ranking creation using supervised learning.
This is also the main focus of this book. The learning task can be described in the following way.
There are two systems: a learning system and a ranking system.

The learning system takes training data as input.The training data consists of requests and their
associated ranking lists of offerings. For each request qi ∈ {q1, q2, · · · , qm}, there is an associated
set of offerings Oi ∈ {O1, O2, · · · , Om} (Oi = {oi,1, oi,2, · · · , oi,ni }, i = 1, · · · , m), and there is a
‘true’ ranking list on the offerings πi ∈ {π1,π2, · · · ,πm}. The learning system constructs a ranking
model (usually, a local ranking model f (q, o)) on the basis of the training data.

The ranking system then makes use of the learned ranking model for ranking prediction.
Given a new request qm+1, the ranking system receives a subset of offerings Om+1, assigns scores
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to the offerings using the ranking model, and sorts the offerings in descending order of the scores,
obtaining a ranking list πm+1. See Fig. 1.9.
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Figure 1.9: Learning for Ranking Creation. Downward arrows represent rankings

Here are the major characteristics of learning for ranking creation.

• Ranking creation: generating a ranking list of offerings based on the request and the offerings

• Feature-based: using features defined on the request and the offerings

• Local ranking model: a local ranking model f (q, o) is utilized

• Supervised learning: the ranking model is usually created by supervised learning

1.6 LEARNING FOR RANKING AGGREGATION
Ranking aggregation can be supervised or unsupervised. In the supervised learning setting, the
learning system takes training data as input.The training data consists of requests and their associated
ranking lists of offerings.For each request qi ∈ {q1, q2, · · · , qm}, there is an associated set of offerings
Oi ∈ {O1, O2, · · · , Om} where Oi = {oi,1, oi,2, · · · , oi,ni }, i = 1, · · · , m. Furthermore, for each
Oi , there are k ranking lists on the set: "i = {πi,1,πi,2, · · · ,πi,k}, as well as a ’true’ ranking list on
the set: πi . The learning system constructs a ranking model F(q,") using the training data.

The ranking system then makes use of the learned ranking model for ranking prediction.
Given a new request qm+1, the ranking system receives k ranking lists on the associated set of
offerings Om+1: "m+1 = {πm+1,1,πm+1,2, · · · ,πm+1,k}, assigns scores to the offerings with the
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ranking model, and sorts the offerings in descending order of the scores, obtaining a ranking list
πm+1.

Here are the major characteristics of learning for ranking aggregation.

• Ranking aggregation: generate a ranking list of offerings from multiple ranking lists of the
offerings

• Ranking-based: using multiple ranking lists of the offerings

• Global ranking model: a global ranking model F(q,") is utilized

• Supervised or unsupervised learning: the ranking model is created by either supervised or
unsupervised learning
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C H A P T E R 2

Learning for Ranking Creation
This chapter gives a general introduction to learning for ranking creation. Ranking creation is aimed
at creating a ranking list of offerings based on the features of the offerings and the request, so that
‘good’ offerings to the request are ranked at the top. Learning for ranking creation is concerned with
automatic construction of the ranking model using machine learning techniques.

Recently intensive studies have been conducted on learning for ranking creation due to its
importance in practice. Many methods have been proposed and some of the technologies have been
successfully applied to applications such as web search.

Hereafter, we take document retrieval (or search) as an example to make the explanation.
Without loss of generality, the technologies described here can be applied to other applications.

2.1 DOCUMENT RETRIEVAL AS EXAMPLE

Learning for ranking creation (in general learning to rank) plays a very important role in document
retrieval. Traditionally, the ranking model in document retrieval f (q, d) is constructed without
training where q stands for a query and d stands for a document. In BM25 [90], the ranking model
f (q, d) is represented as a conditional probability distribution P(r|q, d) where r takes on 1 or 0 as
value and denotes being relevant or irreverent,q and d denote a query and a document, respectively. In
Language Model for IR (LMIR) [80, 113], the ranking model is defined as a conditional probability
distribution P(q|d) where q denotes a query and d denotes a document. Both BM25 and LMIR
are calculated with the given query and document, and thus no training is needed (only tuning of a
few parameters is necessary).

Recently a new trend arises in IR, that is, to employ machine learning techniques to auto-
matically construct the ranking model f (q, d) for document retrieval (cf., [39]). This is motivated
by a number of facts. In document retrieval, particularly in web search, there are many signals which
can represent relevance. Incorporating such information into the ranking model and automatically
constructing the ranking model becomes a natural choice. At web search engines, a large amount
of search log data, such as click through data, is accumulated. This also brings a new opportunity
of automatically creating the ranking model with low cost by deriving training data from search
logs. All these facts have stimulated the research on learning to rank. Actually, learning to rank has
become one of the key technologies for modern web search.
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Figure 2.1: Learning to Rank for Document Retrieval

2.2 LEARNING TASK
We describe a number of issues in learning for ranking creation, with document retrieval as an
example. These include training and testing processes, training data creation, feature construction,
and evaluation. We also discuss the relations between ranking and other tasks such as ordinal clas-
sification.

2.2.1 TRAINING AND TESTING
Learning for ranking creation is comprised of training and testing, as a supervised learning task.

The training data contains queries and documents. Each query is associated with a number
of documents. The relevance of the documents with respect to the query is also given. As will be
explained later, the relevance information can be given in several ways. Here, we take the most
widely used approach, and we assume that the relevance of a document with respect to a query is
represented by a label. The labels are at several grades (levels). The higher grade a document has,
the more relevant the document is.

Suppose that Q is the query set and D is the document set. Suppose that Y = {1, 2, · · · , l}
is the label set, where the labels represent grades. There exists a total order between the grades
l % l − 1 % · · · % 1, where % denotes the order relation. Further suppose that {q1, q2, · · · , qm}
is the set of queries for training and qi is the i-th query. Di = {di,1, di,2, · · · , di,ni } is the set of
documents associated with query qi and yi = {yi,1, yi,2, · · · , yi,ni } is the set of labels associated
with query qi , where ni denotes the sizes of Di and yi ; di,j denotes the j-th document in Di ; and
yi,j ∈ Y denotes the j-th grade label in yi , representing the relevance degree of di,j with respect to
qi . The original training set is denoted as S =

{
(qi, Di), yi

}m

i=1.
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Table 2.1: Summary of Notations
Notations Explanations
Q query set
D document set
Y = {1, 2, · · · , l} label set (grade set) with order %
S = {(qi, Di), yi}mi=1 original training data set
qi ∈ Q i-th query in training data
Di = {di,1, di,2, · · · , di,ni } set of documents associated with qi in training data
di,j ∈ D j-th document in Di

yi = {yi,1, yi,2, · · · , yi,ni } set of labels on Di with respect to qi

yi,j ∈ Y label of di,j with respect to qi

xi = φ(qi, di,j ) feature vector from (qi, di,j )

xi = %(qi, Di) feature vectors from (qi, Di)

#i set of possible rankings on Di with respect to qi

πi ∈ #i permutation on Di with respect to qi

πi (j) rank (position) of j-th document in πi

S′ = {(xi , yi )}mi=1 transformed training data set
f (q, d) = f (x) local ranking model
F(q, D) = F(x) global ranking model
T = {(qm+1, Dm+1)} original test data set
T ′ = {xm+1} transformed test data set

A feature vector xi,j = φ(qi, di,j ) is created from each query-document pair (qi, di,j ), i =
1, 2, · · · , m; j = 1, 2, · · · , ni , where φ denotes the feature functions. That is to say, features are
defined as functions of query and document. Letting xi = {xi,1, xi,2, · · · , xi,ni }, we represent the
training data set as S′ =

{
(xi , yi )

}m

i=1. We aim to train a local ranking model f (q, d) = f (x) that
can assign a score to a given query document pair q and d, or equivalently to a given feature vector
x. More generally, we can also consider a global ranking model F(q, D) = F(x). Note that the local
ranking model outputs a single score, while the global ranking model outputs a set of scores.

Let the documents in Di be identified by the integers {1, 2, · · · , ni}. We define permutation
(ranking list) πi on Di as a bijection from {1, 2, · · · , ni} to itself. We use #i to denote the set of all
possible permutations on Di , use πi (j) to denote the rank (or position) of the j-th document (i.e.,
di,j ) in permutation πi , and use π−1(j) to denote the document at the j-th rank in permutation πi .
Ranking is nothing but to select a permutation πi ∈ #i for the given query qi and the associated
set of documents Di using the scores given by the ranking model F(qi, Di) (or f (qi, di)).

The test data consists of a new query qm+1 and associated set of documents Dm+1. T =
{(qm+1, Dm+1)}. We create feature vector xm+1, use the trained ranking model to assign scores to
the documents in Dm+1, sort them based on the scores, and give the ranking list of documents as
output πm+1.
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Table 2.1 gives a summary of notations. Figures 2.2 and 2.3 illustrate the training and testing
processes.
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Figure 2.2: Training Process
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Figure 2.3: Testing Process

The training and testing data is similar to, but different from, the data in conventional su-
pervised learning such as classification and regression. Query and its associated documents form a
group. The groups are i.i.d. data, while the instances within a group are not i.i.d. data. A (local)
ranking model is a function of query and document, or equivalently, a function of feature vector
derived from query and document.
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2.2.2 TRAINING DATA CREATION
Learning for ranking creation is a supervised learning task and thus how to create high quality training
data is a critical issue.

Ideally, the training data would consist of the perfect ranking lists of documents for each
query. In practice, however, such kind of data could be difficult to obtain because the ranking lists
must reflect users’ average judgments on the relevance of the documents with respect to the queries.

Currently, there are two common ways to create training data.The first one is human labeling,
which is widely used in the IR community. First, a set of queries is randomly selected from the query
log of a search system. Suppose that there are multiple search systems.Then the queries are submitted
to the search systems, and all the top ranked documents are collected. As a result, each query is
associated with documents from multiple search systems (it is called the pooling strategy). Human
judges are then asked to make relevance judgments on all the query document pairs. Relevance
judgments are usually conducted at five levels, for example, perfect, excellent, good, fair, and bad.
Human judges make relevance judgments from the viewpoint of average users. For example, if the
query is ‘Microsoft’, and the web page is microsoft.com, then the label is ‘perfect’. Furthermore, the
Wikipedia page about Microsoft is ‘excellent’. A page talking about Microsoft as its main topic will
be labeled as ‘good,’ a page only mentioning Microsoft will be labeled as ‘fair,’ and a page not relevant
to Microsoft will be labeled as ‘bad’. Labels representing relevance are then assigned to the query
document pairs. The labeling on query document pairs can be performed by multiple judges, and
then majority voting can be conducted. Since human labeling is expensive, it is often the case that
some query and document pairs are only judged by one single judge. Therefore, how to improve the
quality of human relevance judgments becomes an important issue in learning to rank research.

The other way of generating training data is derivation from click through data. Click-through
data at a web search engine records clicks on documents by users after they submit queries. Click-
through data represents implicit feedbacks on relevance from users and thus is useful for relevance
judgments. One method is to use the differences between numbers of clicks on documents to derive
preferences (relative relevance) on document pairs [57]. Suppose that for a query three documents A,
B, C are returned at the top 1, 2, 3 positions, and users’ total numbers of clicks on the documents have
been recorded. If there are more clicks on document B than document A, then we can determine
that document B is more relevant than document A for this query because users seem to prefer
document B to document A, even the latter is ranked lower than the former. Given a ranking list of
documents, users tend to click documents on the top, even the documents may not be relevant. As
a result, documents on the top tend to have more clicks. This is a phenomenon referred to as ’click
bias’. Using the approach above, we can effectively deal with click bias because it derives preference
pairs of documents by looking at ‘skips’ of higher ranked documents. Therefore, this method can
generate preference pairs of documents as training data for learning to rank. Within each document
pair, one document is regarded more relevant than the other with respect to the query. See also
[87, 88].
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Table 2.2: Public DataSets for Learning to Rank

Dataset URL
LEOTR http://research.microsoft.com/en-us/um/

beijing/projects/letor
Microsoft Learning to Rank Dataset http://research.microsoft.com/en-us/

projects/mslr
Yahoo Learning to Rank Challenge http://webscope.sandbox.yahoo.com

The two approaches above both have pros and cons. It is very hard to maintain the quality of
data, when it is created by humans. Human judges are prone to errors, and their understanding on
relevance also has limitations because they are not query owners. Furthermore, manual data labeling
is also costly. In contrast, derivation of training data from click-through data is of low cost and the
data may also represent real users’ judgments.The shortcoming of this approach is that click-through
data is noisy and is only available for head queries (high frequency queries).

Table 2.2 gives a list of publically available datasets for learning to rank research. They are all
datasets created by the first approach.

2.2.3 FEATURE CONSTRUCTION
The ranking model f (q, d) is in fact defined as f (x) where x is a feature vector based on q and
d. That is to say, the ranking model is feature based. That is the reason that the ranking model has
generalization ability. Specifically, it is trained from a small number of queries and their associated
documents but is applicable to any other queries and their associated documents. As in other machine
learning tasks, the performance of learning highly depends on the effectiveness of the features used.
How to define useful features thus is a critically important problem.

In web search, BM25 and PageRank are widely used ranking features. In fact, both can be
viewed as unsupervised ranking models. At the early stage of web search, the final ranking model
was usually simply defined as a linear combination of BM25 and PageRank, or something similar.
Later, more and more features have been developed. That is also the reason that a more general and
principled learning approach is needed in ranking model construction. We give the definitions of
BM25 and PageRank.

BM 25 is a probabilistic model representing the relevance of document d to query q [90]. It
actually looks at the matching degree between the query terms and document terms and utilizes the
numbers of occurrence of query terms in the document to represent relevance. Specifically, BM25
of query q and document d is calculated as

BM25(q, d) =
∑

w∈q∩d

idf (w)
(k + 1)tf (w)

tf (w) + k((1− b) + b dl
avgdl )

,

http://research.microsoft.com/en-us/um/beijing/projects/letor
http://research.microsoft.com/en-us/um/beijing/projects/letor
http://research.microsoft.com/en-us/projects/mslr
http://research.microsoft.com/en-us/projects/mslr
http://webscope.sandbox.yahoo.com
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where w denotes a word in d and q, tf (w) denotes the frequency of w in d, idf (w) denotes the
inverse document frequency of w, dl denotes the length of d, avgdl denotes the average document
length, and k and b are parameters.

Page Rank represents the importance of web page [78]. It views the web as a directed graph
in which pages are vertices and hyperlinks are directed edges, defines a Markov process on the web
graph, and views the stationary distribution (Page Rank) of the Markov process as scores of page
importance. Page Rank of web page d is defined as P(d)

P (d) = α
∑

di∈M(d)

P (di)

L(di)
+ (1− α)

1
N

,

where P(d) is the probability of visiting page d, P(di) is the probability of visiting page di , M(d) is
the set of pages linked to d, L(di) is the number of outlinks from di , N is the total number of nodes
on the graph, and α is a weight.

There are other features utilized in web search. Table 2.3 gives some examples, which have
been verified to be effective in web search. They include both query-document matching features
and document features, representing relevance of document to query and importance of document,
respectively.

Web pages usually contain a number of fields (metadata streams) such as title, anchor texts,
URL, extracted title [50, 51], and associated queries in click-through data [3]. One can define query-
document matching features, for example, BM25, for each field of the web page, and thus exploit a
number of features in the same type.

2.2.4 EVALUATION
Evaluation on the performance of a ranking model is carried out by comparison between the ranking
lists output by the model and the ranking lists given as ground truth. Several evaluation measures
are widely used in IR and other fields. These include NDCG (Normalized Discounted Cumulative
Gain), DCG (Discounted Cumulative Gain) [53], MAP (Mean Average Precision) [101], WTA
(Winners Take All), MRR (Mean Reciprocal Rank), and Kendall’s Tau.

Given query qi and associated documents Di , suppose that πi is the ranking list (permutation)
on Di and yi is the set of labels (grades) of Di . DCG measures the goodness of the ranking list with
the labels. Specifically, DCG at position k for qi is defined:

DCG(k) =
∑

j :πi (j)≤k

G(j)D(πi (j)),

where G(·) is a gain function and D(·) is a position discount function. Note that πi (j) denotes the
position of di,j in πi . Therefore, the summation is taken over the top k positions in ranking list πi

1.
DCG represents the cumulative gain of accessing the information from position one to position k

1Here, the definition of NDCG (or DCG) are formulated based on the indices of documents. It is also possible to define NDCG
(or DCG) based on the indices of positions.
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Table 2.3: Example Features of Learning to Rank for Web Search

Feature Type Explanation Reference
Number of
occurrences

Matching number of times query exactly occurs in
title, anchor, URL, extracted title, associ-
ated query, and body

BM25 Matching BM25 scores on title, anchor, URL, ex-
tracted title, associated query, and body

[90]

N-gram BM25 Matching BM25 scores of n-grams on title, anchor,
URL, extracted title, associated query,
and body

[109]

Edit Distance Matching edit distance scores between query and
title, anchor, URL, extracted title, associ-
ated query, and span in body (minimum
length of text segment including all query
words [94])

Our unpub-
lished work

Number of in-links Document number of in-links to the page
PageRank Document importance score of page calculated on

web link graph
[78]

Number of clicks Document number of clicks on the page in search log
BrowseRank Document importance score of page calculated on

user browsing graph
[72]

Spam score Document likelihood of spam page [45]
Page quality score Document likelihood of low quality page [10]

with discounts on the positions. NDCG is normalized DCG, and NDCG at position k for qi is
defined:

NDCG(k) = DCG−1
max(k)

∑

j :πi (j)≤k

G(j)D(πi (j)),

where DCGmax(k) is the normalizing factor and is chosen such that a perfect ranking π∗i ’s NDCG
score at position k is 1. In a perfect ranking, the documents with higher grades are ranked higher.
Note that there can be multiple perfect rankings for a query and associated documents.

