
Data-Intensive Text Processing
with MapReduce

Synthesis Lectures on Human
Language Technologies

Editor
Graeme Hirst, University of Toronto
Synthesis Lectures on Human Language Technologies is edited by Graeme Hirst of the University
of Toronto. The series consists of 50- to 150-page monographs on topics relating to natural
language processing, computational linguistics, information retrieval, and spoken language
understanding. Emphasis is on important new techniques, on new applications, and on topics that
combine two or more HLT subfields.

Data-Intensive Text Processing with MapReduce
Jimmy Lin and Chris Dyer
2010

Semantic Role Labeling
Martha Palmer, Daniel Gildea, and Nianwen Xue
2010

Spoken Dialogue Systems
Kristiina Jokinen and Michael McTear
2009

Introduction to Chinese Natural Language Processing
Kam-Fai Wong, Wenjie Li, Ruifeng Xu, and Zheng-sheng Zhang
2009

Introduction to Linguistic Annotation and Text Analytics
Graham Wilcock
2009

Dependency Parsing
Sandra Kübler, Ryan McDonald, and Joakim Nivre
2009

Statistical Language Models for Information Retrieval
ChengXiang Zhai
2008

Copyright © 2010 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Data-Intensive Text Processing with MapReduce

Jimmy Lin and Chris Dyer

www.morganclaypool.com

ISBN: 9781608453429 paperback
ISBN: 9781608453436 ebook

DOI 10.2200/S00274ED1V01Y201006HLT007

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES

Lecture #7
Series Editor: Graeme Hirst, University of Toronto
Series ISSN
Synthesis Lectures on Human Language Technologies
Print 1947-4040 Electronic 1947-4059

file://localhost/Users/nie/Downloads/www.morganclaypool.com

Data-Intensive Text Processing
with MapReduce

Jimmy Lin and Chris Dyer
University of Maryland

SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES #7

CM& cLaypoolMorgan publishers&

ABSTRACT
Our world is being revolutionized by data-driven methods: access to large amounts of data has gen-
erated new insights and opened exciting new opportunities in commerce, science, and computing
applications. Processing the enormous quantities of data necessary for these advances requires large
clusters, making distributed computing paradigms more crucial than ever. MapReduce is a program-
ming model for expressing distributed computations on massive datasets and an execution framework
for large-scale data processing on clusters of commodity servers. The programming model provides
an easy-to-understand abstraction for designing scalable algorithms, while the execution framework
transparently handles many system-level details, ranging from scheduling to synchronization to fault
tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing
algorithms common in natural language processing, information retrieval, and machine learning.
We introduce the notion of MapReduce design patterns, which represent general reusable solutions
to commonly occurring problems across a variety of problem domains. This book not only intends
to help the reader “think in MapReduce”, but also discusses limitations of the programming model
as well.

KEYWORDS
Hadoop, parallel and distributed programming, algorithm design, text processing, nat-
ural language processing, information retrieval, machine learning

vii

Contents

Acknowledgments . xi

1 Introduction . 1

1.1 Computing in the Clouds . 6

1.2 Big Ideas . 8

1.3 Why Is This Different? . 13

1.4 What This Book Is Not . 15

2 MapReduce Basics . 17

2.1 Functional Programming Roots . 18

2.2 Mappers and Reducers . 20

2.3 The Execution Framework . 24

2.4 Partitioners and Combiners .26

2.5 The Distributed File System .28

2.6 Hadoop Cluster Architecture . 33

2.7 Summary . 34

3 MapReduce Algorithm Design .37

3.1 Local Aggregation . 39

3.1.1 Combiners and In-Mapper Combining .39

3.1.2 Algorithmic Correctness with Local Aggregation .43

3.2 Pairs and Stripes .47

3.3 Computing Relative Frequencies . 52

3.4 Secondary Sorting . 57

3.5 Relational Joins . 58

3.5.1 Reduce-Side Join .60

3.5.2 Map-Side Join . 62

viii

3.5.3 Memory-Backed Join . 63

3.6 Summary . 63

4 Inverted Indexing for Text Retrieval . 65

4.1 Web Crawling . 66

4.2 Inverted Indexes .68

4.3 Inverted Indexing: Baseline Implementation . 69

4.4 Inverted Indexing: Revised Implementation . 72

4.5 Index Compression . 74

4.5.1 Byte-Aligned and Word-Aligned Codes . 75

4.5.2 Bit-Aligned Codes . 76

4.5.3 Postings Compression . 78

4.6 What About Retrieval? . 80

4.7 Summary and Additional Readings .83

5 Graph Algorithms .85

5.1 Graph Representations .87

5.2 Parallel Breadth-First Search . 88

5.3 PageRank .95

5.4 Issues with Graph Processing . 100

5.5 Summary and Additional Readings . 102

6 EM Algorithms for Text Processing . 105

6.1 Expectation Maximization . 108

6.1.1 Maximum Likelihood Estimation . 108

6.1.2 A Latent Variable Marble Game .110

6.1.3 MLE with Latent Variables . 111

6.1.4 Expectation Maximization . 112

6.1.5 An EM Example .113

6.2 Hidden Markov Models . 114

6.2.1 Three Questions for Hidden Markov Models . 115

CONTENTS ix

6.2.2 The Forward Algorithm . 117

6.2.3 The Viterbi Algorithm . 118

6.2.4 Parameter Estimation for HMMs . 120

6.2.5 Forward-Backward Training: Summary . 125

6.3 EM in MapReduce . 125

6.3.1 HMM Training in MapReduce .126

6.4 Case Study: Word Alignment for Statistical Machine Translation 130

6.4.1 Statistical Phrase-Based Translation .131

6.4.2 Brief Digression: Language Modeling with MapReduce 133

6.4.3 Word Alignment . 134

6.4.4 Experiments . 135

6.5 EM-Like Algorithms . 138

6.5.1 Gradient-Based Optimization and Log-Linear Models 138

6.6 Summary and Additional Readings . 141

7 Closing Remarks .143

7.1 Limitations of MapReduce . 143

7.2 Alternative Computing Paradigms . 145

7.3 MapReduce and Beyond . 146

Bibliography .149

Authors’ Biographies . 165

Acknowledgments
The first author is grateful to Esther and Kiri for their loving support. He dedicates this book

to Joshua and Jacob, the new joys of his life.
The second author would like to thank Herb for putting up with his disorderly living habits

and Philip for being a very indulgent linguistics advisor.
This work was made possible by the Google and IBM Academic Cloud Computing Initiative

(ACCI) and the National Science Foundation’s Cluster Exploratory (CLuE) program, under award
IIS-0836560,and also award IIS-0916043.Any opinions,findings,conclusions,or recommendations
expressed in this book are those of the authors and do not necessarily reflect the views of the sponsors.

We are grateful to Jeff Dean,Miles Osborne,Tom White, as well as numerous other individuals
who have commented on earlier drafts of this book.

Jimmy Lin and Chris Dyer
May 2010

1

C H A P T E R 1

Introduction
MapReduce [45] is a programming model for expressing distributed computations on massive
amounts of data and an execution framework for large-scale data processing on clusters of com-
modity servers. It was originally developed by Google and built on well-known principles in parallel
and distributed processing dating back several decades. MapReduce has since enjoyed widespread
adoption via an open-source implementation called Hadoop, whose development was led by Yahoo
(now an Apache project). Today, a vibrant software ecosystem has sprung up around Hadoop, with
significant activity in both industry and academia.

This book is about scalable approaches to processing large amounts of text with MapReduce.
Given this focus, it makes sense to start with the most basic question: Why? There are many answers
to this question, but we focus on two. First, “big data” is a fact of the world, and therefore an issue that
real-world systems must grapple with. Second, across a wide range of text processing applications,
more data translates into more effective algorithms, and thus it makes sense to take advantage of the
plentiful amounts of data that surround us.

Modern information societies are defined by vast repositories of data, both public and private.
Therefore, any practical application must be able to scale up to datasets of interest. For many, this
means scaling up to the web, or at least a non-trivial fraction thereof. Any organization built around
gathering, analyzing, monitoring, filtering, searching, or organizing web content must tackle large-
data problems:“web-scale” processing is practically synonymous with data-intensive processing.This
observation applies not only to well-established internet companies, but also countless startups and
niche players as well. Just think, how many companies do you know that start their pitch with “we’re
going to harvest information on the web and…”?

Another strong area of growth is the analysis of user behavior data. Any operator of a moder-
ately successful website can record user activity and in a matter of weeks (or sooner) be drowning in
a torrent of log data. In fact, logging user behavior generates so much data that many organizations
simply can’t cope with the volume, and either turn the functionality off or throw away data after
some time. This represents lost opportunities, as there is a broadly held belief that great value lies in
insights derived from mining such data. Knowing what users look at, what they click on, how much
time they spend on a web page, etc., leads to better business decisions and competitive advantages.
Broadly, this is known as business intelligence, which encompasses a wide range of technologies
including data warehousing, data mining, and analytics.