The gain function is normally defined as an exponential function of grade. That is to say,
satisfaction of accessing information exponentially increases when grade of relevance increases. For
example,

G(j) = 2yi,j − 1,

where yi,j is the label (grade) of di,j in ranking list πi .The discount function is normally defined as a
logarithmic function of position. That is to say, satisfaction of accessing information logarithmically
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decreases when position of information access increases.

D(πi (j)) = 1
log2(1 + πi (j))

,

where πi (j) is the position of di,j in ranking list πi .
Hence, DCG and NDCG at position k for qi become

DCG(k) =
∑

j :πi (j)≤k

2yi,j − 1
log2(1 + πi (j))

,

NDCG(k) = DCG−1
max(k)

∑

j :πi (j)≤k

2yi,j − 1
log2(1 + πi (j))

.

DCG and NDCG of the whole ranking list for qi become

DCG =
∑

j :πi (j)≤ni

2yi,j − 1
log2(1 + πi (j))

,

NDCG = DCG−1
max

∑

j :πi (j)≤ni

2yi,j − 1
log2(1 + πi (j))

.

DCG and NDCG values are further averaged over queries (i = 1, · · · , m).
Table 2.4 gives examples of calculating NDCG values of two ranking lists. NDCG (DCG)

has the effect of giving high scores to the ranking lists in which relevant documents are ranked high.
See the examples in Table 2.4. For the perfect rankings, the NDCG value at each position is always
one, while for imperfect rankings, the NDCG values are less than one.

MAP is another measure widely used in IR. In MAP, it is assumed that the grades of relevance
are at two levels: 1 and 0. Given query qi , associated documents Di , ranking list πi on Di , and labels
yi of Di , Average Precision for qi is defined:

AP =
∑ni

j=1 P(j) · yi,j
∑ni

j=1 yi,j
,

where yi,j is the label (grade) of di,j and takes on 1 or 0 as value, representing being relevant or
irrelevant. P(j) for query qi is defined:

P(j) =
∑

k:πi (k)≤πi (j) yi,k

πi (j)
,

where πi (j) is the position of di,j in πi . P(j) represents the precision until the position of di,j for
qi . Note that labels are either 1 or 0, and thus precision (i.e., ratio of label 1) can be defined. Average
Precision represents averaged precision over all the positions of documents with label 1 for query qi .
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Table 2.4: Example of NDCG
Perfect ranking Formula Explanation
(3, 3, 2, 2, 1, 1, 1) grades: 3,2,1
(7, 7, 3, 3, 1, 1, 1) 2yi,j − 1 gains
(1, 0.63, 0.5, · · · ) 1/ log(πi (j) + 1) position discounts
(7, 11.41, 12.91, · · · )

∑
j :πi (j)≤k

2yi,j−1
log(πi (j)+1) DCG scores

(1/7, 1/11.41, 1/12.91,· · · ) DCG−1
max(k) normalizing factors

(1,1,1,· · · ) NDCG(k) NDCG scores

Imperfect ranking Formula Explanation
(2, 3, 2, 3, 1, 1, 1) grades: 3,2,1
(3, 7, 3, 7, 1, 1, 1) 2yi,j − 1 gains
(1, 0.63, 0.5, · · · ) 1/ log(πi (j) + 1) position discounts
(3, 7.41, 8.91, · · · )

∑
j :πi (j)≤k

2yi,j−1
log(πi (j)+1) DCG scores

(1/7, 1/11.41, 1/12.91,· · · ) DCG−1
max(k) normalizing factors

(0.43, 0.65, 0.69, · · · ) NDCG(k) NDCG scores

Table 2.5: Example of MAP
Perfect ranking Formula Explanation
(1, 0, 1, 1, 0, 0, 0) Ranks:1,0
(1, -, 0.67, 0.75,−,−,−) P(j) Precision at position j with label 1
0.81 AP Average Precision

Average Precision values are further averaged over queries to become Mean Average Precision
(MAP). Table 2.5 gives an example of calculating the AP value of one ranking list.

Kendall’s Tau is a measure proposed in statistics. It is defined on two ranking lists: one is the
ranking list by the ranking model, and the other is by the ground truth. Kendall’s Tau of ranking list
πi with respect to ground truth π∗i is defined:

Ti = 2ci

1
2ni(ni − 1)

− 1,

where ci denotes the number of concordant pairs between the two lists, and ni denotes the length
of the two lists. For example, Kendall’s Tau between two ranking lists: (A,B,C) and (C,A,B) is as
follows.

Ti = 2× 1
3

− 1 = −1
3
.

Kendall’s Tau has values between −1 and +1. If the two ranking lists are exactly the same, then it
is +1. If one ranking list is in reverse order of the other, then it is −1. It is easy to verify Kendall’s
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Tau can also be written as
Ti = ci − di

1
2ni(ni − 1)

,

where di denotes the number of discordant pairs between the two lists.

2.2.5 RELATIONS WITH OTHER LEARNING TASKS
There are some similarities between ranking and other machine learning tasks such as classifica-
tion, regression, and ordinal classification (ordinal regression). Differences between them also exist,
however. That is why learning to rank is also an interesting research problem in machine learning.

In classification, the input is a feature vector x ∈ $d , and the output is a label y ∈ Y , repre-
senting a class where Y is the set of class labels, and the goal of learning is to learn a classifier f (x)

which can determine the class label y of a given feature vector x.
In regression, the input is a feature vector x ∈ $d , the output is a real number y ∈ $, and the

goal of learning is to learn a function f (x) which can determine the real number y of a given feature
vector x.

Ordinal classification (or ordinal regression) [30, 67, 92] is close to ranking, but it is also
different. The input is a feature vector x ∈ $d , the output is a label y ∈ Y , representing a grade
where Y is a set of grade labels. The goal of learning is to learn a model f (x) which can determine
the grade label y of a given feature vector x. The model first calculates the score f (x), and then it
decides the grade label y using a number of thresholds. Specifically, the model segments the real
number axis into a number of intervals and assigns to each interval a grade. It then takes the grade
of the interval which f (x) falls into as the grade of x.

In ranking, one cares more about accurate ordering of objects (offerings), while in ordinal
classification, one cares more about accurate ordered-categorization of objects. A typical example of
ordinal classification is product rating. For example, given the features of a movie, we are to assign a
number of stars (ratings) to the movie. In that case, correct assignment of number of stars is critical. A
typical example of ranking is document retrieval. In document retrieval, given a query, the objective
is to give a right ranking on the documents, although sometimes training data and testing data are
labeled at multiple grades as in ordinal classification. The number of documents to be ranked can
vary from query to query. There are queries for which more relevant documents are available in the
collection, and there are also queries for which only weakly relevant documents are available.

As will be seen later, ranking can be approximated by classification, regression, and ordinal
classification.

2.3 LEARNING APPROACHES
Learning to rank, particularly learning for ranking creation, has been intensively studied recently.
The proposed methods can be categorized as the pointwise approach, pairwise approach, and listwise
approach.There are also methods which may not belong to any of the approaches, for example, query
dependent ranking [41] and multiple nested ranking [74].
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Table 2.6: Categorization of Learning to Rank Methods

SVM Boosting Neural Net Others
Pointwise OC SVM [92] McRank [67] Prank [30]

Subset Ranking [29]
Pairwise Ranking SVM

[48]
RankBoost [37] RankNet [11]

IR SVM [13] GBRank [115] Frank [97]
LambdaMART
[102]

LambdaRank
[12]

Listwise SVM MAP
[111]

AdaRank [108] ListNet [14] SoftRank [95]

PermuRank
[110]

ListMLE [104] AppRank [81]

The pointwise and pairwise approaches transform the ranking problem into classification,
regression, and ordinal classification.The listwise approach takes ranking lists of objects as instances
in learning and learns the ranking model based on ranking lists. The main differences among the
approaches actually lie in the loss functions employed.

It is observed that the listwise approach and pairwise approach usually outperform the point-
wise approach. In the recent Yahoo Learning to Rank Challenge, LambdaMART, which belongs
to the pairwise approach, achieved the best performance.

The methods can also be categorized based on the learning techniques which they employ.
They include SVM techniques, Boosting techniques, Neural Net techniques, and others.

Table 2.6 gives a summary of the existing methods. Each of them will be described hereafter.

2.3.1 POINTWISE APPROACH
In the pointwise approach, the ranking problem (ranking creation) is transformed to classification,
regression, or ordinal classification, and existing methods for classification, regression, or ordinal
classification are applied. Therefore, the group structure of ranking is ignored in this approach.

More specifically, the pointwise approach takes training data in Figure 2.2 as input. It ig-
nores the group structure and combines all the groups together (xi,1, yi,1), · · · , (xi,ni , yi,ni ), i =
1, · · · , m.The training data becomes typical supervised learning data (representing mapping from x

to y). When we take y as a class label, real number, and grade label, then the problem becomes clas-
sification, regression, and ordinal classification, respectively. We can then employ existing methods
for classification, regression, or ordinal classification to perform the learning task.

Suppose that the learned model f (x) outputs real numbers. Then, given a query, we can use
the model to rank documents (sort documents according to the scores given by the model). The loss
function in learning is pointwise in the sense that it is defined on a single object (feature vector).



2.3. LEARNING APPROACHES 23

Table 2.7: Characteristics of Pointwise Approach
Pointwise Approach (Classification)

Learning Ranking
Input feature vector feature vectors

x x = {xi}ni=1
Output category ranking list

y = classifier(f (x)) sort({f (xi)}ni=1)

Model classifier(f (x)) ranking model f (x)

Loss classification loss ranking loss
Pointwise Approach (Regression)

Learning Ranking
Input feature vector feature vectors

x x = {xi}ni=1
Output real number ranking list

y = f (x) sort({f (xi)}ni=1)

Model regression model f (x) ranking model f (x)

Loss regression loss ranking loss
Pointwise Approach (Ordinal Classification)

Learning Ranking
Input feature vector feature vectors

x x = {xi}ni=1
Output ordered category ranking list

y = threshold(f (x)) sort({f (xi)}ni=1)

Model threshold(f (x)) ranking model f (x)

Loss ordinal classification loss ranking loss

Table 2.7 summarizes the main characteristics of the pointwise approach. The pointwise approach
includes Prank, OC SVM, McRank, and Subset Ranking. Chapter 4 explains Prank and OC SVM
in details. (See also [22, 23, 24]).

Crammer & Singer [30] have studied ordinal classification, which is to assign a grade to a
given object. The grades can be used for ranking, and thus their method can also be viewed as a
method for ranking. Crammer & Singer propose a simple and efficient online algorithm, called
Prank. Given training data, Prank iteratively learns a number of parallel Perceptron models, and
each model separates two neighboring grades. The authors have also conducted analysis on Prank
in terms of mistake bound.

Shashua & Levin [92] propose a large margin approach to ordinal classification, referred to as
OC SVM (Ordinal Classification SVM) in this book. In their method, they also try to learn parallel
hyperplanes to separate neighboring grades, but their machinery is the Large Margin Principle.
They consider two ways of defining the margin. The first assumes that the margins between the
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neighboring grades are the same and the margin is maximized in learning.The second allows different
margins for different neighboring grades, and the sum of margins is maximized.

Li et al. [67] cast the ranking problem as multi-class classification and propose the McRank
algorithm.The authors are motivated by the fact that the errors in ranking based on DCG is bounded
by the errors in multi-class classification.They learn and exploit a classification model that can assign
to an object probabilities of being members of grades. They then calculate the expected grades of
objects and use the expected grades to rank objects. The class probabilities are learned by using the
Gradient Boosting Tree algorithm.

Cossock & Zhang [29] have developed the Subset Ranking algorithm. They first consider
using DCG as evaluation measure. Since minimization of the loss function based on DCG is a non-
convex optimization problem, they instead manage to minimize a surrogate loss function which
is an upper bound of the original loss function. The surrogate loss function is defined based on
regression errors. Therefore, the original ranking problem can be solved as a regression problem.
Cossock and Zhang then derive a learning method for the task on the basis of regression. They have
also investigated the generalization ability and the consistency of the learning method.

2.3.2 PAIRWISE APPROACH
In the pairwise approach, ranking is transformed into pairwise classification or pairwise regression.
For example, a classifier for classifying the ranking orders of document pairs can be created and
employed in ranking of documents. In the pairwise approach, the group structure of ranking is also
ignored.

Specifically, the pairwise approach takes training data in Figure 2.2 as input. From the labeled
data of query qi , (xi,1, yi,1), · · · , (xi,ni , yi,ni ), i = 1, · · · , m, it creates preference pairs of feature
vectors (documents). For example, if xi,j has a higher grade than xi,k (yi,j > yi,k), then xi,j % xi,k

becomes a preference pair, which means that xi,j is ahead of xi,k .The preference pairs can be viewed
as instances and labels in a new classification problem. For example, xi,j % xi,k is a positive instance.
We can employ exiting classification methods to train a classifier to conduct the classification. The
classifier f (x) can then be used in ranking. More precisely, documents are assigned scores by f (x)

and sorted by the scores. Training of a good model for ranking is realized by training of a good
model for pairwise classification. The loss function in learning is pairwise because it is defined on a
pair of feature vectors (documents). Table 2.8 summarizes the main characteristics of the pairwise
approach.

The pairwise approach includes Ranking SVM, RankBoost, RankNet, IR SVM, GBRank,
Frank,LambdaRank, and LambdaMART.Chapter 4 introduces Ranking SVM,IR SVM,GBRank,
RankNet, and LambdaRank in details. (See also [35, 77, 86, 98, 116]).

Ranking SVM is one of the first learning to rank methods, proposed by Herbrich et al. [48].
The basic idea is to formalize the ranking problem as pairwise classification and employ the SVM
technique to perform the learning task.The objects in different grades are used to generate preference
pairs (which object is ahead of which) and viewed as data representing mappings from object pairs
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Table 2.8: Characteristics of Pairwise Approach
Pairwise Approach (Classification)

Learning Ranking
Input feature vectors feature vectors

x(1), x(2) x = {xi}ni=1
Output pairwise classification ranking list

classifier(f (x(1))− f (x(2))) sort({f (xi)}ni=1)

Model classifier(f (x)) ranking model f (x)

Loss pairwise classification loss ranking loss
Pairwise Approach (Regression)

Learning Ranking
Input feature vectors feature vectors

x(1), x(2) x = {xi}ni=1
Output pairwise regression ranking list

f (x(1))− f (x(2)) sort({f (xi)}ni=1)

Model regression model f (x) ranking model f (x)

Loss pairwise regression loss ranking loss

to orders. Herbrich et al. show that when the classifier is a linear model (or a linear model after
applying the kernel trick), it can be directly employed in ranking.

The RankBoost Algorithm has been developed by Freund et al. [37]. In their work, they present
a formal framework for ranking, namely the problem of learning to rank objects by combining a
number of ranking features. They then propose the RankBoost algorithm based on the Boosting
technique. They show theoretical results describing the algorithm’s behavior both on the training
data and the test data. An efficient implementation of the algorithm is also given.

Burges et al. [11] propose the RankNet algorithm,which is also based on pairwise classification
like Ranking SVM and RankBoost. The major difference lies in that it employs Neural Network as
ranking model and uses Cross Entropy as loss function. Burges et al. also show the good properties
of Cross Entropy as loss function in ranking. Their method employs Gradient Descent to learn the
optimal Neural Network model.

The advantage of the above methods is that existing learning techniques on classification and
regression can be directly applied.The disadvantage is that the goal of learning may not be consistent
with that of prediction. In fact, evaluation of ranking is usually conducted based on measures such as
NDCG, which are defined on list of objects. In contrast, training in the pairwise approach is driven
by enhancement of accuracy of pairwise classification or pairwise regression, which is defined on
pairs of objects.

Cao et al. [13] propose employing cost sensitive Ranking SVM to overcome the shortcoming.
The authors point out that there are two factors one must consider in ranking for document retrieval.
First, correctly ranking documents on the top of list is crucial. Second, the number of relevant
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documents can vary from query to query. They modify the hinge loss function in Ranking SVM to
deal with the problems, and then they formalize the learning task as cost sensitive Ranking SVM.
The method is often referred to as IR SVM. Gradient Descent and Quadratic Programming are
respectively employed to solve the optimization problem in learning.

Zheng et al. [115] suggest employing pairwise regression for ranking. The GB (Gradient
Boosting Tree) Rank algorithm is proposed.They first introduce a regression framework for ranking,
which employs a pairwise regression loss function. They then propose a novel optimization method
based on the Gradient Boosting Tree algorithm to iteratively minimize the loss function. They use
two types of relevance judgments to derive training data: absolute relevance judgments by human
judges and relative relevance judgments extracted from click through data.

The Frank method proposed by Tsai et al. [97] is based on a similar motivation as IR SVM.
The authors propose employing a novel loss function in RankNet.The loss function named ‘Fidelity
Loss’ not only retains the good properties of the Cross Entropy loss, but it also possesses some
desirable new properties. Particularly, Fidelity Loss is bounded between 0 and 1, which makes the
learning method more robust against noises. In Frank, a Neural Network model is trained as ranking
model using Gradient Descent.

LambdaRank developed by Burges et al. [12] addresses the challenge by using an implicit
pairwise loss function2. Specifically, LambdaRank considers learning the optimal ranking model by
optimizing the loss function with Gradient Descent. In fact, it only explicitly defines the gradient
function of the loss function, referred to as Lambda Function. As example, LambdaRank employs
a Neural Network model. Burges et al. also give necessary and sufficient conditions for the implicit
cost function to be convex.

Wu et al. [102] propose a new method called LambdaMART, using Boosting and the Lambda
function in LambdaRank. It employs the MART (Multiple Additive Regression Trees) algorithm
[38] to learn a boosted regression tree as ranking model. MART is actually an algorithm conducting
Gradient Descent in the functional space. LambdaMART specifically employs the Lambda function
as the gradients in MART.Wu et al.have verified that the efficiency of LambdaMART is significantly
better than LambdaRank, and the accuracy of it is also higher.

2.3.3 LISTWISE APPROACH
The listwise approach addresses the ranking problem in a more natural way. Specifically, it takes rank-
ing lists as instances in both learning and prediction. The group structure of ranking is maintained
and ranking evaluation measures can be more directly incorporated into the loss functions.

More specifically, the listwise approach takes training data in Figure 2.2 as input. It views the
labeled data (xi,1, yi,1), · · · , (xi,ni , yi,ni ) associated with query qi as one instance. The approach
learns a ranking model f (x) from the training data that can assign scores to feature vectors (doc-
uments) and rank the feature vectors using the scores, such that feature vectors with higher grades
are ranked higher. This is a new problem for machine learning and conventional techniques in

2The general formulation of LambdaRank can be either listwise or pairwise, but its specific implementation in practice is pairwise.
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machine learning cannot be directly applied. Recently, advanced learning to rank techniques have
been developed, and many of them belong to the listwise approach. Table 2.9 summarizes the main
characteristics of the listwise approach.

The listwise approach includes ListNet, ListMLE, AdaRank, SVM MAP, Soft Rank, and
AppRank. Chapter 4 describes ListNet, ListMLE, AdaRank, SVM MAP, and Soft Rank in details.
(See also [18, 85, 99, 100]).

Cao et al. [14] point out the importance of employing the listwise approach to ranking, in
which lists of objects are treated as ’instances’.They propose using the Luce-Plackett model to calcu-
late the permutation probability or top k probability of list of objects. The ListNet algorithm based
on the idea is then developed. In the method, a Neural Network model is employed as model, and
KL divergence is employed as loss function.The permutation probability or top k probability of a list
of objects is calculated by the Luce-Plackett model. KL divergence measures the difference between
the learned ranking list and the true ranking list using their permutation probability distributions
or top k probability distributions. Gradient Descent is utilized as optimization algorithm. Xia et al.
[104] extend ListNet to ListMLE, in which log likelihood is defined as loss function. The learning
of ListMLE is equivalent to Maximum Likelihood Estimation on the parameterized Luce-Plackett
model.

The evaluation measures in applications such as those in IR are defined on list of objects.
Ideally, a learning algorithm would train a ranking model that could directly optimize the evaluation
measures. Another group of listwise methods try to directly optimize the evaluation measures in
learning. These include AdaRank developed by Xu & Li [108]. AdaRank minimizes a loss function
directly defined on an evaluation measure by using the Boosting technique. It repeatedly constructs
’weak rankers’ on the basis of reweighted training data and finally linearly combines the weak rankers
for ranking prediction. AdaRank is a very simple and efficient learning to rank algorithm.

The algorithm of SVM MAP proposed by Yue et al. [111] also considers direct optimization
of evaluation measures, particularly, MAP used in IR. SVM MAP is an SVM learning algorithm
that can efficiently find a globally optimal solution to minimization of an upper bound of the loss
function based on MAP. Xu et al. [110] show that one can extend the idea to derive a group of

Table 2.9: Characteristics of Listwise Approach
Listwise Approach

Learning Ranking
Input feature vectors feature vectors

x = {xi}ni=1 x = {xi}ni=1
Output ranking list ranking list

sort({f (xi)}ni=1) sort({f (xi)}ni=1)

Model ranking model f (x) ranking model f (x)

Loss listwise loss function ranking loss
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algorithms. The key idea of these algorithms is to introduce loss functions based on IR evaluation
measures (defined on lists of objects), consider different upper bounds of the loss functions, and
employ the SVM technique to optimize the upper bounds. Different upper bounds and different
optimization techniques can lead to different algorithms including one called PermuRank.

Another listwise approach tries to approximate the evaluation measures. SoftRank is a repre-
sentative algorithm of such an approach. The major challenge for direct optimization of evaluation
measures is that they are not directly optimizable due to the nature of the loss functions. Taylor et
al. [95] present a soft (approximate) way of calculating the distribution of ranks of objects. With an
approximated rank distribution, it is possible to approximately calculate evaluation measures such
as NDCG. They show that SoftRank is a very effective way of optimizing evaluation measures.

Qin et al. [81] propose a general framework for direct optimization of IR measures in learning
to rank. In the framework, the IR measures such as NDCG and MAP are approximated as surrogate
functions, and the surrogate functions are then optimized.The key idea of the approach is as follows.
The difficulty in directly optimizing IR measures lies in that the measures are rank based and thus
are non-continuous and non-differentiable with respect to the score output by the ranking function.
The proposed approach approximates the ranks of documents by a continuous and differentiable
function. An algorithm based on the framework is developed, which is called AppRank.

2.3.4 EVALUATION RESULTS
According to the previous studies, the listwise approach and the pairwise approach usually work
better than the pointwise approach. As in other machine learning tasks, there is no single method
that can always outperforms the other methods. This is a general trend on the learning to rank
methods.

Tables 2.10-2.16 give the experimental results on a number of methods in terms of NDCG on
the LETOR datasets [82]. The LETOR data sets are benchmark data for learning to rank, derived
from TREC data by researchers in Microsoft Research 3. One can get a rough sense about the
performances achieved by the methods.

In the Yahoo Learning to Rank Challenge 4, the pairwise approach of LambdaMART
achieved the best performance. In fact, the accuracies by the top performers were very close to
each other.

3http://research.microsoft.com/en-us/um/beijing/projects/letor/
4http://learningtorankchallenge.yahoo.com/

http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Table 2.10: NDCG on TD2003 Dataset
Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

Regression 0.32 0.31 0.30 0.33
Ranking SVM 0.32 0.34 0.36 0.35

RankBoost 0.28 0.32 0.31 0.31
FRank 0.30 0.27 0.25 0.27
ListNet 0.40 0.34 0.34 0.35

AdaRank-MAP 0.26 0.31 0.30 0.31
AdaRank-NDCG 0.36 0.29 0.29 0.30

SVMMAP 0.32 0.32 0.33 0.33

Table 2.11: NDCG on TD2004 Dataset
Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

Regression 0.36 0.34 0.33 0.30
Ranking SVM 0.41 0.35 0.32 0.31

RankBoost 0.51 0.43 0.39 0.35
FRank 0.49 0.39 0.36 0.33
ListNet 0.36 0.36 0.33 0.32

AdaRank-MAP 0.41 0.38 0.36 0.33
AdaRank-NDCG 0.43 0.37 0.35 0.32

SVMMAP 0.29 0.30 0.30 0.29

Table 2.12: NDCG on NP2003 Dataset
Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

Regression 0.45 0.61 0.64 0.67
Ranking SVM 0.58 0.77 0.78 0.80

RankBoost 0.60 0.76 0.78 0.81
FRank 0.54 0.73 0.76 0.78
ListNet 0.57 0.76 0.78 0.80

AdaRank-MAP 0.58 0.73 0.75 0.76
AdaRank-NDCG 0.56 0.72 0.74 0.77

SVMMAP 0.56 0.77 0.79 0.80
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Table 2.13: NDCG on NP2004 Dataset
Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

Regression 0.37 0.56 0.61 0.65
Ranking SVM 0.51 0.75 0.80 0.81

RankBoost 0.43 0.63 0.65 0.69
FRank 0.48 0.64 0.69 0.73
ListNet 0.53 0.76 0.80 0.81

AdaRank-MAP 0.48 0.70 0.73 0.75
AdaRank-NDCG 0.51 0.67 0.71 0.74

SVMMAP 0.52 0.75 0.79 0.81

Table 2.14: NDCG on HP2003 Dataset
Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

Regression 0.42 0.51 0.55 0.59
Ranking SVM 0.69 0.77 0.80 0.81

RankBoost 0.67 0.79 0.80 0.82
FRank 0.65 0.74 0.78 0.80
ListNet 0.72 0.81 0.83 0.84

AdaRank-MAP 0.73 0.81 0.83 0.84
AdaRank-NDCG 0.71 0.79 0.80 0.81

SVMMAP 0.71 0.78 0.79 0.80

Table 2.15: NDCG on HP2004 Dataset
Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

Regression 0.39 0.58 0.61 0.65
Ranking SVM 0.57 0.71 0.75 0.77

RankBoost 0.51 0.70 0.72 0.74
FRank 0.60 0.73 0.75 0.76
ListNet 0.60 0.72 0.77 0.78

AdaRank-MAP 0.61 0.82 0.83 0.83
AdaRank-NDCG 0.59 0.75 0.79 0.81

SVMMAP 0.63 0.75 0.80 0.81
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Table 2.16: NDCG on OHSUMED Dataset
Method NDCG@1 NDCG@3 NDCG@5 NDCG@10

Regression 0.45 0.44 0.43 0.41
Ranking SVM 0.50 0.42 0.42 0.41

RankBoost 0.46 0.46 0.45 0.43
FRank 0.53 0.48 0.46 0.44
ListNet 0.53 0.47 0.44 0.44

AdaRank-MAP 0.54 0.47 0.46 0.44
AdaRank-NDCG 0.53 0.48 0.47 0.45

SVMMAP 0.52 0.47 0.45 0.43
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C H A P T E R 3

Learning for Ranking
Aggregation

This chapter gives a general introduction to learning for ranking aggregation. Ranking aggregation is
aimed at combining multiple rankings into a single ranking, which is better than any of the original
rankings in terms of an evaluation measure. Learning for ranking aggregation is about building a
ranking model for ranking aggregation using machine learning techniques.

Hereafter, we take meta-search as an example to make the explanation. Without loss of
generality, the technologies described can be applied to other applications.

3.1 LEARNING TASK
In meta-search, the query from the user is sent to multiple search systems, and the ranking lists
from the search systems are then combined and presented to the user in a single ranking list. Since
the ranking lists from individual search systems may not be accurate enough, meta-search actually
takes a majority voting over search ranking lists. The question is then how to effectively perform the
majority voting. Here we call the rankings from individual search systems basic rankings, and the
ranking in meta search final ranking.

Learning for ranking aggregation can be performed either as unsupervised learning or su-
pervised learning. In traditional IR, ranking aggregation is usually based on unsupervised learning.
Recently, supervised methods for ranking aggregation have also been proposed.

In supervised learning for ranking aggregation, the training data contains queries, their asso-
ciated documents and basic rankings on the documents, as well as the corresponding final rankings.
The testing data includes query, associated documents, and basic rankings on the documents.

Suppose that Q is the query set, and D is the document set. Further suppose that
{q1, q2, · · · , qm} is the set of queries in training data. Di = {di,1, di,2, · · · , di,ni } is the set of docu-
ments associated with query qi , "i = {σi,1, σi,2, · · · , σi,k} is the set of basic rankings on the docu-
ments in Di with respect to query qi , and πi is the final ranking on the documents in Di with respect
to query qi . Here, di,j denotes the j th document in Di , σi,j denotes the j th basic ranking in "i , and
k denotes the number of basic rankings. The training set is represented as S = {(qi,"i ),πi}mi=1.

In learning, a model for ranking aggregation is constructed, which takes the form of F(q,") :
Q×#k → $n, where q is a query, D is a set of associated documents, " is a set of basic rankings
on the documents in D with respect to q, n denotes the number of documents, and k denotes the
number of basic rankings. F(q,") can assign scores to the documents in D, sort the documents
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Table 3.1: Summary of Notations
Notation Explanation
Q query set
D document set
S = {(qi,"i ),πi}mi=1 training data set
qi ∈ Q i-th query in training data
Di = {di,1, di,2, · · · , di,ni } set of documents associated with qi

di,j ∈ D j-th document in Di

"i = {σi,1, σi,2, · · · , σi,k} set of basic rankings on Di with respect to qi

σi,j ∈ #i , (j = 1, · · · , k) j-th basic ranking on Di with respect to qi

πi ∈ #i final ranking on Di for qi

#i set of possible rankings on Di with respect to qi

F (q,") model for ranking aggregation
T = {(qm+1,"m+1)} test data set
qm+1 ∈ Q query in test data
Dm+1 = {dm+1,1, dm+1,2, · · · , dm+1,nm+1} set of documents associated with qm+1

"m+1 = {σm+1,1, σm+1,2, · · · , σm+1,k} set of rankings on Dm+1 with respect to qm+1

according to the scores, and generate a final ranking.

SD = F(q,")

π = sortSDD.

Note that F is a global ranking function in the sense that it is defined on a set of documents.
The test data consists of query qm+1, associated documents Dm+1, and basic rankings on the

documents "m+1. We use the trained ranking model F(q,") to assign scores to the documents in
Dm+1, sort them based on the scores, and give the final ranking list. The test data set is represented
as T = {(qm+1,"m+1)}.

Table 3.1 gives a summary of notations.
Ranking aggregation is generally defined as a query dependent task so far. In practice, it is

usually specified as a query independent task. That is,

F(q,") = F(").

Note that we use integers to represent documents. Let the documents in Di be identified by
the integers {1, 2, · · · , ni}. We define permutation πi on Di as a bijection from {1, 2, · · · , ni} to
itself. We use #i to denote the set of all possible ranking lists (permutations) on Di , and use πi (j)

and π−1
i (j) to respectively denote the rank of the j-th document and the document at the j-th

rank.
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Note that for simplicity, it is assumed here that all the basic rankings are on the same set of
documents Di . In practice,different basic rankings can be provided on different subsets of documents.
In such case, one can just take the union of the subsets and define the union as Di .

Evaluation measures in ranking aggregation can be any measure in learning to rank, depending
on how the ground truth is given. For example, if the final ranking in ground truth is given as a
ranking list, then Kendal’s Tau can be used. If the final ranking is based on grades, then MAP or
NDCG can be employed.

3.2 LEARNING METHODS
Existing methods for ranking aggregation includes unsupervised learning methods such as Borda
Count and Markov Chain, and supervised learning methods such as Cranking. We give detailed
explanations on Borda Count, Markov Chain, and Cranking in Chapter 4. See also [26, 59, 71].

Borda Count is an election method in which the best candidate is selected based on voters’
rankings of candidates. Aslam & Montague [8] have applied it to meta-search and have verified
the effectiveness of the method in meta-search. Borda Count is a simple method as follows. First,
each voter gives a ranking of the n candidates (objects). For each ranking, the top ranked candidate
receives n points, the second ranked candidate receives n-1 points, and so on.Then the candidates are
ranked in descending order of their total points, generating the final ranking list, and the candidate
with the most points wins.

Markov Chain based ranking aggregation assumes that there exists a Markov Chain on the
objects. The basic rankings of objects are utilized to construct the Markov Chain, in the way that
the transition probabilities are estimated based on the order relations in the rankings.The stationary
distribution of the Markov Chain is then utilized to rank the objects in the final ranking. Dwork
et al. [34] propose four methods for constructing the transition probability matrix of the Markov
Chain, which leads to four different Markov Chain methods for ranking aggregation.

Cranking proposed by Lebanon & Lafferty [63] employs a generalization of the Mallows
model for ranking aggregation.The generalized Mallows model, which is in the form of exponential
function, defines a conditional probability distribution of final ranking of objects given multiple
basic rankings of objects. The model can be viewed as a general probabilistic model for ranking
aggregation. Lebanon & Lafferty propose several learning methods for estimating the parameters
of the generalized Mallows model under different settings, particularly when the rankings in the
training data are only partially available.
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C H A P T E R 4

Methods of Learning to Rank
This chapter describes in details about eleven methods for ranking creation, including PRank [30],
OC SVM [92], Ranking SVM [47, 48], IR SVM [13], GBRank [114, 115], RankNet [11], Lamb-
daRank [12, 32], ListNet & ListMLE [14, 104], AdaRank [108], SVM MAP [111], and SoftRank
[43, 95], and three methods for ranking aggregation, including Borda Count [34], Markov Chain
[34], and CRanking [63].

4.1 PRANK
PRank (Perceptron Ranking) is an online algorithm for ordinal classification proposed by Crammer
& Singer [30]. One can employ it in ranking (ranking creation) as a pointwise method. The basic
idea of PRank is to utilize and learn a number of parallel Perceptron models while each model makes
classification between the neighboring grades.

4.1.1 MODEL
Suppose that X ⊆ $d and Y = {1, 2, · · · , l} where there is a total order on Y . x ∈ X is an object
(feature vector) and y ∈ Y is a label representing grade. Given object x, we aim to predict its
label (grade) y. That is to say, this is an ordinal classification problem. We employ a number of
linear models (Perceptrons) 〈w, x〉 − br, (r = 1, · · · , l − 1) to make the prediction, where w ∈ $d

is a weight vector and br ∈ $, (r = 1, · · · , l) are biases satisfying b1 ≤ · · · ≤ bl−1 ≤ bl = +∞.
The models correspond to parallel hyperplanes 〈w, x〉 − br = 0 separating grades r and r + 1,
(r = 1, · · · , l − 1). Here 〈〉 denotes dot product. Figure 4.1 gives an example of PRank models. If
x satisfies 〈w, x〉 − br−1 ≥ 0 and 〈w, x〉 − br < 0, then y = r , (r = 1, · · · , l). We can write it as
minr∈{1,··· ,l}{r|〈w, x〉 − br < 0}.

4.1.2 LEARNING ALGORITHM
PRank employs the Perceptron learning algorithm [91] to simultaneously learn the linear models
online.The Perceptron learning algorithm is based on Stochastic Gradient Descent, and so is PRank.