How much data are we talking about? A few examples: Google grew from processing 100 tera-
bytes of data a day with MapReduce in 2004 [45] to processing 20 petabytes a day with MapReduce

2 1. INTRODUCTION

in 2008 [46]. In April 2009, a blog post1 was written about eBay’s two enormous data warehouses:
one with 2 petabytes of user data, and the other with 6.5 petabytes of user data spanning 170 trillion
records and growing by 150 billion new records per day. Shortly thereafter, Facebook revealed2

similarly impressive numbers, boasting of 2.5 petabytes of user data, growing at about 15 terabytes
per day. Petabyte datasets are rapidly becoming the norm, and the trends are clear: our ability to
store data is fast overwhelming our ability to process what we store. More distressing, increases in
capacity are outpacing improvements in bandwidth such that our ability to even read back what we
store is deteriorating [91]. Disk capacities have grown from tens of megabytes in the mid-1980s
to about a couple of terabytes today (several orders of magnitude). On the other hand, latency and
bandwidth have improved relatively little: in the case of latency, perhaps 2× improvement during the
last quarter century, and in the case of bandwidth, perhaps 50×. Given the tendency for individuals
and organizations to continuously fill up whatever capacity is available, large-data problems are
growing increasingly severe.

Moving beyond the commercial sphere, many have recognized the importance of data man-
agement in many scientific disciplines, where petabyte-scale datasets are also becoming increasingly
common [21]. For example:

• The high-energy physics community was already describing experiences with petabyte-scale
databases back in 2005 [20]. Today, the Large Hadron Collider (LHC) near Geneva is the
world’s largest particle accelerator, designed to probe the mysteries of the universe, including
the fundamental nature of matter, by recreating conditions shortly following the Big Bang.
When it becomes fully operational, the LHC will produce roughly 15 petabytes of data a year.3

• Astronomers have long recognized the importance of a “digital observatory” that would support
the data needs of researchers across the globe—the Sloan Digital Sky Survey [145] is perhaps
the most well known of these projects. Looking into the future, the Large Synoptic Survey
Telescope (LSST) is a wide-field instrument that is capable of observing the entire sky every
few days. When the telescope comes online around 2015 in Chile, its 3.2 gigapixel primary
camera will produce approximately half a petabyte of archive images every month [19].

• The advent of next-generation DNA sequencing technology has created a deluge of sequence
data that needs to be stored, organized, and delivered to scientists for further study. Given
the fundamental tenant in modern genetics that genotypes explain phenotypes, the impact
of this technology is nothing less than transformative [103]. The European Bioinformatics
Institute (EBI), which hosts a central repository of sequence data called EMBL-bank, has
increased storage capacity from 2.5 petabytes in 2008 to 5 petabytes in 2009 [142]. Scientists
are predicting that, in the not-so-distant future, sequencing an individual’s genome will be no
more complex than getting a blood test today—ushering a new era of personalized medicine,
where interventions can be specifically targeted for an individual.

1http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/
2http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/
3http://public.web.cern.ch/public/en/LHC/Computing-en.html

http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/
http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/

3

Increasingly, scientific breakthroughs will be powered by advanced computing capabilities that help
researchers manipulate, explore, and mine massive datasets [72]—this has been hailed as the emerg-
ing “fourth paradigm” of science [73] (complementing theory, experiments, and simulations). In
other areas of academia, particularly computer science, systems and algorithms incapable of scaling
to massive real-world datasets run the danger of being dismissed as “toy systems” with limited utility.
Large data is a fact of today’s world and data-intensive processing is fast becoming a necessity, not
merely a luxury or curiosity.

Although large data comes in a variety of forms, this book is primarily concerned with pro-
cessing large amounts of text, but touches on other types of data as well (e.g., relational and graph
data). The problems and solutions we discuss mostly fall into the disciplinary boundaries of natural
language processing (NLP) and information retrieval (IR). Recent work in these fields is dominated
by a data-driven, empirical approach, typically involving algorithms that attempt to capture statistical
regularities in data for the purposes of some task or application. There are three components to this
approach: data, representations of the data, and some method for capturing regularities in the data.
Data are called corpora (singular, corpus) by NLP researchers and collections by those from the IR
community. Aspects of the representations of the data are called features, which may be “superficial”
and easy to extract, such as the words and sequences of words themselves, or “deep” and more difficult
to extract, such as the grammatical relationship between words. Finally, algorithms or models are
applied to capture regularities in the data in terms of the extracted features for some application. One
common application, classification, is to sort text into categories. Examples include: Is this email
spam or not spam? Is this word part of an address or a location? The first task is easy to understand,
while the second task is an instance of what NLP researchers call named-entity detection [138],
which is useful for local search and pinpointing locations on maps. Another common application is to
rank texts according to some criteria—search is a good example, which involves ranking documents
by relevance to the user’s query. Another example is to automatically situate texts along a scale of
“happiness”, a task known as sentiment analysis or opinion mining [118], which has been applied to
everything from understanding political discourse in the blogosphere to predicting the movement
of stock prices.