PRank takes one input pair at each round. Suppose that for the current round, the input pair is
(x, y), and we are to update the weights w and biases br, (r = 1, · · · , l − 1). For simplicity, we omit
the superscript representing the round here. Given a feature vector x, the current models can predict
a grade ŷ for it. Specifically, if x satisfies 〈w, x〉 − br−1 ≥ 0 and 〈w, x〉 − br < 0, then the predicted
grade should be ŷ = r , (r = 1, · · · , l).On the other hand,given the true grade label y, it is also possi-
ble to say which models should predict the feature vector as positive example and which models should
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Figure 4.1: PRank Model

predict it as negative example. We use variables (z1, · · · , zl−1) = (+1, · · · , +1,−1, · · · ,−1) to
represent the fact, where the first y − 1 variables correspond to the models which should make
positive predictions (+1) and the rest variables the models which should make negative predictions
(−1).Thus, if the prediction of a model is correct, then zr(〈w, x〉 − br) > 0 holds; if the prediction is
incorrect, then zr(〈w, x〉 − br) ≤ 0 holds (r = 1, · · · , l − 1). When an error occurs, PRank adjusts
the weights for all the models making the error. Specifically, PRank updates those models’ biases br

with br − zr and updates the weights w with w + (
∑

zr)x where the sum is taken over the models
making the error.

Figure 4.2 shows the PRank algorithm.

4.2 OC SVM
The method proposed by Shashua & Levin [92] also utilizes a number of parallel hyperplanes as
ranking model. Their method learns the parallel hyperplanes by the Large Margin principle. In one
implementation, the method tries to maximize a fixed margin for all the neighboring grades.

4.2.1 MODEL
Suppose that X ⊆ $d and Y = {1, 2, · · · , l} where there exists a total order on Y . x ∈ X is feature
vector and y ∈ Y is a label representing a grade. As in PRank, we employ a number of parallel
hyperplanes 〈w, x〉 − br = 0, (r = 1, · · · , l − 1) to predict the label y of a given feature vector x,
where w ∈ $d is a weight vector and br ∈ $, (r = 1, · · · , l) are biases satisfying b1 ≤ · · · ≤ bl−1 ≤
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Input: training data {(xt , yt )}Ti=1
Initialize w = 0, b1, · · · , bl−1 = 0, bl =∞.
For t = 1, · · · , T

• Get a feature vector xt ∈ Rn

• Predict ŷt = minr∈{1,··· ,l}{r|〈w, xt 〉 − br < 0}

• Get a new label yt

• If ŷt 0= yt then update w

– For r = 1, · · · , l − 1 : if yt ≤ r then zr = −1, else zr = +1

– For r = 1, · · · , l − 1 : if zr(〈w, xt 〉 − br) ≤ 0 then ζr = zr , else ζr = 0

– Update w = w + (
∑

ζr )x

– For r = 1, · · · , l − 1 update br = br − ζr

End For
Output: the ranking model 〈w, x〉 − br = 0, r = 1, · · · , l − 1

Figure 4.2: PRank Algorithm

bl = +∞. If x satisfies 〈w, x〉 − br−1 ≥ 0 and 〈w, x〉 − br < 0, then y = r , (r = 1, · · · , l). That
is to say, the prediction is based on minr∈{1,··· ,l}{r|〈w, x〉 − br < 0}.

4.2.2 LEARNING ALGORITHM
OC SVM assumes that the parallel hyperplanes separate the instances in any two adjacent grades
with the same large margin (Figure 4.3).

Suppose that the training data is given as follows. For each grade r = 1, · · · , l, there are mr

instances: xr,i , i = 1, · · · , mr . The learning task is formalized as the following Quadratic Program-
ming (QP) problem.

minw,b,ξ
1
2 ||w||2 + C

∑l−1
r=1

∑mr
i=1(ξr,i + ξ∗r+1,i )

s. t. 〈w, xr,i〉 − br ≤ −1 + ξr,i
〈w, xr+1,i〉 − br ≥ 1 + ξ∗r+1,i

ξr,i ≥ 0, ξ∗r+1,i ≥ 0
i = 1, · · · , mr, r = 1, · · · , l − 1

m = m1 + · · · + ml

(4.1)
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Figure 4.3: OC SVM Model

where xr,i denotes the i-th instance in the r-th grade, ξr+1,i and ξ∗r+1,i denote the corresponding
slack variables, || · || denotes L2 norm,m is the number of training instances, and C > 0 is coefficient.
The detailed way of solving the problem can be found in [92].

Figure 4.4 shows the learning algorithm of OC SVM.

Input: training data {(xi, yi)}mi=1
Solve the QP problem in (4.1)
Output: the ranking model 〈w, x〉 − br = 0, r = 1, · · · , l − 1

Figure 4.4: Learning Algorithm of OC SVM

4.3 RANKING SVM

Ranking SVM is one of the first learning to rank methods, proposed by Herbrich et al. [47, 48].
The basic idea of Ranking SVM is to transform ranking into pairwise classification and employ the
SVM technique [27] to perform the learning task.

4.3.1 LINEAR MODEL AS RANKING FUNCTION
Assume that X ⊆ $d is the feature space and x ∈ X is an element in the space (feature vector).
Further suppose that f is a scoring function f : X → $.Then one can rank feature vectors (objects)
in X with f (x). That is to say, given any two feature vectors xi ∈ X and xj ∈ X, if f (xi) > f (yj ),
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Figure 4.5: Ranking Problem

then xi should be ranked ahead of xj , and vice versa.

xi % xj ⇔ f (xi) > f (xj ).

In principle, function f (x) can be any function. For simplicity, let us suppose that f (x) is a
linear function for the time being.

f (x) = 〈w, x〉,
where w denotes a weight vector and 〈·〉 denotes inner product.

We can transform the ranking problem into a binary classification problem if the scoring
function is a linear function. The reason is as follows.

First, the following relation holds for any two feature vectors xi and xj , when f (x) is a linear
function.

f (xi) > f (xj )⇔ 〈w, xi − xj 〉 > 0.

Next, for any two feature vectors xi and xj , we can consider a binary classification problem
on the difference of the feature vectors xi − xj . Specifically, we assign a label y to it.

y =
{ +1, if xi − xj > 0
−1, if xi − xj < 0

Hence,
〈w, xi − xj 〉 > 0 ⇔ y = +1.
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Therefore, the following relation holds. That is to say, if xi is ranked ahead of xj , then y is
+1, otherwise, y is −11.

xi % xj ⇔ y = +1.

4.3.2 RANKING SVM MODEL
We can learn and utilize a linear classifier, such as Linear SVM for the ranking task. The classifier
can be directly used as ranking model. One can also extend the linear model to a non-linear model
by using the kernel trick. We call the above method ‘Ranking SVM’.

Figure 4.5 shows an example ranking problem. Suppose that there are two groups of objects
(documents associated with two queries) in the feature space. Further suppose that there are three
grades (levels). For example, objects x1, x2, and x3 in the first group are at three different grades.
The weight vector w corresponds to the linear function f (x) = 〈w, x〉, which can score and rank
the objects. Ranking objects with the function is equivalent to projecting the objects into the vector
and sorting the objects according to the projections on the vector. If the ranking function is ‘good’,
then there should be an effect that objects at grade 3 are ranked ahead of objects at grade 2, etc.
Note that objects belonging to different groups are incomparable.

Figure 4.6 shows how the ranking problem in Figure 4.5 can be transformed to Linear SVM
classification. The differences between two feature vectors at different grades in the same group
are treated as new feature vectors, e.g., x1 − x2, x1 − x3, and x2 − x3. Furthermore, labels are also
assigned to the new feature vectors. For example, x1 − x2, x1 − x3, and x2 − x3 are positive. Note
that feature vectors at the same grade or feature vectors from different groups are not utilized to
create new feature vectors. One can train a Linear SVM classifier, which separates the new feature
vectors as shown in Figure 4.6. Note that the hyperplane of the SVM classifier passes the original,
and the positive and negative instances are anti-symmetric. For example, x1 − x2 and x2 − x1 are
positive and negative instances, respectively. In fact, we can discard the negative instances in learning
because they are redundant.

4.3.3 LEARNING ALGORITHM
More formally, Ranking SVM is formalized as the following constrained optimization problem
(Quadratic Programming). We first consider the linear case,

minw,ξ
1
2 ||w||2 + C

∑N
i=1 ξi

s. t. yi〈w, x
(1)
i − x

(2)
i 〉 ≥ 1− ξi

ξi ≥ 0
i = 1, . . . , N

where x
(1)
i and x

(2)
i denote the first and second feature vectors in a pair of feature vectors, || · ||

denotes L2 norm, N is the number of training instances, and C > 0 is coefficient.
1For ease of explanation, we do not consider the case in which there is a tie. One can make an extension to handle it.
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Figure 4.6: Transformation to Pairwise Classification

It is equivalent to the following non-constrained optimization problem, i.e., minimization of
regularized hinge loss function.

min
w

N∑

i=1

[1− yi〈w, x
(1)
i − x

(2)
i 〉]+ + λ||w||2, (4.2)

where [x]+ denotes function max(x, 0) and λ = 1
2C . The primal QP problem can be solved by

solving the dual problem.

maxα − 1
2
∑N

i=1
∑N

j=1 αiαj yiyj 〈x(1)
i − x

(2)
i , x

(1)
j − x

(2)
j 〉+ ∑N

i=1 αi

s. t.
∑N

i=1 αiyi = 0
0 ≤ αi ≤ C,

i = 1, · · · , N.

(4.3)

The optimal solution, used as ranking function, is given as

f (x) =
N∑

i=1

α∗i yi〈x, x
(1)
i − x

(2)
i 〉. (4.4)

The learning algorithm of Ranking SVM is summarized in Figure 4.7.
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We can also generalize the above problem to the non-linear case by using the kernel trick.

maxα − 1
2
∑N

i=1
∑N

j=1 αiαj yiyjK(x
(1)
i − x

(2)
i , x

(1)
j − x

(2)
j ) + ∑N

i=1 αi

s. t.
∑N

i=1 αiyi = 0
0 ≤ αi ≤ C,

i = 1, · · · , N.

The optimal ranking function is in the form

f (x) =
N∑

i=1

α∗i yiK(x, x
(1)
i − x

(2)
i ).

Parameter: C
Input: training data {((x(1)

i , x
(2)
i ), yi)}, i = 1, · · · , N

Solve the dual problem in (4.3) to obtain the optimal parameters α∗i , (i = 1, · · · , N)

Output: the ranking model in (4.4)

Figure 4.7: Learning Algorithm of Ranking SVM

4.4 IR SVM
IR SVM proposed by Cao et al. [13] is an extension of Ranking SVM for information retrieval,
whose idea can be applied to other applications as well.

4.4.1 MODIFIED LOSS FUNCTION
Ranking SVM transforms ranking into pairwise classification, and thus it actually makes use of 0-1
loss in the learning process. There exists a gap between the loss function and the IR evaluation
measures. IR SVM attempts to bridge the gap by modifying the 0-1 loss, that is, conducting cost
sensitive learning of Ranking SVM.

We first look at the problems caused by straightforward application of Ranking SVM to
document retrieval, using examples in Figure 4.8.

One problem with direct application of Ranking SVM is that it equally treats document pairs
across different grades. In example 1, there are three pairs of documents. They are document pairs
with label pairs (grade pairs) 3-2, 3-1, and 2-1, respectively. Ranking SVM uses the same 0-1 loss
for the document pairs. This is in contrast to the fact that different document pairs should have
different importance in ranking. Actually, making correct ordering on the pair of 3-1 (ranking 3
ahead of 1) is more critical than the other pairs. Example 2 indicates the problem from another
perspective. There are two rankings for the same query. In ranking-1 the documents at positions 1
and 2 are swapped from the perfect ranking, while in ranking-2 the documents at positions 3 and 4
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Grade: 3, 2, 1
Documents are represented by their grades
Example 1:

ranking for query-1: 3 2 1
Example 2:

ranking-1 for query-2: 2 3 2 1 1 1 1
ranking-2 for query-2: 3 2 1 2 1 1 1

Example 3:
ranking for query-3: 3 2 2 1 1 1 1
ranking for query-4: 3 3 2 2 2 1 1 1 1 1

Figure 4.8: Example Ranking Lists

are swapped from the perfect ranking. There is only one error for each ranking in terms of 0-1 loss.
Therefore, they have the same effect on training of Ranking SVM, which is not desirable. Actually,
ranking-2 should be better than ranking-1, from the viewpoint of IR, because the result of its top is
better. Again, to have a high accuracy on top-ranked documents is crucial for an IR system, which
is reflected in the IR evaluation measures.

Another issue with Ranking SVM is that it equally treats document pairs from different
queries. The numbers of documents usually vary from query to query. In example 3, there are two
queries, and the numbers of documents associated with them are different. For query3 there are 2
document pairs between grades 3-2,4 document pairs between grades 3-1,8 document pairs between
grades 2-1, and in total 14 document pairs. For query4, there are 31 document pairs. Ranking SVM
takes 14 instances (document pairs) from query3 and 31 instances (document pairs) from query4 for
training. Thus, the impact on the training process from query4 will be larger than the impact from
query3. In other words, the model learned will be biased toward query4. This is in contrast to the
fact that in IR evaluation queries are evenly important.

IR SVM addresses the above two problems by changing the 0-1 classification into a cost
sensitive classification. It does so by modifying the hinge loss function of Ranking SVM. Specifically,
it sets different losses for document pairs across different grades and from different queries. To
emphasize the importance of correct ranking on the top, the loss function heavily penalizes errors on
the top.To increase the influences of queries with less documents, the loss function heavily penalizes
errors from such queries.

Figure 4.9 plots the shapes of different hinge loss functions with different penalty parameters.
The x-axis represents yf (x

(1)
i − x

(2)
i ) and the y-axis represents loss. When yf (x

(1)
i − x

(2)
i ) ≥ 1 ,

the losses are zero. When yf (x
(1)
i − x

(2)
i ) < 1, the losses are linearly decreasing functions with

different slopes. If the slope equals -1, then the function is the normal hinge loss function. IR
SVM modifies the hinge loss function, specifically modifies the slopes for different grade pairs and
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Figure 4.9: Modified Hinge Loss Functions

different queries. It assigns higher weights to document pairs belonging to important grade pairs
and normalizes weights of document pairs according to queries.

4.4.2 LEARNING ALGORITHM
The learning of IR SVM is equivalent to the following optimization problem. Specifically, mini-
mization of the modified regularized hinge loss function,

min
w

N∑

i=1

τk(i)µq(i)[1− yi〈w, x
(1)
i − x

(2)
i 〉]+ + λ||w||2,

where [x]+ denotes function max(x, 0),λ = 1
2C , and τk(i) and µq(i) are weights.See the loss function

of Ranking SVM (4.2).
Here τk(i) represents the weight of instance i whose label pair belongs to the k-th grade pair.

Xu et al. propose a heuristic method to determine the value of τk .The method takes, average decrease
in NDCG@1 when randomly changing the positions of documents belonging to the grade pair, as
the value of τk . Moreover, µq(i) represents the normalization weight of instance i from query q. The
value of µq(i) is simply calculated as 1

nq
, where nq is the number of document pairs for query q.

The equivalent constrained optimization (Quadratic Programming) problem is as below.

minw,ξ
1
2 ||w||2 + Ci

∑N
i=1 ξi

s. t. yi〈w, x
(1)
i − x

(2)
i 〉 ≥ 1− ξi ,

Ci = τk(i)µq(i)

2λ
ξi ≥ 0,

i = 1, . . . , N.
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The primal problem can be solved by solving the dual problem.

maxα − 1
2
∑N

i=1
∑N

j=1 αiαj yiyj 〈x(1)
i − x

(2)
i , x

(1)
j − x

(2)
j 〉+ ∑N

i=1 αi

s. t.
∑N

i=1 αiyi = 0
0 ≤ αi ≤ Ci,

Ci = τk(i)µq(i)

2λ
i = 1, · · · , N.

(4.5)

The optimal solution is in the following form.

f (x) =
N∑

i=1

α∗i yi〈(x(1)
i − x

(2)
i ), x〉. (4.6)

The learning algorithm of IR SVM is summarized in Figure 4.10.

Parameter: Ci estimated based on τ and µ

Input: training data {((x(1)
i , x

(2)
i ), yi)}Ni=1

Solve the dual problem in (4.5) to obtain α∗i , (i = 1, · · · , N)

Output: the ranking model in (4.6)

Figure 4.10: Learning Algorithm of IR SVM

4.5 GBRANK
GBRank proposed by Zheng et al. [114, 115] is also a pairwise method, which is based on Boosting
Decision Tree.

4.5.1 LOSS FUNCTION
GBRank takes preference pairs as training data

{(x(1)
i , x

(2)
i ), x

(1)
i % x

(2)
i }Ni=1.

In GBRank, the following pairwise loss function is utilized.

L(f ) = 1
2

N∑

i=1

(max{0, τ − (f (x
(1)
i )− f (x

(2)
i )})2,

where f (x) is the ranking function and τ (0 < τ ≤ 1) is parameter. Note that it is assumed that
x

(1)
i % x

(2)
i holds. The intuitive explanation to the loss function is that if f (x

(1)
i ) is larger than

f (x
(2)
i ) with τ , then the loss is zero; otherwise, the loss is 1

2 (f (x
(2)
i )− f (x

(1)
i ) + τ )2 (cf., the loss

function in Ranking SVM (4.2)).
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We can employ Functional Gradient Decent to optimize the loss function with respect to the
training instances. First, we view

f (x
(1)
i ), f (x

(2)
i ), i = 1, · · · , N.

as variables and compute the gradient of L(h) with respect to the training instances

−max{0, f (x
(2)
i )− f (x

(1)
i ) + τ }, max{0, f (x

(2)
i )− f (x

(1)
i ) + τ }, i = 1, · · · , N

If f (x
(1)
i )− f (x

(2)
i ) ≥ τ , then the corresponding loss is zero, and there is no need to change

the ranking function. If f (x
(1)
i )− f (x

(2)
i ) < τ , the corresponding loss is non-zero, and we change

the ranking function using Gradient Descent

fk(x) = fk−1(x)− η!L(fk(x)),

where ! stands for gradient and η is learning rate. More specifically,

fk(x
(1)
i ) = fk−1(x

(1)
i ) + η(fk−1(x

(2)
i )− fk−1(x

(1)
i ) + τ )

fk(x
(2)
i ) = fk−1(x

(2)
i )− η(fk−1(x

(2)
i )− fk−1(x

(1)
i ) + τ ),

where fk(x) and fk−1(x), respectively,denote the values of f (x) in the k-th and (k − 1)-th iterations,
and η is learning rate. If η equals one, then we only need to update the function in the following
way (in the k-th iteration).

fk(x
(1)
i ) = fk−1(x

(2)
i ) + τ

fk(x
(2)
i ) = fk−1(x

(1)
i )− τ.