There is a growing body of evidence, at least in text processing, that of the three components
discussed above (data, features, algorithms), data probably matters the most. Superficial word-level
features coupled with simple models in most cases trump sophisticated models with deeper features
and less data. But why can’t we have our cake and eat it too? Why not both sophisticated models and
deep features applied to lots of data? Because inference over sophisticated models and extraction of
deep features are often computationally intensive, they don’t scale well.

Consider a simple task such as determining the correct usage of easily confusable words such
as “than” and “then” in English. One can view this as a supervised machine learning problem: we
can train a classifier to disambiguate between the options, and then apply the classifier to new
instances of the problem (say, as part of a grammar checker). Training data is fairly easy to come
by—we can just gather a large corpus of texts and assume that most writers make correct choices

4 1. INTRODUCTION

(the training data may be noisy, since people make mistakes, but no matter). In 2001, Banko and
Brill [14] published what has become a classic paper in natural language processing exploring the
effects of training data size on classification accuracy, using this task as the specific example. They
explored several classification algorithms (the exact ones aren’t important, as we shall see), and not
surprisingly, found that more data led to better accuracy. Across many different algorithms, the
increase in accuracy was approximately linear in the log of the size of the training data. Furthermore,
with increasing amounts of training data, the accuracy of different algorithms converged, such that
pronounced differences in effectiveness observed on smaller datasets basically disappeared at scale.
This led to a somewhat controversial conclusion (at least at the time): machine learning algorithms
really don’t matter, all that matters is the amount of data you have. This resulted in an even more
controversial recommendation,delivered somewhat tongue-in-cheek: we should just give up working
on algorithms and simply spend our time gathering data (while waiting for computers to become
faster so we can process the data).

As another example, consider the problem of answering short, fact-based questions such as
“Who shot Abraham Lincoln?” Instead of returning a list of documents that the user would then have
to sort through, a question answering (QA) system would directly return the answer: John Wilkes
Booth.This problem gained interest in the late 1990s, when natural language processing researchers
approached the challenge with sophisticated linguistic processing techniques such as syntactic and
semantic analysis. Around 2001, researchers discovered a far simpler approach to answering such
questions based on pattern matching [27; 53; 92]. Suppose you wanted the answer to the above
question. As it turns out, you can simply search for the phrase “shot Abraham Lincoln” on the web
and look for what appears to its left. Or better yet, look through multiple instances of this phrase
and tally up the words that appear to the left. This simple strategy works surprisingly well, and has
become known as the redundancy-based approach to question answering. It capitalizes on the insight
that in a very large text collection (i.e., the web), answers to commonly asked questions will be stated
in obvious ways, such that pattern-matching techniques suffice to extract answers accurately.

Yet another example concerns smoothing in web-scale language models [25]. A language
model is a probability distribution that characterizes the likelihood of observing a particular sequence
of words, estimated from a large corpus of texts. They are useful in a variety of applications, such as
speech recognition (to determine what the speaker is more likely to have said) and machine translation
(to determine which of possible translations is the most fluent, as we will discuss in Section 6.4).Since
there are infinitely many possible strings, and probabilities must be assigned to all of them, language
modeling is a more challenging task than simply keeping track of which strings were seen how many
times: some number of likely strings will never be encountered, even with lots and lots of training
data! Most modern language models make the Markov assumption: in a n-gram language model,
the conditional probability of a word is given by the n− 1 previous words. Thus, by the chain rule,
the probability of a sequence of words can be decomposed into the product of n-gram probabilities.
Nevertheless, an enormous number of parameters must still be estimated from a training corpus:
potentially V n parameters, where V is the number of words in the vocabulary. Even if we treat