4.5.2 LEARNING ALGORITHM
GBRank collects all the pairs with non-zero losses (in the k-th iteration)

{(x(1)
i , fk−1(x

(2)
i ) + τ ), (x

(2)
i , fk−1(x

(1)
i )− τ )}

views it as regression data and employs Gradient Boosting Tree [38] to learn a model gk(x) that can
make prediction on the regression data.The learned model gk(x) is then linearly combined with the
existing model f(k−1)(x) to create a new model fk(x) (in the k-th iteration)

fk(x) = kfk−1(x) + βgk(x)

k + 1
,

where β is shrinkage factor.
Figure 4.11 shows the GBRank algorithm.
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Parameter: β (shrinkage factor), τ (threshold), and K (number of iterations)
Input: S = {((x(1)

i , x
(2)
i ), x

(1)
i % x

(2)
i )}Ni=1

Initialize ranking function f0(x)

For k = 1, · · · , K

• Use the previous function fk−1(x)

• Separate S into two subsets

S+ = {(x(1)
i , x

(2)
i )|fk−1(x

(1)
i )− fk−1(x

(2)
i ) ≥ τ }

S− = {(x(1)
i , x

(2)
i )|fk−1(x

(1)
i )− fk−1(x

(2)
i ) < τ }

• Create regression data

{(x(1)
i , fk−1(x

(2)
i ) + τ ), (x

(2)
i , fk−1(x

(1)
i )− τ )|(x(1)

i , x
(2)
i ) ∈ S−}

• Employing Gradient Boosting Tree to learn regression model gk(x) using the re-
gression data

• Construct the current function

fk(x) = kfk−1(x) + βgk(x)

k + 1

Output: the ranking function fK(x)

Figure 4.11: Learning Algorithm of GB Rank

4.6 RANKNET
RankNet developed by Burges et al. [11] is also a pairwise method.

4.6.1 LOSS FUNCTION
RankNet adopts Cross Entropy as loss function in learning.

First, it is assumed that in the training data a probability is associated with each pair of objects.
For object pair (document pair) x

(1)
i and x

(2)
i , probability P̄i is given, which represents the probability

that x
(1)
i is ahead of x

(2)
i (e.g., x

(1)
i has a higher grade than x

(2)
i ). For example, P̄i = 1 means that

x
(1)
i should definitely be ahead of x

(2)
i . P̄i = 0.5 means that it is not certain which is ahead of which

(e.g., they belong to the same grade).
Second, it is assumed that a probability is calculated for each pair of objects using the ranking

function. For object pair (document pair) x
(1)
i and x

(2)
i , probability Pi is calculated. Suppose that
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ranking function f : $d → $ assigns scores to objects. Let s
(1)
i = f (x

(1)
i ), s

(2)
i = f (x

(2)
i ), si =

s
(1)
i − s

(2)
i . Then we define

Pi ≡
exp(si)

1 + exp(si)
. (4.7)

If f (x
(1)
i ) > f (x

(2)
i ), then x

(1)
i is ranked ahead of x

(2)
i with probability Pi .

Cross Entropy, which measures ‘distance’ between two probability distributions is defined as

Li = −P̄i log Pi − (1− P̄i) log(1− Pi). (4.8)

We make use of Cross Entropy as loss function for prediction on the order of a pair of objects.
Plugging (4.7) into (4.8) yields

Li = −P̄isi + log(1 + exp(si)).

When P̄i = 1, Cross Entropy loss becomes logistic loss

Li = log(1 + exp(−si)).

4.6.2 MODEL
RankNet employs Neural Network as model (Figure 4.12). That is why the method is called
RankNet. The Neural Network is supposed to be a three layer network with a single output node,
represented as

s = f (x; θ) = f




∑

j

wj · fj

(
∑

k

wjkx(k) + bj

)

+ b



 , (4.9)

where x(k) denotes the k-th element of input x, wjk , and bjk , and fj denote the weight, offset,
and activation function of the first layer, respectively, wj , b, and f denote the weight, offset, and
activation function of the second layer, respectively, and s denotes the final output. θ denotes the
parameter vector. The activation functions are sigmoid functions (non-linear functions).

4.6.3 LEARNING ALGORITHM
RankNet employs the Back Propagation algorithm (equivalently Stochastic Gradient Descent) to
learn the parameters of network. Given training data {(x(1)

i , x
(2)
i ), Pi}, i = 1, · · · , N .The algorithm

iteratively updates parameter θ with each training instance (preference pair) using

θ − η
∂L

∂θ
, (4.10)

where η is learning rate. For simplicity, we omit the superscript representing the index of iteration.
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input

output

hidden

Figure 4.12: RankNet Model

The loss on a preference pair is calculated as L = L(s(1) − s(2)). The gradient ∂L
∂θ of loss L

with respect to parameter θ is calculated as

∂L

∂θ
= L′

(
∂s(1)

∂θ
− ∂s(2)

∂θ

)

,

where L′ = dL(s)
ds

More precisely, the gradients with respect to specific parameters are calculated as follows.

∂L

∂b
= L′f ′(1) − L′f ′(2) ≡ 0(1) −0(2) (4.11)

∂L

∂wj
= 0(1)f

(1)
j −0(2)f

(2)
j (4.12)

∂L

∂bj
= 0(1)wjf

′(1)
j −0(2)wjf

′(2)
j ≡ 0

(1)
j −0

(2)
j (4.13)

∂L

∂wjk
= 0

(1)
j x

(1)
(k) −0

(2)
j x

(2)
(k) . (4.14)

Learning is actually performed by forward and backward propagation on the Neural Network.
Foreword propagation (fprop) corresponds to re-calculation of the final score based on the new
parameters, and backward propagation (backprop) corresponds to re-calculation of the parameters.

RankNet uses a validation data set to make selection of parameters, i.e., it employs Cross
Validation in parameter selection. In this way, any IR measure can be utilized as evaluation measure.
Burges et al. take the uses of Neural Network, Cross Entropy loss, back-propagation, and Cross
Validation as the major characteristics of the RankNet method.
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Parameter: η (learning rate) and T (number of iterations)
Input: training data {((x(1)

i , x
(2)
i ), Pi)}Ni=1

For t = 1, · · · , T

• For i = 1, · · · , N

– Take the instance and preference probability in training data (x
(1)
i , x

(2)
i ), Pi

– Fprop: use the current network to calculate scores s
(1)
i = f (x

(1)
i ) and s

(2)
i =

f (x
(2)
i )

– Calculate loss with Pi , s
(1)
i and s

(2)
i using (4.8)

– Bprop: update the parameters of network using (4.10)-(4.14)

• End For

End For
Output: the ranking model in (4.9)

Figure 4.13: Learning Algorithm of RankNet

4.6.4 SPEED UP OF TRAINING
Burges et al. have also proposed an efficient algorithm for speeding up the training process of
RankNet [12].

Two ingredients are used to make the speed up. First, instead of conducting Stochastic Gra-
dient Descent, the algorithm performs Batch Gradient Descent. Second, it stores and re-uses some
of the intermediate results, assuming that the algorithm is applied to search in which the query-
document structure can be leveraged.

Suppose that P is the set of document pairs (i, j) appearing in the training data. Further
suppose that D is the whole set of documents, Pi_ is the set of documents j for which {i, j} is a pair
in P , and P_j is the set of documents i for which {i, j} is a pair in P . Let m denote the number of
queries and n denote the number of documents per query.

The algorithm calculates the gradient of loss function with respect to the parameter over all
the training data.2

∂L

∂θ
=

∑

(i,j)∈P

∂L(si, sj )

∂si

∂si

∂θ
+ ∂L(si, sj )

∂sj

∂sj

∂θ
,

where L(·) denotes the loss function and θ denotes the parameters of model, and si and sj are the
scores of i and j .

2For ease of explanation, we change the notation L(s1, s2) = L(s1 − s2).
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The algorithm further rewrites the gradient as

∂L

∂θ
=
∑

i∈D

∂si

∂θ

∑

j∈Pi_

∂L(si, sj )

∂si
+
∑

j∈D

∂sj

∂θ

∑

i∈P_j

∂L(si, sj )

∂sj
. (4.15)

In each iteration of a query, n fprops are performed to compute the final score si . Next, for each
document,

∑
j∈Pi_

∂L(si ,sj )

∂si
and

∑
i∈P_j

∂L(si ,sj )

∂sj
are computed and stored. After that, n fprops and

n backprops are conducted to compute the gradients ∂si
∂θ and ∂sj

∂θ .
In this way, the efficiency of calculation with regard to ∂L(si ,sj )

∂si
and ∂L(si ,sj )

∂sj
is enhanced from

the order of O(n2) to the order of O(n), where n is the number of documents per query.

4.7 LAMBDARANK
4.7.1 LOSS FUNCTION
The ranking evaluation result (the objective function in learning) is usually not continuous and
differentiable, and it depends on sorting. (The sorting function itself is not continuous and differ-
entiable as well). LambdaRank, proposed by Burges et al. [12, 32], considers employing Gradient
Descent to optimize the evaluation result and tries to directly define and utilize the gradient function
of the evaluation result.

Suppose that the ranking model,query,and documents are given.Then each document receives
a score from the ranking model, and a ranking list can be created by sorting the documents based on
the scores. Since the documents are assigned ground truth labels, a ranking evaluation result based
on an IR measure can be obtained. Suppose that we use a surrogate loss function L to approximate
the IR evaluation measure. Then, an evaluation result based on the surrogate loss function L can
also be obtained. It is this evaluation result which LambdaRank attempts to continuously optimize.

The surrogate loss function is defined on a list of documents. In that sense, LambdaRank can
also be viewed as the listwise approach. LambdaRank does not explicitly give the definition of the
loss function. Instead it defines the gradient function of the surrogate loss function. More specifically,
the gradient function is defined as

∂L

∂sj
= −λj (s1, y1, · · · , sn, yn),

where s1, s2, · · · , sn denote the scores of documents and y1, y2, · · · , yn denote the labels of doc-
uments. Note that the index j is on a single document. That is to say, the gradient of a document
depends on the scores and labels of the other documents. The sign is chosen such that a positive
value for a document means that the document must reduce the loss.The gradients of documents are
calculated after the current model generates a ranking list of documents for the query. The gradient
function is called Lambda Function, and that is why the method is called LambdaRank.

The question is then how to specify the Lambda Function, so as to effectively optimize the
ranking evaluation result. One idea is to increase the gradients of documents on top positions.
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Suppose that there are two relevant documents d1 and d2. One is at position 2 and the other n− 2.
The change of d1’s score to move it up to the top position should be less than the change of d2’s
score to move it up to the top position. Therefore, we would prefer spending a little capacity moving
d1 up to spending a large capacity moving d2 up. That is, the gradient (lambda score) of d1 should
be much larger than the gradient (lambda score) of d2. In general, for any two documents ranked at
two positions j1 and j2. Suppose that j1 3 j2, (that is, the former document is ranked much higher
than the latter document), we would have the gradients satisfy

| ∂L
∂sj1

|4| ∂L

∂sj2

|.

4.7.2 LEARNING ALGORITHM
When implementing LambdaRank, one only needs to consider a method for calculating the Lambda
Function (the gradient of loss function). One common way is to calculate it based on NDCG

λj = ∂L

∂sj
= G−1

max

∑

i

(
1

1 + exp(si − sj )

)
(gi − gj )(Di −Dj), (4.16)

where gi , Di , and si , respectively, denote the gain, discount, and score of document di . G−1
max denotes

the normalizing factor of NDCG. The Lambda Function is in fact a pairwise loss function. That is
to say, the conventional implementation of ‘LambdaRank’ is a pairwise method.

LambdaRank employs Neural Network as ranking model. In fact, it can be viewed as an
extension of RankNet. The learning algorithm is similar to that of RankNet (the fast version),
except that a different loss function is employed. Figure 4.14 summarizes the algorithm.

Parameter: η (learning rate ) and T (number of iterations)
Input: S = {((x(1)

i , y
(2)
i ), Pi)}Ni=1

Initialize parameter θ
For t = 1, · · · , T

• Compute gradient !L(θ) = ∂L(θ)/∂θ using (4.15)(4.16)

• Update θ = θ − η!L(θ)

End For
Output: the ranking model f (x; θ)

Figure 4.14: Learning Algorithm of LambdaRank
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4.8 LISTNET AND LISTMLE
ListNet and ListMLE are probabilistic and listwise methods for learning to rank, proposed by Cao
et al. [14] and Xia et al. [104]. The methods exploit the Plackett-Luce model studied in statistics.
See also [44].

4.8.1 PLACKETT-LUCE MODEL
Let us first look at the Plackett-Luce model (the PL model for short). PL model defines a probability
distribution on permutations of objects, referred to as permutation probability. Suppose that there
is a set of objects o = {o1, o2, · · · , on}. Let π denote a permutation (ranking list) of the objects and
π−1(i) denote the object in the i-th rank (position) inπ . Further suppose that there are non-negative
scores assigned to the objects. Let s = {s1, s2, · · · , sn} denote the scores of the objects.

The PL model defines the probability of permutation π based on scores s as follows.

Ps(π) =
n∏

i=1

sπ−1(i)∑n
j=i sπ−1(j)

.

The probabilities of permutations naturally form a probability distribution.
For example, suppose that there are three objects A, B, C and sA, sB , sC are scores of the

objects (sA > sB > sC). The probability of permutation ABC is

Ps(ABC) = sA

sA + sB + sC

sB

sB + sC

sC

sC
.

The probability of permutation BCA is

Ps(BCA) = sB

sA + sB + sC

sC

sA + sC

sA

sA
.

It is easy to verify that

Ps(ABC) + Ps(ACB) + Ps(BAC) + Ps(BCA) + Ps(CAB) + Ps(CBA) = 1.

The permutation probability has the following interpretation, as explained below with the
above example.Given three objects A,B, and C and their scores,we randomly generate a permutation
on them. If we first select A from A, B, C based on A’s relative score, then select B from B and
C based on B ’s relative score, and finally select C, then we generate the permutation ABC with
probability Ps(ABC). Permutation probability Ps(ABC) represents the likelihood of permutation
ABC being generated in the process.

The PL model has some nice properties. First, the permutation in descending order of scores
has the largest probability and the permutation in ascending order of scores has the smallest prob-
ability. In the above example, Ps(ABC) is the largest and Ps(CBA) is the smallest among the
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permutation probabilities. Furthermore, given the permutation in descending order of scores, swap-
ping any two objects in the permutation will decrease the probability. In the above example, swapping
B and C in ABC yields ACB and we have Ps(ABC) > Ps(ACB).

The PL model also defines a probability distribution on top k subgroups, referred to as top k

probability. Given objects and permutations of objects, we can define top k subgroups on the objects.
Top k subgroup g[o1 · · · ok] represents all permutations whose top k objects are o1 · · · ok . The top k

probability of subgroup g[o1 · · · ok] is defined as

Ps(g[o1 · · · ok]) =
k∏

i=1

soi∑n
j=i soj

.

In the above example, we have
Ps(g[A]) = sA

sA + sB + sC
.

Ps(g[AB]) = sA

sA + sB + sC

sB

sB + sC
.

It is easy to verify the following relation between top k probability and permutation probability
holds, which is another property of the PL model.

Ps(g[o1 · · · ok]) =
∑

π∈g[o1···ok]
Ps(π)

For example,
Ps(g[A]) = Ps(ABC) + Ps(ACB).

4.8.2 LISTNET
ListNet makes use of a parameterized Plackett-Luce model. The model can be based on either
permutation probability or top k probability, but due to efficiency consideration, it is usually based
on top k probability.Time complexity of computation of permutation probabilities is of order O(n!)
while that of top k probabilities is of order O(n!/(n− k)!).

In document retrieval, suppose that for query q and its associated documents d1, d2, · · · , dn,
the corresponding relevance labels y1, y2, · · · , yn are given. From query q and documents
d1, d2, · · · , dn, feature vectors x1, x2, · · · , xn are created.

Given feature vectors x1, x2, · · · , xn, the top k probability of subgroup g[x1 · · · xk] may be
calculated as

PF(x;θ)(g[x1 · · · xk]) =
k∏

i=1

exp(f (xi; θ))∑ni
j=i exp(f (xj ; θ))

, (4.17)

where f (x; θ) is a Neural Network model with parameter θ and F(x; θ) is a list of scores given by
the Neural Network. That is to say, the score of xi is determined by an exponential function of the
Neural Network, which works as ranking model.
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The corresponding labels y1, y2, · · · , yn can be transformed to scores as well. Specifically, the
score of xi by yi can be determined by an exponential function of yi . Then the top k probability by
the labels may be calculated similarly.

Py(g[x1 · · · xk]) =
k∏

i=1

exp(yi)∑ni
j=i exp(yj )

. (4.18)

If two scoring functions have a similar effect in ranking, then the permutation distributions (or
top k probability distributions) by them should be similar in shape.Figure 4.15 gives two permutation
distributions based on two scoring functions f and g. One can measure the difference between the
two scoring functions by using KL Divergence. This is exactly the idea in ListNet.

ƒ: ƒ(A) = 3, ƒ(B)=0, ƒ(C)=1;

g: g(A) = 6, g(B)=4, g(C)=3;

Ranking by ƒ:ACB

Ranking by g:ABC

h: h(A) = 4, h(B)=6, h(C)=3;
Ranking by h:ACB
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Figure 4.15: Examples of Permutation Probability Distributions by PL Model

ListNet measures the difference between the top k probability by the Neural Network model
and the top k probability by the ground truth using KL Divergence. KL Divergence between
two probability distributions is defined as D(P ||Q) = ∑

i pi log pi
qi

where P and Q are the two
probability distributions. Here, only

∑
i −pi log qi is used, since

∑
i pi log pi is constant. (Note

that KL Divergence is asymmetric).
Suppose that the training data is given as S = {(xi , yi )}mi=1. Each instance (xi , yi ) is given as

((xi,1, xi,2, · · · , xi,ni ), (yi,1, yi,2, · · · , yi,ni )). A global ranking function is defined based on a local
ranking function: F(xi ) = (f (xi1), f (xi2), · · · , f (xini )).
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ListNet takes the KL Divergence over all the training instances as total loss and learns the
ranking model by minimizing the total loss. The total loss function is defined as

L(θ) =
m∑

i=1

L(yi , F (xi; θ)).

Here the loss function for each instance is defined as

L(yi , F (xi; θ)) = −
∑

g∈Gk
i

Pyi (g) log PF(xi ;θ)(g)

= −
∑

g∈Gk
i

k∏

j=1

exp(yi,j )∑ni
l=j exp(yi,l)

log
k∏

j=1

exp(f (xi,j ; θ))∑ni
l=j exp(f (xi,l; θ))

,

where Pyi (g) denotes the top k probability of subgroup g by the ground truth yi , PF(xi ;θ)(g) denotes
the top k probability of subgroup g by Neural Network F(xi; θ), and Gk

i denotes all top k subgroups.
ListNet employs Gradient Decent to perform the optimization. Figure 4.16 gives the learning

algorithm.

∂L(θ)

∂θ
=

m∑

i=1

∂L(yi , F (xi; θ))
∂θ

(4.19)

∂L(yi , F (xi; θ))
∂θ

= −
∑

g∈Gk

Pyi (g)

PF(xi ;θ)(g)

∂PF(xi ;θ)(g)

∂θ
. (4.20)

When k = 1, we have

∂L(yi , F (xi; θ))
∂θ

= −
ni∑

j=1

Pyi (xi,j )
∂f (xi,j ; θ)

∂θ

+
ni∑

j=1

Pyi (xi,j )

ni∑

l=1

Pf (xi,l )(xi,l)
∂f (xi,l; θ)

∂θ
. (4.21)

4.8.3 LISTMLE
Another algorithm is ListMLE, which employs the parameterized Plackett-Luce model (4.17)-
(4.18) and Maximum Likelihood Estimation. Specifically, it maximizes the following total loss
function based on logarithmic loss

L(yi , F (xi; θ)) = −
m∑

i=1

log
k∏

j=1

exp(f (x
i,π−1

i (j)
; θ))

∑ni
l=j exp(f (x

i,π−1
i (l)

; θ)) ,

where πi is a perfect ranking by yi . The learning algorithm of ListMLE is the similar to that of
ListNet. Note that when k = 1, ListMLE degenerates to Logistic Regression.
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Parameter: k (top positions), η (learning rate), and T (number of iterations )
Input: S = {(xi , yi )}mi=1
Initialize parameter θ
For t = 1, · · · , T

• For i = 1, · · · , m

– Take input (xi , yi )

– Compute gradient !L(θ) = ∂L(θ)/∂θ using (4.19)-(4.21)

– Update θ = θ − η!L(θ)

• End For

End For
Output: the Neural Net model f (x; θ)

Figure 4.16: Learning Algorithm of ListNet

4.9 ADARANK

Since the evaluation measures in IR are based on lists, it is more natural and effective to directly
optimize listwise loss functions in learning to rank. AdaRank, proposed by Xu & Li [108], is one of
the direction optimization algorithms.

4.9.1 LOSS FUNCTION
Suppose that the training data is given as lists of feature vectors and their corresponding lists of
labels (grades) S = {(xi , yi )}mi=1. We are to learn a ranking model f (x) defined on object (feature
vector) x. Given a new list of objects (feature vectors) x, the learned ranking model can assign a
score to each of the objects x, x ∈ x. We can then sort the objects based on the scores to generate
a ranking list (permutation) π . The evaluation is conducted at the list level, specifically, a listwise
evaluation measure E(π, y) is utilized.

In learning, ideally we would create a ranking model that can maximize the accuracy in terms
of a listwise evaluation measure on training data, or equivalently, minimizes the loss function defined
below,

L(f ) =
m∑

i=1

(E(π∗i , yi )− E(πi , yi )) =
m∑

i=1

(1− E(πi , yi )), (4.22)

where πi is the permutation on feature vector xi by ranking model f and yi is the corresponding list
of grades. We refer to the loss function L(·) as the ‘true loss function’ (or ’empirical risk function’) and
those methods that manage to minimize the true loss function as the ‘direct optimization approach’.
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The loss function is not smooth and differentiable, and thus straightforward optimization
of the evaluation might not work. Instead, we can consider optimizing an upper bound of the loss
function.

Since inequality
exp(−x) ≥ 1− x

holds, we can consider optimizing the following upper bound
m∑

i=1

exp(−E(πi , yi )).

Other upper bounds can also be considered, for example,
m∑

i=1

log
(
1 + exp(−E(πi , yi ))

)
.

That is to say, the exponential function and logistic function may be exploited as ‘surrogate’
loss functions in learning. Note that both functions are continuous, differentiable, and even convex
with respect to E.

4.9.2 LEARNING ALGORITHM
AdaRank minimizes the exponential loss function, by taking the boosting approach. Mimicking
the famous AdaBoost algorithm [36], AdaRank conducts stepwise minimization of the exponential
loss function. More specifically, AdaRank repeats the process of re-weighting the training instances,
creating a weak ranker, and assigning a weight to the weak ranker, to minimize the loss function.
Finally, AdaRank linearly combines the weak rankers as the ranking model. Figure 4.17 shows the
algorithm of AdaRank.

We can prove that AdaRank can continuously reduce the empirical loss function during the
training process, under certain condition, as shown in [108]. When the evaluation measure is dot
product, AdaRank can reduce the loss to zero.

One advantage of AdaRank is its simplicity, and it is perhaps one of the simplest learning to
rank algorithms.

4.10 SVM MAP
Another approach of direct optimization tries to use the Structural SVM techniques to learn a
ranking model. The algorithm SVM MAP developed by Yue et al. [111] is such an algorithm. Xu
et al. [110] further generalize it to a group of algorithms, including PermuRank. See also [15, 62].

4.10.1 LOSS FUNCTION
In ranking, for query qi the ranking model f (xij ) assigns a score to each feature vector xij where
xij is the feature vector derived from qi and its associated document dij . The feature vectors xi
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Input: S = {(xi , yi )}mi=1
Parameter: T (number of iterations)
Evaluation measure: E
Initialize P1(i) = 1/m

For t = 1, · · · , T

• Create weak ranker ht with weighted distribution Pt on training data S

• Choose αt

αt = 1
2

· ln
∑m

i=1 Pt(i)(1 + E(πi , yi ))∑m
i=1 Pt(i)(1− E(πi , yi ))

• where πi = sortht (xi )

• Create ft

ft (x) =
t∑

k=1

αkhk(x)

• Update Pt+1

Pt+1(i) = exp(−E(πi , yi ))∑m
j=1 exp(−E(πj , yj ))

• where πi = sortft (xi )

End For
Output: the ranking model f (x) = fT (x)

Figure 4.17: Learning Algorithm of AdaRank

(documents di) are then sorted based on their scores, and a ranking denoted as π̃i is obtained. The
labels of feature vectors xi are also given as yi .

For simplicity, suppose that the ranking model f (xij ) is a linear model:

f (xij ) = 〈w, xij 〉, (4.23)

where w denotes the weight vector.
We consider using a scoring function S(xi ,πi ) to measure the goodness of a given permutation

(ranking) πi . S(xi ,πi ) is defined as

S(xi ,πi ) = 〈w, σ (xi ,πi )〉,
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where w is still the weight vector and vector σ (xi ,πi ) is defined as

σ (xi ,πi ) = 2
ni(ni − 1)

∑

k,l:k<l

zkl(xik − xil),

where zkl = +1 if πi (k) < πi (l) (xik is ranked ahead of xil in πi), and −1, otherwise.
We can use the scoring function in learning. For query qi , we calculate S(xi ,πi ) for each

permutation πi and select the permutation π̃i with the largest score:

π̃i = arg max
πi∈#i

S(xi ,πi ), (4.24)

where #i denotes the set of all the possible permutations for xi .
It can be easily shown that, the ranking π̃i selected by Eq.(4.24) is equivalent to the ranking

created by the ranking model f (xij ) (when both of them are linear functions). Figure 4.18 gives an
example. It is easy to verify that both f (x) and S(xi ,π) will output ABC as the most preferable
ranking (permutation).

Objects: A, B, C
fA = 〈w, xA〉, fB = 〈w, xB〉, fC = 〈w, xC〉
Suppose fA > fB > fC

For example:
Permutation1: ABC
Permutation2: ACB
SABC = 1

6 〈w, ((xA − xB) + (xB − xC) + (xA − xC))〉
SACB = 1

6 〈w, ((xA − xC) + (xC − xB) + (xA − xB))〉
SABC > SACB

Figure 4.18: Example of Scoring Function

In this way, we can view the problem of learning a ranking model as the optimization problem
in which the following loss function is minimized.

m∑

i=1

max
π∗i ∈#∗i ;πi∈#i\#∗i

((
E(π∗i , yi )− E(πi , yi )

)
·
[
[S(xi ,π

∗
i ) ≤ S(xi ,πi )

]
]
)
, (4.25)

where [[c]] is one if condition c is satisfied; otherwise, it is zero. π∗i ∈ #∗i ⊆ #i denotes any of the
perfect permutations for qi .

The loss function measures the loss when the most preferred ranking by the ranking model
is not the perfect ranking. One can prove that the true loss function in (4.22) is upper bounded by
the new loss function in (4.25).
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4.10.2 LEARNING ALGORITHMS
The loss function (4.25) is still not continuous and differentiable. We can consider using continuous,
differentiable, and even convex upper bounds of the loss function (4.25).

1) The 0-1 function in (4.25) can be replaced with its upper bounds, for example, hinge,
exponential, and logistic functions, yielding

m∑

i=1

max
π∗i ∈#∗i ,πi∈#i\#∗i

(
E(π∗i , yi )− E(πi , yi )

)
· exp(−

(
S(xi ,π

∗
i )− S(xi ,πi )

)
),

m∑

i=1

max
π∗i ∈#∗i ,πi∈#i\#∗i

(
E(π∗i , yi )− E(πi , yi )

)
· log

(
1 + exp(−

(
S(xi ,π

∗
i )− S(xi ,πi )

)
)
)
,

m∑

i=1

max
π∗i ∈#∗i ,πi∈#i\#∗i

(
E(π∗i , yi )− E(πi , yi )

)
· [1−

(
S(xi ,π

∗
i )− S(xi ,πi )

)
]+,

m∑

i=1

[

max
π∗i ∈#∗i ,πi∈#i\#∗i

((
E(π∗i , yi )− E(πi , yi )

)
−
(
S(xi ,π

∗
i )− S(xi ,πi )

))
]

+
,

where [x]+ denotes function max(0, x).
2) The max function can also be replaced with its upper bound, the sum function. This is

because
∑

i xi ≥ maxi xi if xi ≥ 0 holds for all i.
3) Relaxations 1 and 2 can be applied simultaneously.
For example, utilizing hinge function and taking the true loss as MAP, we obtain SVM MAP.

More precisely, SVM MAP solves the following optimization problem:

minw;ξ≥0
1
2 ||w||2 + C

m

∑m
i=1 ξi

s.t. ∀i,∀π∗i ∈ #∗i ,∀πi ∈ #i \#∗i :
S(xi ,π

∗
i )− S(xi ,πi ) ≥ E(π∗i , yi )− E(πi , yi )− ξi ,

(4.26)

where C is coefficient and ξi is the maximum loss among all the losses for permutations of query qi .
Equivalently, SVM MAP minimizes the following regularized hinge loss function

m∑

i=1

[

max
π∗i ∈#∗i ;πi∈#i\#∗i

(E(π∗i , yi )− E(πi , yi ))− (S(xi ,π
∗
i )− S(xi ,πi ))

]

+
+ λ||w||2. (4.27)

Intuitively, the first term calculates the total maximum loss when selecting the best permutation
for each of the queries. Specifically, if the difference between the scores S(xi ,π

∗
i )− S(xi ,πi ) is

less than the difference between the corresponding evaluation measures E(π∗i , yi )− E(πi , yi ), then
there will be a loss, otherwise not. Next, the maximum loss is selected for each query, and they are
summed up over all the queries. One can also consider an NDCG version of the method, with a
similar formulation.
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Since c · [[x ≤ 0]] < [c − x]+ holds for all c ∈ $+ and x ∈ $, it is easy to see that the upper
bound in (4.27) also bounds the true loss function in (4.22).

Actually, it is possible to derive a number of algorithms for optimizing the upper bounds
(surrogate loss functions). Xu et al. gives an example, which they call PermuRank, and they show
that PermuRank can perform equally well as SVM MAP.

PermuRank minimizes the following regularized hinge loss function.

m∑

i=1

∑

π∗i ∈#∗i ;πi∈#i\#∗i

(
E(π∗i , yi )− E(πi , yi )

)
·
[
1−

(
S(xi ,π

∗
i )− S(xi ,πi )

)]
+ .

The number of possible permutations is of exponential order, and thus it is not feasible
to directly implement SVM MAP and PermuRank. Both SVM MAP and PermuRank utilize a
working set to cope with the difficulty. The set contains arbitrary perfect and imperfect rankings at
the beginning, and the most violated perfect and imperfect rankings are added to the set at each
round of learning.

Figure 4.19 summarizes the learning algorithm of SVM MAP.

Parameter: C
Input: training data {(xi , yi )}mi=1
Solve the optimization problem in (4.26) to obtain the optimal ranking model
Output: the ranking model in (4.23)

Figure 4.19: Learning Algorithm of SVM MAP

4.11 SOFTRANK

SoftRank is a direct optimization method of learning to rank, proposed by Taylor et al. [43, 95].
Because the ranking evaluation results in IR are usually not smooth and not differentiable, SoftRank
tries to optimize a probabilistic approximation of ranking evaluation result. Specifically, it introduces
an approximation of NDCG called Soft NDCG, optimizes the ranking evaluation result in terms of
Soft NDCG, and employs a Neural Network model and Gradient Descent to perform the learning
task.

4.11.1 SOFT NDCG
Let us first look at the definition of Soft NDCG. For ease of explanation, suppose that the number
of documents to rank for each query is the same and equals n.
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We re-write the definition of NDCG and consider NDCG at position n for permutation
(ranking) π as

G = G−1
max

n∑

j=1

G(j)D(rj ),

where G(j) denotes the gain of document j , rj denotes the rank (position) of document j , and
D(rj ) denotes the position discount of document j .

Suppose that each document j has a score sj (j = 1, · · · , n). Then, sorting the documents
according to their scores will yield a ranking of documents. An NDCG value can be calculated for the
ranking using the definition above. The ranking evaluation result in terms of NDCG is determined
by the scores as well as the sorting, which makes it non-smooth and non-differentiable.

In calculation of Soft NDCG, we assume that the ranking of documents is decided based
on the scores of documents probabilistically rather than deterministically. We can calculate the
probability of each document’s being ranked at a position and the expectation of position discount
of each document. In this way, the evaluation result based on NDCG can be approximated by that
based on Soft NDCG and the use of sorting can be avoided.

Specifically, Soft NDCG is defined as

G = G−1
max

n∑

j=1

G(j)E(D(rj )) (4.28)

= G−1
max

n∑

j=1

G(j)

n∑

r=1

D(r)Pj (r), (4.29)

where E(D(rj )) denotes the expectation of position discount of document j , and Pj (r) denotes
the probability of document j ’s being ranked at rank r . The question then is how to calculate the
probability distribution Pj (r) and then the expectation of position discount E(D(rj )).
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Figure 4.20: Deterministic Score v.s. Probabilistic Score
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4.11.2 APPROXIMATION OF RANK DISTRIBUTION
There might be different ways to estimate the probability of a document’s being ranked at a position.

Given a document, SoftRank calculates the probability of its being ranked at each position
by recursively calculating the probabilities that the document is ranked ahead of or behind of the
other n− 1 documents in n− 1 Bernoulli trials (with different success probabilities).

SoftRank assumes that the score of document xi given by model f (xi; θ) follows the Gaussian
distribution N((f (xi; θ), σ 2) with a known variance σ 2 (cf., Figure 4.20).

P(s ≤ si) =
∫ si

−∞
N(s|(f (xi; θ), σ 2)ds.

Therefore, for any two documents xi and xj , the difference between their scores follows the
Gaussian distribution N((f (xi; θ)− f (xj ; θ), 2σ 2). The probability that xi is ranked ahead of xj

is thus
πij = P(si − sj ≥ 0) =

∫ ∞

0
N(s|(f (xi; θ)− f (xj ; θ)), 2σ 2)ds.

SoftRank calculates the probability distributionPj (r) of document j over ranks r in a recursive
manner. Suppose that it is to position document j among the n documents. First, there is only one
rank, namely 1, available and document j is ranked at rank 1. The initial rank distribution P

(1)
j (1)

for document j is defined as
P

(1)
j (1) = 1.