5

every word on the web as the training corpus from which to estimate the n-gram probabilities, most
n-grams—in any language, even English—will never have been seen. To cope with this sparseness,
researchers have developed a number of smoothing techniques [35; 79; 102], which all share the basic
idea of moving probability mass from observed to unseen events in a principled manner. Smoothing
approaches vary in effectiveness, both in terms of intrinsic and application-specific metrics. In 2007,
Brants et al. [25] described language models trained on up to two trillion words.4 Their experiments
compared a state-of-the-art approach known as Kneser-Ney smoothing [35] with another technique
the authors affectionately referred to as “stupid backoff ”.5 Not surprisingly, stupid backoff didn’t work
as well as Kneser-Ney smoothing on smaller corpora. However, it was simpler and could be trained
on more data, which ultimately yielded better language models.That is, a simpler technique on more
data beat a more sophisticated technique on less data.

Recently, three Google researchers summarized this data-driven philosophy in an essay titled
The Unreasonable Effectiveness of Data [65].6 Why is this so? It boils down to the fact that language
in the wild, just like human behavior in general, is messy. Unlike, say, the interaction of subatomic
particles, human use of language is not constrained by succinct, universal “laws of grammar”. There
are of course rules that govern the formation of words and sentences—for example, that verbs appear
before objects in English, and that subjects and verbs must agree in number in many languages—but
real-world language is affected by a multitude of other factors as well: people invent new words and
phrases all the time, authors occasionally make mistakes, groups of individuals write within a shared
context, etc.The Argentine writer Jorge Luis Borges wrote a famous allegorical one-paragraph story
about a fictional society in which the art of cartography had gotten so advanced that their maps were
as big as the lands they were describing.7 The world, he would say, is the best description of itself. In
the same way, the more observations we gather about language use, the more accurate a description
we have of language itself. This, in turn, translates into more effective algorithms and systems.

So, in summary, why large data? In some ways, the first answer is similar to the reason people
climb mountains: because they’re there. But the second answer is even more compelling. Data
represent the rising tide that lifts all boats—more data lead to better algorithms and systems for
solving real-world problems. Now that we’ve addressed the why, let’s tackle the how. Let’s start with
the obvious observation: data-intensive processing is beyond the capability of any individual machine
and requires clusters—which means that large-data problems are fundamentally about organizing
computations on dozens, hundreds, or even thousands of machines.This is exactly what MapReduce
does, and the rest of this book is about the how.

4As an aside, it is interesting to observe the evolving definition of large over the years. Banko and Brill’s paper in 2001 was titled
Scaling to Very Very Large Corpora for Natural Language Disambiguation, and dealt with a corpus containing a billion words.

5As in, so stupid it couldn’t possibly work.
6This title was inspired by a classic article titled The Unreasonable Effectiveness of Mathematics in the Natural Sciences [155]. This
is somewhat ironic in that the original article lauded the beauty and elegance of mathematical models in capturing natural
phenomena, which is the exact opposite of the data-driven approach.

7On Exactitude in Science [23]. A similar exchange appears in Chapter XI of Sylvie and Bruno Concluded by Lewis Carroll (1893).

6 1. INTRODUCTION

1.1 COMPUTING IN THE CLOUDS

For better or for worse, it is often difficult to untangle MapReduce and large-data processing from
the broader discourse on cloud computing. True, there is substantial promise in this new paradigm
of computing, but unwarranted hype by the media and popular sources threatens its credibility in
the long run. In some ways, cloud computing is simply brilliant marketing. Before clouds, there were
grids,8 and before grids, there were vector supercomputers, each having claimed to be the best thing
since sliced bread.

So what exactly is cloud computing? This is one of those questions where 10 experts will give
11 different answers; in fact, countless papers have been written simply to attempt to define the term
(e.g., [9; 31; 149], just to name a few examples). Here we offer up our own thoughts and attempt to
explain how cloud computing relates to MapReduce and data-intensive processing.