Next, the remaining n− 1 documents are assumed to be added one by one into the rank distribution.
When there are i − 1 documents in the rank distribution and document i is added, there are two
possible results.The score of document i is larger than the score of document j , and thus document i

is ranked ahead of document j . Or, the score of document i is smaller than the score of document j ,
and thus document i is ranked behind of document j . In the former case, the probability of document
j being at rank r equals the probability of document j at rank r − 1 in the previous iteration. In
the latter case, the probability of document j being at rank r is the same as in the previous iteration.
The two cases can be linearly combined and the rank distribution P

(i)
j (r) for document j in the

i-th iteration can be defined as

P
(i)
j (r) = πijP

(i−1)
j (r − 1) + (1− πij )P

(i−1)
j (r).

During the calculation, it is assumed

P
(i)
j (r) = 0, if r ≤ 0.

Finally, the probability of document j ranked at rank r is defined as

Pj (r) = P
(n)
j (r).

In this way, each document has a distribution of ranks, as shown in Figure 4.21. Note that
the distribution is an approximation of the true rank distribution.
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Figure 4.21: Deterministic Rank Distribution v.s. Probabilistic Rank Distribution

4.11.3 LEARNING ALGORITHM
SoftRank uses Neural Network as model and Gradient Descent as optimization technique. Suppose
that there are k parameters in the model. In learning, SoftRank calculates the gradient of Soft
NDCG of n documents with respect to the parameters

∂G
∂θ

=





∂s1
∂θ1

· · · ∂sn
∂θ1

· · · · · · · · ·
∂s1
∂θk

· · · ∂sn
∂θk









∂G
∂s1

· · ·
∂G
∂sn



 . (4.30)

The gradient of Soft NDCG with respect to the score of document j is calculated as (l =
1, · · · , n).

∂G
∂sl

= G−1
max

n∑

j=1

G(j)

n∑

r=1

D(r)
∂Pj (r)

∂sl
. (4.31)

Since Pj (r) is a recursively defined function, its derivative also needs to be calculated recur-
sively. Denoting ψj,l(r) = ∂Pj (r)

∂sl
, we recursively calculate the derivative as follows:

ψ
(1)
j,l (1) = 0 (4.32)

ψ
(i)
j,l (r) = ψ

(i−1)
j,l (r − 1)πij + ψ

(i)
j,l (r)(1− πij ) +

(
P

(i−1)
j (r − 1)− P

(i−1)
j (r)

) ∂πij

∂sl
. (4.33)

Furthermore, ∂πij

∂sl
can be calculated in three cases (note that i 0= j ).

∂πij

∂sl
=






N(0|sl − sj , 2σ 2) l = i, l 0= j

−N(0|si − sl, 2σ 2) l 0= i, l = j

0 l 0= i, l 0= j.

(4.34)
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Parameter: η (learning rate ) and T ( number of iterations )
Input: S = {(xi , yi )}mi=1
Initialize parameter θ
For t = 1, · · · , T

• For i = 1, · · · , m

– Take input (xi , yi )

– Compute gradient !G(θ) = ∂G(θ)/∂θ using (4.30)-(4.34)

– Update θ = θ − η!G(θ)

• End For

End For
Output Neural Net model f (x; θ)

Figure 4.22: Learning Algorithm of SoftRank

4.12 BORDA COUNT
Borda Count is an unsupervised method for ranking aggregation. Aslam & Montague [8] propose
employing Borda Count in meta search. In such case, Borda Count ranks documents in the final
ranking based on their positions in the basic rankings. More specifically, in the final ranking, doc-
uments are sorted according to the numbers of documents that are ranked below them in the basic
rankings. If a document is ranked high in many basic rankings, then it will be ranked high in the
final ranking list.

The ranking scores of documents in the final ranking SD are calculated as

SD = F(") =
k∑

i=1

Si

Si ≡





si,1
...

si,j
...

si,n





si,j = n− σi (j),

where si,j denotes the number of documents ranked behind document j in basic ranking σi , σi (j)

denotes the rank of document j in basic ranking σi , and n denotes the number of documents.
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For example, documents A, B, C are ranked in three basic rankings: σ1, σ2, and σ3.

σ1


A

B

C





σ2


A

C

B





σ3


B

A

C





The ranking scores of documents SD are as follows.

SD =




2
1
0



 +




2
0
1



 +




1
2
0



 =




5
3
1





The final ranking list π is created by Borda Count based on the scores SD .

π


A

B

C





Borda Count can be viewed as a method of assigning a vector of k values (i.e., n− σi (j)) to
each document and sorting the documents by L1 norms of the vectors. One can easily come up with
other alternatives, for example, sorting by medians of the vectors or Lp norms of the vectors. This
leads to several different methods.

4.13 MARKOV CHAIN
The Markov Chain method for ranking aggregation, referred to as Markov Chain, assumes that
there exists a Markov Chain on the documents to be ranked, and the preference relations between
documents in the basic rankings represent the transitions between the documents in the Markov
Chain. The stationary distribution of the Markov Chain is then utilized to rank the documents.
Dwork et al. [34] have proposed four methods (denoted as MC1, MC2, MC3, and MC4) to
construct the transition probability matrix of the Markov Chain.

MC1 is defined as follows. If the current state is document i, then the next state is chosen
uniformly from the set of documents that are ranked higher than or equal to i in the basic rankings,
that is, from the multiset ∪k{j |j 7k i}, where j 7k i means that j is ranked higher than or equal
to i in ranking k. The transition probability matrix is defined as follows.

P ≡ (p(i, j))n×n = diag

(
1∑n

j=1 q(1, j)
, · · · ,

1∑n
j=1 q(n, j)

)

Q

Q ≡ (q(i, j))n×n =
∑

k

Qk
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Qk = (qk(i, j))n×n

qk(i, j) =
{

1 j 7k i

0 otherwise.

MC2 is defined as follows. If the current state is document i, then the next state is determined
by first selecting a basic ranking σk uniformly from all rankings and then selecting document j

uniformly from the set of documents that are ranked higher than or equal to i: {j |j 7k i}.

P ≡ (p(i, j))n×n = 1
k

∑

k

Pk

Pk ≡ (pk(i, j))n×n

pk(i, j) =
{ 1

m j 7k i

0 otherwise,

where m = |{j |j 7k i}|.
In MC3, if the current state is document i, then the next state is determined as follows. First,

we choose ranking σk uniformly from the basic rankings, next for document j , if j %k i, then we
go to j ; otherwise, we stay at i.

P ≡ (p(i, j))n×n = 1
k

∑

k

Pk

Pk ≡ (pk(i, j))n×n

pk(i, j) =






1
n j %k i
n−m

n j =k i

0 otherwise,

where m = |{j |j %k i}|.
In MC4, if the current state is document i, then the next state is decided as follows. Document

j is selected uniformly from the union of all documents. If j %k i holds for the majority of the basic
rankings, then we go to j ; otherwise, we stay at i.

P ≡ (p(i, j))n×n

p(i, j) =






1
n q(i, j) > q(j, i)
n−m

n j = i

0 otherwise,
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where m = |{j |q(i, j) > q(j, i)}|

Q = (q(i, j))n×n =
∑

k

Qk

Qk ≡ (qk(i, j))n×n

qk(i, j) =
{

1 j %k i

0 otherwise.

4.14 CRANKING
The unsupervised methods described above conduct majority voting in their final ranking decisions.
In fact, the methods treat all the basic ranking lists equally and give high scores to those documents
ranked high in most of basic ranking lists.The uniform weight assumption may not hold in practice,
however. For example, in meta search, ranking lists generated by different search engines may have
different accuracies and reliabilities. One may want to learn the weights of basic ranking lists.
Supervised learning methods like Cranking proposed by Lebanon & Lafferty [63] can address the
problem.

4.14.1 MODEL
Cranking employs the following probability model

P(π |θ,") = 1
Z(θ,")

exp(

k∑

j=1

θj · d(π, σj )), (4.35)

where π denotes the final ranking, " = (σ1, · · · , σk) denotes the basic rankings, d denotes the
distance between two rankings, and θ denotes weight parameters. Distance d can be, for example,
Kendal’s Tau. Furthermore, Z is the normalizing factor over all the possible rankings, as defined
below.

Z(θ,") =
∑

π

exp(

k∑

j=1

θj · d(π, σj )).

The model in Cranking is an extension of the Mallows model in statistics, in which there is
only a single ’basic ranking’.

P(π |θ, σ ) = 1
Z(θ,")

exp(θ · d(π, σ ))

Z(θ, σ ) =
∑

π

exp(θ · d(π, σ )).
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4.14.2 LEARNING ALGORITHM
In learning, the training data is given as S = {("i ,πi )}mi=1, and the goal is to build the model for
ranking aggregation based on the data.We can consider employing Maximum Likelihood Estimation
to learn the parameters of the model. If the final ranking and the basic rankings are all full ranking
lists in the training data, then the log likelihood function is calculated as follows.

L(θ) = log
m∏

i=1

P(πi |θ,"i ) =
m∑

i=1

log
exp(

∑k
j=1 θj · d(πi , σi,j ))

∑
πi∈# exp

∑k
j=1 θj · d(πi , σi,j )

.

We can employ Gradient Descent to estimate the optimal parameters.
In practice, sometimes only partial lists are given in the training data. If the final ranking lists

are given as partial lists, then the likelihood function is calculated as

L(θ) = log
m∏

i=1

P(πi |θ,"i ) = log
m∏

i=1

∑

π
′
i ∈G(πi )

P (π
′
i |θ,"i ) (4.36)

=
m∑

i=1

log

∑
π
′
i ∈G(πi )

exp(
∑k

j=1 θj · d(π
′
i , σi,j ))

∑
π
′
i ∈#

exp
∑k

j=1 θj · d(π
′
i , σi,j )

,

where πi is a partial list, and G(πi ) denotes the group of full lists with πi as the top partial list.
If both the final ranking lists and the basic ranking lists are given as partial lists, then the

likelihood function is calculated as

L(θ) = log
m∏

i=1

P(πi |θ,"i ) = log
m∏

i=1

∑

π
′
i ∈G(πi )

1
∏k

j=1 |G(σi,j )|
∑

σ
′
i,j∈G(σi,j )

P (π
′
i |θ,"′i ) (4.37)

=
m∑

i=1

log
∑

π
′
i ∈G(πi )

1
∏k

j=1 |G(σi,j )|
∑

σ
′
i,j∈G(σi,j )

exp(
∑k

j=1 θj · d(π
′
i , σ

′
i,j ))

∑
π
′
i ∈#

exp(
∑k

j=1 θj · d(π
′
i , σ

′
i,j ))

,

where πi is a partial list and G(πi ) denotes the group of full lists with πi as the top partial list, and
similarly σi,j is a partial list and G(σi,j ) denotes the group of full lists with σi,j as the top partial
list. Furthermore, it is assumed here that the full lists in group G(σi,j ) are uniformly distributed.

The above two likelihood functions (Eq. (4.36)-(4.37)) cannot be directly optimized.Cranking
employs Markov Chain Monte Carlo (MCMC) to perform parameter estimation. Figure 4.23
summarizes the learning algorithm.

4.14.3 PREDICTION
In prediction, given the learned model (i.e., the parameters θ ) and the basic rankings ", Cranking
first calculates the probability distribution of final ranking π : P(π |θ,"). It uses the probability
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Input: training data {("i ,πi )}mi=1
Learn parameter θ using (Eq. (4.36)-(4.37)) and MCMC
Output: ranking model P(π |θ,") (4.35)

Figure 4.23: Learning Algorithm of Cranking

distribution to calculate the expected rank of each document.

E(π(i)|θ,") =
n∑

r=1

r · P(π(i) = r|θ,") =
n∑

r=1

r ·
∑

π∈#,π(i)=r

P (π |θ,").

It then sorts the documents based on their expected ranks.
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C H A P T E R 5

Applications of Learning to
Rank

Learning to rank can be applied to a wide variety of applications in information retrieval and natural
language processing. Typical applications are document retrieval, expert search, definition search,
meta-search, personalized search, online advertisement, collaborative filtering, question answering,
keyphrase extraction, document summarization, and machine translation.

In the applications, the objects (offerings) to be ranked can be documents, document units
such as sentences and paragraphs, entities such as people and products. Ranking can be based on
importance, preference, and quality, and it can be employed as an end-to-end solution or as a part
of a solution.

This chapter introduces some example applications of learning to rank (ranking creation).

WEB SEARCH
Learning to rank has been successfully applied to web search. It is known that the ranking models
at several web search engines are built by learning to rank technologies. Usually, a large number of
signals representing relevance are used as features in the models. Training data is created by a group
of professional judges. Moreover, powerful computing platforms for scalable and efficient training
of ranking models are employed.

Learning to rank is also applied to different problems in web search, including context aware
search [105], recency ranking [31], federated search [79], personalized search, online advertisement,
etc.

COLLABORATIVE FILTERING
Collaborative filtering, also known as recommender system, is a task as follows. The users are asked
to give ratings to the items.The system examines the ratings of items by the users and offers each user
a ranking list of items. The ranking lists represent recommendations to the users from the system,
while higher ranked items are more likely to be preferred by the users.

Collaborative filtering can be formalized as an ordinal classification or classification problem
because users give ratings to items. Sometimes it is more natural to formalize it as ranking (ranking
creation). This is because ratings from different users are on different scales and are not directly
comparable, and thus it is better to view the ratings from each user as a ranking list.
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Freund et al. [37] have applied RankBoost to collaborative filtering, specifically movie rec-
ommendation. RankBoost is a pairwise method for ranking in which AdaBoost is employed as the
learning algorithm. In Freund et al.’s method, the ratings from the target user are viewed as training
data, and the ratings from the other users are utilized as features. A RankBoost model is created with
the training data. The trained model is then used for ranking of all the movies (including unrated
movies) for the target user. See also [46].

DEFINITION SEARCH
In definition search, given a terminology query, the system returns a ranking list of definitions
(definitional paragraphs) of the terminology. Xu et al. propose a method of definition search using
learning to rank [107].

The method first automatically extracts all likely definitional paragraphs from the documents
with several heuristic rules. For example, paragraphs with the first sentence being "X is a" are taken
as candidates. Their method then applies a Ranking SVM model to assign to all the candidate
paragraphs scores representing their likelihood of being good definitions, removes redundant para-
graphs, and stores the paragraphs in a database with the terminologies as keys (e.g., X in ‘X is a’). In
definition search, given a terminology the system retrieves the related definitional paragraphs and
returns the ranking list of definitional paragraphs.

The Ranking SVM model utilizes a number of features, including both positive and negative
features. For example, if the term (e.g., X in ’X is a’) repeatedly occurs in the paragraph, then it is
likely the paragraph is a definition of the term. If words like ’she’, ’he’, or ’said’ occur in the paragraph,
it is likely the paragraph is not a definition.

KEYPHRASE EXTRACTION
Keyphrase extraction is a problem as follows. Given a document, a number of phrases (usually noun
phrases) are output, which can precisely and compactly represent the content of the document.
Traditionally keyphrase extraction is formalized as classification and classification methods such as
decision tree and Naive Bayes are employed. Jiang et al. formalize the keyphrase extraction problem
as ranking instead of classification [55]. In fact, keyphrase extraction can be viewed as the inverse
problem of document retrieval.

Suppose that there are some training data in which a number of documents are assigned
keyphrases and non-keyphrases. Jiang et al.’s method takes ordered phrase pairs as training instances,
each of which consists of a keyphrase and a non-keyphrase, and builds a Ranking SVM model with
the training data. The method then sorts the candidate phrases of a new document with the trained
model, and selects the top ranked candidate phrases as keyphrases. Experimental results show that
Ranking SVM statistically significantly outperforms the classification methods of SVM and Naive
Bayes.

Jiang et al. give two reasons on the better performance of the ranking approach over the
classification approach. First, it is more natural to consider the likelihood of a phrase’s being a
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keyphrase in a relative sense than in an absolute sense. Second, features for determining whether a
phrase is a keyphrase are also relative.

QUERY DEPENDENT SUMMARIZATION
When the search system presents a search result to the user, it is important to show the titles and
summaries of the documents because they are helpful for the user to judge whether the documents
are relevant or not. This is the problem referred to as query-dependent summarization or snippet
generation. Query dependent summarization usually contains two steps: relevant sentence selection
and summary composition. In sentence selection, the most informative sentences are identified.

Metzler & Kanungo [76] propose using learning to rank techniques to conduct sentence
selection in query dependent summarization. They apply GBRank and Support Vector Regression
to the task. Given a query and a retrieved document, their method treats all the sentences in the
document as candidate sentences and ranks the sentences based on their relevance to the query
and appropriateness as a sentence in the summary. They train a model for the ranking with some
labeled data. A number of features are defined in the model. For example, whether the query has
an exact match in the sentence, the fraction of query terms in the sentence, the length of sentence
(neither short nor long sentence is preferred), and the position of sentence in the document. They
demonstrate that GBRank is an effective algorithm for the task.

MACHINE TRANSLATION
Re-ranking in machine translation is also a typical ranking problem. The state-of-the-art machine
translation approach generates many candidate translations using a generative model, conducts re-
ranking on the candidate translations using a discriminative model, and then selects the top ranked
result. Features that can discriminate between good and bad translations are used in the re-ranking
model.

There are several advantages by taking the re-ranking approach. First, the accuracy of trans-
lation may be enhanced because the discriminative model can further leverage global features and
discriminative training in the final translation selection. Second, the efficiency of translation may
be improved. The top n candidates are first selected with the generative model, and then the best
translation is chosen from a small set of candidates.

For example, Shen at al. propose using learning to rank techniques in re-ranking of machine
translation. They have proposed two methods [93] similar to the Prank algorithm. One of the
algorithms is called Splitting, which tries to find parallel hyperplanes separating the top k good
translations, the bottom l bad translations and the translations in between, for each sentence, where
k and l are pre-determined. Figure 5.1 illustrates the Splitting model.



78 5. APPLICATIONS OF LEARNING TO RANK

w

k=2

k=2

grade 1

grade 2

grade 3

l=3

l=3

Figure 5.1: Splitting Model for Machine Translation
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C H A P T E R 6

Theory of Learning to Rank
This chapter gives a statistical learning formulation of learning to rank (ranking creation) and explains
the issues in theoretical study of learning to rank.

6.1 STATISTICAL LEARNING FORMULATION
Learning to rank (ranking creation) is a supervised learning task. Suppose that X is the input space
consisting of lists of feature vectors and Y is the output space consisting of lists of grades. Further
suppose that x is an element of X representing a list of feature vectors and y is an element of
Y representing a list of grades. Let P(X, Y ) be an unknown joint probability distribution where
random variable X takes x as its value and random variable Y takes y as its value.

Assume that F is a function mapping from a list of feature vectors x to a list of scores.
The goal of the learning task is to automatically learn a function F̂ (x), given training data
(x1, y1), (x2, y2), . . . , (xm, ym). Each training instance is comprised of feature vectors xi and the
corresponding grades yi (i = 1, · · · , m). Here m denotes the number of training instances.

F(x) and y can be further written as F(x) = [f (x1), f (x2), · · · , f (xn)] and y =
[y1, y2, · · · , yn]. Here f (x) denotes a local ranking function and n denotes the number of fea-
ture vectors and grades. The feature vectors correspond to the objects to be ranked, denoted as
O = [1, 2, · · · , n].

We make use of a loss function L(·, ·) to evaluate the prediction result of F(x). First, the
feature vectors x are ranked according to F(x). Then the ranking results are evaluated against the
corresponding grades y. If the feature vectors with higher grades are ranked higher, then the loss
will be small. Otherwise, the loss will be large. The loss function is specifically represented as

L(F(x), y).

Note that the loss function for ranking is slightly different from the loss functions in other statistical
learning tasks, in the sense that it makes use of sorting.

We further define the risk function R(·) as the expected loss function with respect to the joint
distribution P(X, Y ),

R(F) =
∫

X×Y
L(F(x), y)dP (x, y).

Given training data, we calculate the empirical risk function as follows,

R̂(F ) = 1
m

m∑

i=1

L(F(xi ), yi ).
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We can formalize the learning task as minimization of the empirical risk function, as in
other learning tasks. We can also introduce regularizer to conduct minimization of the regularized
empirical risk function.

The minimization of empirical risk function could be difficult due to the nature of the loss
function (it is not continuous and it uses sorting). We can consider using a surrogate loss function
denoted as

L′(F (x), y).

The corresponding risk function and empirical risk functions are defined as follows.

R′(F ) =
∫

X×Y
L′(F (x), y)dP (x, y)

R̂′(F ) = 1
m

m∑

i=1

L′(F (xi ), yi ).

In such case, the learning problem becomes that of minimization of (regularized) empirical risk
function based on surrogate loss.

Note that we adopt a machine learning formulation here. In IR, the feature vectors x are
derived from a query and its associated documents. The grades y represent the relevance degrees of
the documents with respect to the query. We make use of a global ranking function F(x). In practice,
it is usually a local ranking function f (x). The possible number of feature vectors in x can be very
large, even infinite. The evaluation (loss function) is, however, only concerned with n results. In IR,
n can be determined by the pooling strategy (cf., Section 2.2.2).

6.2 LOSS FUNCTIONS
In binary classification, the true loss function is usually 0-1 loss. In contrast, in ranking, there are
different ways to define the true loss function. In IR, the true loss functions can be those defined
based on NDCG (Normalized Discounted Cumulative Gain) and MAP (Mean Average Precision).
Specifically, we have

L(F(x), y) = 1−NDCG (6.1)

and
L(F(x), y) = 1−MAP. (6.2)

Given permutation π by F(x), NDCG of it (for n objects) is defined as follows.

NDCG = 1
Gmax

∑

i:π(i)≤n

G(i)D(π(i)) (6.3)

G(i) = 2yi − 1, D(π(i)) = 1
log2(1 + π(i))

,
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where yi is the grade of object i, π(i) is the rank of object i in π , G(·) is the gain function, D(·) is
the position discount function, and Gmax is the normalizing factor.

Given permutation π by F(x), MAP of it (for n objects)1 is defined as follows.

MAP =
∑n

i=1 P(i) · yi∑n
i=1 yi

,

where yi is the grade of object i taking on 1 or 0 as value, π(i) is the rank of object i in π , and P(i)

represents the precision until the rank of object i, defined as

P(i) =
∑

j :π(j)≤π(i) yj

π(i)
.

Note that the true loss functions (NDCG loss and MAP loss) are not continuous, and they
depend on sorting by F(x).

For the surrogate loss function, there are also different ways to define it,which leads to different
approaches to learning to rank. For example, one can define pointwise loss, pairwise loss, and listwise
loss functions, respectively.

Squared Loss, which is a pointwise loss, is defined as

L′(F (x), y) =
n∑

i=1

(f (xi)− yi)
2.

The loss function is the one used in Subset Regression.
The pointwise loss in McRank is as follows

L′(F (x), y) =
n∑

i=1

I [classifier(f (xi)) 0= yi],

where I [·] is the indicator function and the output of classifier(f (xi)) is a label (grade).
Pairwise losses can be hinge loss, exponential loss, and logistic loss as defined as follows. They

are used in Ranking SVM, RankBoost, and RankNet, respectively.

L′(F (x), y) =
n−1∑

i=1

n∑

j=i+1

[1− sign(yi − yj )(f (xi)− f (xj ))]+, when yi 0= yj , (6.4)

where it is assumed that L′ = 0, when yi = yj .

L′(F (x), y) =
n−1∑

i=1

n∑

j=i+1

exp
(
−sign(yi − yj )(f (xi)− f (xj ))

)
, when yi 0= yj . (6.5)

1Here, we abuse terminology for ease of explanation. Mean Average Precision is in fact averaged over queries. The MAP here is
only defined on one query. In that case, it should be called AP (Average Precision).
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L′(F (x), y) =
n−1∑

i=1

n∑

j=i+1

log
(
1 + exp(−sign(yi − yj )(f (xi)− f (xj )))

)
, when yi 0= yj . (6.6)

Listwise losses can be KL loss and logarithmic loss utilized in ListNet and ListMLE, respec-
tively.

KL Loss in ListNet is defined as

L′(F (x), y) = D(Py(π)||PF (π)), (6.7)

where D(·||·) is KL Divergence, Py(π) is the permutation probability distribution (or top k prob-
ability distribution) induced by y, and PF (π) is the permutation probability distribution (or top k

probability distribution) induced by F(x). Both distributions are calculated by the Plackett-Luce
model.

Logarithmic Loss in ListMLE is defined as

L′(F (x), y) = − log PF (π∗y ), (6.8)

where PF (π∗y ) is the probability of perfect permutation by y, calculated by F(x) and the Plackett-
Luce model.

Obviously, the surrogate loss function in AdaRank is also a listwise loss.

L′(F (x), y) = exp(−NDCG),

where NDCG is calculated on the basis of F(x) and y.

6.3 RELATIONS BETWEEN LOSS FUNCTIONS
Previous work has shown that the pointwise losses, pairwise losses (6.4-6.6) and listwise loss (6.8)
in existing methods are upper bounds of the true losses (6.1-6.2).

L(F(x), y) ≤ L′(F (x), y).

That means that existing learning to rank methods, such as Subset Ranking,McRank,Ranking SVM,
RankBoost, RankNet, ListMLE, and AdaRank are methods of optimizing different surrogate loss
functions.

Below we give a summary of the relations between the surrogate loss functions used in existing
methods and the true loss function (1-NDCG).

The pointwise loss function in Subset Ranking is an upper bound of (1-NDCG) [29].

1−NDCG ≤ 1
Gmax

(

2
n∑

i=1

D(π(i))2

)1/2

L′(F (x), y)1/2,
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where D(π(i)) is the position discount of object i and L′(F (x), y) is the surrogate loss function in
Subset Ranking.

The pointwise loss function in McRank is an upper bound of (1-NDCG) [67].

1−NDCG ≤ 15
√

2
Gmax

(
n∑

i=1

D(π(i))2 − n

n∏

i=1

D(π(i))2/n

)1/2

L′(F (x), y)1/2,

where D(π(i)) is the position discount of object i and L′(F (x), y) is the surrogate loss function in
McRank.

The pairwise loss functions in Ranking SVM, RankBoost, and RankNet are upper bounds of
(1-NDCG) [20].

1−NDCG ≤ maxi (G(i)D(π(i)))

Gmax
L′(F (x), y),

where G(i) is the gain of object i and D(π(i)) is the position discount of object i and L′(F (x), y)

is the surrogate loss function in the above pairwise methods.
The listwise loss function in ListMLE is an upper bound of (1-NDCG) [20].

1−NDCG ≤ maxi (G(i)D(π(i)))

ln 2 · Gmax
L′(F (x), y),

where G(i) is the gain of object i and D(π(i)) is the position discount of object i, and L′(F (x), y)

is the surrogate loss function in ListMLE.

6.4 THEORETICAL ANALYSIS
There are two major issues with regard to theoretical analysis of learning to rank, namely general-
ization ability and statistical consistency.

Generalization ability of a method represents the relation between the empirical risk function
and the expected risk function. It is usually represented by a bound between the two risk functions.
Cossock & Zhang show the generalization ability of Subset Ranking. Lan et al. give generalization
bounds of Ranking SVM, IR SVM, ListNet, and ListMLE [60, 61]. Recently, Chen et al. have
proved a generalization bound of pairwise methods, in a more natural framework [21].

Statistical consistency is to answer the question whether optimization of a surrogate loss
function can lead to optimization of the true loss function. Xia et al. have studied the consistency of
ListNet and ListMLE [103, 104].

For other work on theoretical analysis of learning to rank, see [2, 5, 25, 28].
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C H A P T E R 7

Ongoing and Future Work
Learning to rank is a hot area in machine learning and related fields, including information retrieval,
natural language processing and data mining, and intensive study is being conducted.

In Chapter 4, methods of learning to rank have been described. It is still necessary to develop
more advanced technologies. It is also clear from the discussions in Chapters 5 and 6, there are still
many open questions with regard to theory and applications of learning to rank.

Let us look at some ongoing and future work on several topics with regard to learning to rank,
particularly learning for ranking creation.

• Training data creation

• Semi-supervised learning and active learning

• Feature learning

• Scalable and efficient training

• Domain adaptation

• Ranking by ensemble learning

• Global ranking

• Ranking of objects in graph

TRAINING DATA CREATION
The quality of training data largely affects the performance of learning to rank, as in other machine
learning tasks. If the quality of training data is low, then the accuracy of the trained model will also be
low. The so-called ‘garbage in garbage out’ phenomenon also occurs in learning to rank. In addition,
reducing the cost of training data construction is another issue which needs to be considered.

In IR, training data for ranking is usually annotated by humans, which is costly and error
prone. As a result, the amount of training data tends to be small and the quality of data cannot be
guaranteed.

As explained, one way to cope with the challenge is to automatically derive training data from
click-through data. Click-through data represents users’ implicit feedbacks and thus is a valuable
data source for training data creation. The problem which we need to address is to eliminate noise
and position bias. For example, one can employ the method proposed by Joachims [57], to use the
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skips of documents in search as signals of relative relevance judgments. Another method developed
by Radlinski and Joachims [87] can also be exploited, which makes use of the queries and clicks in
search sessions. Specifically, a clicked document with the current query is preferred over an examined
but not clicked document with the previous query in the same session, under the assumption that
the user may have not found relevant result with the previous query.

Since training data labeled by human judges inevitably contains errors, another related issue
is to automatically correct errors in the training data. One approach is to use click-through data to
make error detection and correction. For example, Xu et al. [106] propose a method for detecting
human labeling errors using click-through data. A discriminative model for predicting relevance
labels from click-through patterns is employed.

For other methods with regard to training data creation, see also [4, 7, 88].

SEMI-SUPERVISED LEARNING AND ACTIVE LEARNING
Since creation of training data is expensive, using both labeled and unlabeled data in learning to
rank naturally arises as an important issue to investigate. A key question then is how to leverage the
useful information in the unlabeled data to enhance the performance of learning. Several methods
on semi-supervised learning have been proposed [6, 33, 49, 56, 66]. Further investigations on the
problem appear to be necessary.

Another related issue is active learning. Long et al. [73] point out that a general principle for
active learning, named Expected Loss Minimization (ELO), can be employed in ranking just like
in classification, regression, and other tasks. ELO suggests selecting the queries or documents with
the largest expected losses.They propose an algorithm called ELO-DCG for active learning at both
the query and document levels.

FEATURE LEARNING
In practice, the features used in the ranking model are more critical for the accuracy of learning to
rank. Developing powerful features is an important step in building practical ranking systems.

In IR, BM25 and LM4IR (unsupervised ranking models) can be used as features of a rank-
ing model. BM25 and LM4IR actually represent the relevance of query and document, using the
matching degree of their terms. How to enrich a matching model and learn the model from data
is an interesting topic. Metzler & Croft [75] propose employing a Markov Random Field model
to represent the matching degree between query and document and to use the model in relevance
ranking. The key idea is to take into account dependency between the terms in the query and repre-
sent their relations in a probabilistic dependency graph (MRF). An algorithm for learning the MRF
model is also developed. See also [96].

PageRank is a document feature widely used in learning to rank. One can also think about
enhancing the model. For example, Liu et al. propose exploiting user browsing graph built upon
user behavior data, constructing a continuous time Markov model on the graph, and calculating the
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stationary distribution as page importance. Their algorithm referred to as BrowseRank is a natural
extension of PageRank [72].

More studies on supervised or unsupervised learning of features for ranking are certainly
needed. Automatic selection of features also needs more investigations [42].

SCALABLE AND EFFICIENT TRAINING
Training data for learning to rank can also be large as in other learning tasks. How to make the
training of learning to rank scalable and efficient is an important issue. Chapelle & Keerthi [16]
have developed an efficient algorithm for training Ranking SVM. They employ the primal Newton
method to speed up the training process and show that their implementation of Ranking SVM is
five orders of magnitude faster than SVMLight, the widely used Ranking SVM learning tool.

DOMAIN ADAPTATION
Domain adaptation or transfer learning is a popular research topic in machine learning, which is
also true for ranking. Another related issue is multi-task learning. There are domains for which it
is easy to obtain training data and build reliable ranking models, while there are domains for which
this is not the case. How to adapt a model trained in one domain to another domain then becomes
important.

Methods for domain adaptation, transfer learning, and multi-task learning have been proposed
[9, 17, 19, 40]. For example, Chapelle et al. [17] propose a boosting algorithm to multi-task ranking.
Their method learns a joint model for several different tasks, which addresses the specifics of each
task with task-specific parameters and the commonalities among the tasks with shared parameters.

RANKING BY ENSEMBLE LEARNING
To enhance the accuracy of ranking, a divide-and-conquer approach can be effective. That is, for
different queries in document retrieval one creates and utilizes different rankers and maximizes the
overall ranking accuracy.

In general web search, users’ search needs are very diverse, and thus it appears more necessary
to adopt the query dependent approach. How to automatically classify queries into classes, train a
ranking model for each class, and combine the ranking models becomes an important area to explore.
Geng et al. [41] propose a query dependent ranking method. Given a query, the method tries to find
the k nearest training queries and construct a ranking model with the data in the neighborhood.
Efficient ways of performing k nearest neighbor training are given. There exist challenging yet
interesting problems along the direction.

GLOBAL RANKING
In ranking creation, usually a local model is utilized. The local model assigns a score to each object,
and the objects are ranked according to their scores. The use of local model in ranking has certain
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advantages such as efficiency in processing. However, as explained in Chapter 1, ranking creation
is by nature a global ranking issue, and thus it would be better to learn and utilize a global ranking
model.

In document retrieval, ranking should be performed based on not only relevance, but also
diversity, novelty, etc. Qin et al. [83] propose employing a Continuous Conditional Random Fields
model for global ranking. The model represents documents and their scores as vertices and relations
between document scores as edges in an undirected graph. A method for learning the CRF model
from supervised learning data is also developed. They show that the CRF mode can effectively
utilize similarity relation between documents and link relation between documents. Yue et al. [112]
propose a method for conducting ranking based on diversity (for ambiguous queries like “Jaguar”, it
is better to rank the relevant documents of all the major senses on the top). The method takes the
relevant documents as input and then groups them into diverse subsets. It formalizes the training of
the model as a learning problem using Structural SVM. For other related work, see [52, 54, 84, 89].

RANKING OF NODES IN GRAPH
Sometimes information on the relations between the objects to be ranked is also available. The
relations are often represented in a directed or undirected graph on the objects. Therefore, how to
leverage the information in ranking becomes an interesting question. This kind of setting is partic-
ularly common in social search and social data mining. Note that PageRank [78] and BrowseRank
[72] are also methods of ranking objects in a graph, but they only make use of the link information
and are unsupervised learning methods.

Agrawal et al. [1], for example, propose a supervised learning method for ranking the objects in
a graph.Their method employs the Markov random walk model, as in PageRank, and automatically
learns the transition probabilities from the preference pairs of objects in the training data. The
method formalizes the learning task as a constrained network flow problem in which the objective is
maximum entropy and the Markov property and the preference pairs are represented as constraints.
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