At the most superficial level, everything that used to be called web applications has been
rebranded to become “cloud applications”, which includes what we have previously called “Web
2.0” sites. In fact, anything running inside a browser that gathers and stores user-generated content
now qualifies as an example of cloud computing. This includes social-networking services such
as Facebook, video-sharing sites such as YouTube, web-based email services such as Gmail, and
applications such as Google Docs. In this context, the cloud simply refers to the servers that power
these sites, and user data is said to reside “in the cloud”. The accumulation of vast quantities of user
data creates large-data problems, many of which are suitable for MapReduce. To give two concrete
examples: a social-networking site analyzes connections in the enormous globe-spanning graph of
friendships to recommend new connections. An online email service analyzes messages and user
behavior to optimize ad selection and placement. These are all large-data problems that have been
tackled with MapReduce.9

Another important facet of cloud computing is what’s more precisely known as utility com-
puting [31; 129]. As the name implies, the idea behind utility computing is to treat computing
resource as a metered service, like electricity or natural gas. The idea harkens back to the days of
time-sharing machines, and in truth isn’t very different from this antiquated form of computing.
Under this model, a “cloud user” can dynamically provision any amount of computing resources
from a “cloud provider” on demand and only pay for what is consumed. In practical terms, the user
is paying for access to virtual machine instances that run a standard operating system such as Linux.
Virtualization technology (e.g., [15]) is used by the cloud provider to allocate available physical

8What is the difference between cloud computing and grid computing? Although both tackle the fundamental problem of how best
to bring computational resources to bear on large and difficult problems, they start with different assumptions. Whereas clouds
are assumed to be relatively homogeneous servers that reside in a datacenter or are distributed across a relatively small number
of datacenters controlled by a single organization, grids are assumed to be a less tightly-coupled federation of heterogeneous
resources under the control of distinct but cooperative organizations. As a result, grid computing tends to deal with tasks that
are coarser-grained, and must deal with the practicalities of a federated environment, e.g., verifying credentials across multiple
administrative domains. Grid computing has adopted a middleware-based approach for tackling many of these challenges.

9The first example is Facebook, a well-known user of Hadoop, in exactly the manner as described [68]. The second is, of course,
Google, which uses MapReduce to continuously improve existing algorithms and to devise new algorithms for ad selection and
placement.

1.1. COMPUTING IN THE CLOUDS 7

resources and enforce isolation between multiple users who may be sharing the same hardware.
Once one or more virtual machine instances have been provisioned, the user has full control over the
resources and can use them for arbitrary computation. Virtual machines that are no longer needed
are destroyed, thereby freeing up physical resources that can be redirected to other users. Resource
consumption is measured in some equivalent of machine-hours and users are charged in increments
thereof.

Both users and providers benefit in the utility computing model. Users are freed from upfront
capital investments necessary to build datacenters and substantial reoccurring costs in maintaining
them.They also gain the important property of elasticity—as demand for computing resources grow,
for example, from an unpredicted spike in customers, more resources can be seamlessly allocated
from the cloud without an interruption in service. As demand falls, provisioned resources can be
released. Prior to the advent of utility computing, coping with unexpected spikes in demand was
fraught with challenges: under-provision and run the risk of service interruptions, or over-provision
and tie up precious capital in idle machines that are depreciating.

From the utility provider point of view, this business also makes sense because large datacenters
benefit from economies of scale and can be run more efficiently than smaller datacenters. In the same
way that insurance works by aggregating risk and redistributing it, utility providers aggregate the
computing demands for a large number of users. Although demand may fluctuate significantly for
each user, overall trends in aggregate demand should be smooth and predictable, which allows the
cloud provider to adjust capacity over time with less risk of either offering too much (resulting in
inefficient use of capital) or too little (resulting in unsatisfied customers). In the world of utility
computing, Amazon Web Services currently leads the way and remains the dominant player, but a
number of other cloud providers populate a market that is becoming increasingly crowded. Most
systems are based on proprietary infrastructure, but there is at least one, Eucalyptus [111], that
is available open source. Increased competition will benefit cloud users, but what direct relevance
does this have for MapReduce? The connection is quite simple: processing large amounts of data
with MapReduce requires access to clusters with sufficient capacity. However, not everyone with
large-data problems can afford to purchase and maintain clusters. This is where utility computing
comes in: clusters of sufficient size can be provisioned only when the need arises, and users pay only
as much as is required to solve their problems. This lowers the barrier to entry for data-intensive
processing and makes MapReduce much more accessible.

A generalization of the utility computing concept is “everything as a service”, which is itself a
new take on the age-old idea of outsourcing. A cloud provider offering customers access to virtual
machine instances is said to be offering infrastructure as a service, or IaaS for short. However, this
may be too low level for many users. Enter platform as a service (PaaS), which is a rebranding of what
used to be called hosted services in the “pre-cloud” era. Platform is used generically to refer to any
set of well-defined services on top of which users can build applications, deploy content, etc. This
class of services is best exemplified by Google App Engine, which provides the backend datastore
and API for anyone to build highly scalable web applications. Google maintains the infrastructure,

8 1. INTRODUCTION

freeing the user from having to backup, upgrade, patch, or otherwise maintain basic services such
as the storage layer or the programming environment. At an even higher level, cloud providers can
offer software as a service (SaaS), as exemplified by Salesforce, a leader in customer relationship
management (CRM) software. Other examples include outsourcing an entire organization’s email
to a third party, which is commonplace today.

What does this proliferation of services have to do with MapReduce? No doubt that “ev-
erything as a service” is driven by desires for greater business efficiencies, but scale and elasticity
play important roles as well. The cloud allows seamless expansion of operations without the need
for careful planning and supports scales that may otherwise be difficult or cost-prohibitive for an
organization to achieve. Cloud services, just like MapReduce, represent the search for an appro-
priate level of abstraction and beneficial divisions of labor. IaaS is an abstraction over raw physical
hardware—an organization might lack the capital, expertise, or interest in running datacenters, and
therefore pays a cloud provider to do so on its behalf. The argument applies similarly to PaaS and
SaaS. In the same vein, the MapReduce programming model is a powerful abstraction that separates
the what from the how of data-intensive processing.

1.2 BIG IDEAS

Tackling large-data problems requires a distinct approach that sometimes runs counter to traditional
models of computing. In this section, we discuss a number of “big ideas” behind MapReduce. To be
fair, all of these ideas have been discussed in the computer science literature for some time (some for
decades), and MapReduce is certainly not the first to adopt these ideas. Nevertheless, the engineers
at Google deserve tremendous credit for pulling these various threads together and demonstrating
the power of these ideas on a scale previously unheard of.

Scale “out”, not “up”. For data-intensive workloads, a large number of commodity low-end servers
(i.e., the scaling “out” approach) is preferred over a small number of high-end servers (i.e., the scaling
“up” approach).The latter approach of purchasing symmetric multi-processing (SMP) machines with
a large number of processor sockets (dozens, even hundreds) and a large amount of shared memory
(hundreds or even thousands of gigabytes) is not cost effective, since the costs of such machines do
not scale linearly (i.e., a machine with twice as many processors is often significantly more than twice
as expensive). On the other hand, the low-end server market overlaps with the high-volume desktop
computing market, which has the effect of keeping prices low due to competition, interchangeable
components, and economies of scale.

Barroso and Hölzle’s recent treatise of what they dubbed “warehouse-scale computers” [18]
contains a thoughtful analysis of the two approaches. The Transaction Processing Council (TPC)
is a neutral, non-profit organization whose mission is to establish objective database benchmarks.
Benchmark data submitted to that organization are probably the closest one can get to a fair “apples-
to-apples” comparison of cost and performance for specific, well-defined relational processing appli-
cations. Based on TPC-C benchmark results from late 2007, a low-end server platform is about four

1.2. BIG IDEAS 9

times more cost efficient than a high-end shared memory platform from the same vendor. Excluding
storage costs, the price/performance advantage of the low-end server increases to about a factor of
twelve.

What if we take into account the fact that communication between nodes in a high-end
SMP machine is orders of magnitude faster than communication between nodes in a commodity
network-based cluster? Since workloads today are beyond the capability of any single machine (no
matter how powerful), the comparison is more accurately between a smaller cluster of high-end
machines and a larger cluster of low-end machines (network communication is unavoidable in both
cases). Barroso and Hölzle model these two approaches under workloads that demand more or
less communication, and conclude that a cluster of low-end servers approaches the performance of
the equivalent cluster of high-end servers—the small performance gap is insufficient to justify the
price premium of the high-end servers. For data-intensive applications, the conclusion appears to
be clear: scaling “out” is superior to scaling “up”, and therefore most existing implementations of the
MapReduce programming model are designed around clusters of low-end commodity servers.

Capital costs in acquiring servers is, of course, only one component of the total cost of de-
livering computing capacity. Operational costs are dominated by the cost of electricity to power
the servers as well as other aspects of datacenter operations that are functionally related to power:
power distribution, cooling, etc. [18; 67]. As a result, energy efficiency has become a key issue in
building warehouse-scale computers for large-data processing. Therefore, it is important to factor in
operational costs when deploying a scale-out solution based on large numbers of commodity servers.

Datacenter efficiency is typically factored into three separate components that can be inde-
pendently measured and optimized [18]. The first component measures how much of a building’s
incoming power is actually delivered to computing equipment, and correspondingly, how much is
lost to the building’s mechanical systems (e.g., cooling, air handling) and electrical infrastructure
(e.g., power distribution inefficiencies). The second component measures how much of a server’s
incoming power is lost to the power supply, cooling fans, etc. The third component captures how
much of the power delivered to computing components (processor, RAM, disk, etc.) is actually used
to perform useful computations.

Of the three components of datacenter efficiency, the first two are relatively straightforward
to objectively quantify. Adoption of industry best-practices can help datacenter operators achieve
state-of-the-art efficiency. The third component, however, is much more difficult to measure. One
important issue that has been identified is the non-linearity between load and power draw. That is,
a server at 10% utilization may draw slightly more than half as much power as a server at 100%
utilization (which means that a lightly loaded server is much less efficient than a heavily loaded
server). A survey of five thousand Google servers over a six-month period shows that servers operate
most of the time at between 10% and 50% utilization [17], which is an energy-inefficient operating
region. As a result, Barroso and Hölzle have advocated for research and development in energy-
proportional machines, where energy consumption would be proportional to load, such that an

10 1. INTRODUCTION

idle processor would (ideally) consume no power, but yet retain the ability to power up (nearly)
instantaneously in response to demand.

Although we have provided a brief overview here, datacenter efficiency is a topic that is beyond
the scope of this book. For more details, consult Barroso and Hölzle [18] and Hamilton [67], who
provide detailed cost models for typical modern datacenters. However, even factoring in operational
costs, evidence suggests that scaling out remains more attractive than scaling up.

Assume failures are common. At warehouse scale, failures are not only inevitable, but commonplace.
A simple calculation suffices to demonstrate: let us suppose that a cluster is built from reliable
machines with a mean-time between failures (MTBF) of 1000 days (about three years). Even with
these reliable servers, a 10,000-server cluster would still experience roughly 10 failures a day. For
the sake of argument, let us suppose that a MTBF of 10,000 days (about 30 years) were achievable
at realistic costs (which is unlikely). Even then, a 10,000-server cluster would still experience one
failure daily. This means that any large-scale service that is distributed across a large cluster (either a
user-facing application or a computing platform like MapReduce) must cope with hardware failures
as an intrinsic aspect of its operation [66]. That is, a server may fail at any time, without notice. For
example, in large clusters disk failures are common [123] and RAM experiences more errors than
one might expect [135]. Datacenters suffer from both planned outages (e.g., system maintenance
and hardware upgrades) and unexpected outages (e.g., power failure, connectivity loss, etc.).

A well-designed, fault-tolerant service must cope with failures up to a point without impacting
the quality of service—failures should not result in inconsistencies or indeterminism from the user
perspective. As servers go down, other cluster nodes should seamlessly step in to handle the load,
and overall performance should gracefully degrade as server failures pile up. Just as important, a
broken server that has been repaired should be able to seamlessly rejoin the service without manual
reconfiguration by the administrator. Mature implementations of the MapReduce programming
model are able to robustly cope with failures through a number of mechanisms such as automatic
task restarts on different cluster nodes.

Move processing to the data. In traditional high-performance computing (HPC) applications (e.g.,
for climate or nuclear simulations), it is commonplace for a supercomputer to have “processing nodes”
and “storage nodes” linked together by a high-capacity interconnect. Many data-intensive workloads
are not very processor-demanding, which means that the separation of compute and storage creates
a bottleneck in the network. As an alternative to moving data around, it is more efficient to move
the processing around. That is, MapReduce assumes an architecture where processors and storage
(disk) are co-located. In such a setup, we can take advantage of data locality by running code on the
processor directly attached to the block of data we need. The distributed file system is responsible
for managing the data over which MapReduce operates.

Process data sequentially and avoid random access. Data-intensive processing by definition means
that the relevant datasets are too large to fit in memory and must be held on disk. Seek times for
random disk access are fundamentally limited by the mechanical nature of the devices: read heads

1.2. BIG IDEAS 11

can only move so fast and platters can only spin so rapidly. As a result, it is desirable to avoid
random data access, and instead organize computations so that data are processed sequentially. A
simple scenario10 poignantly illustrates the large performance gap between sequential operations
and random seeks: assume a 1 terabyte database containing 1010 100-byte records. Given reasonable
assumptions about disk latency and throughput, a back-of-the-envelop calculation will show that
updating 1% of the records (by accessing and then mutating each record) will take about a month
on a single machine. On the other hand, if one simply reads the entire database and rewrites all
the records (mutating those that need updating), the process would finish in under a work day on
a single machine. Sequential data access is, literally, orders of magnitude faster than random data
access.11

The development of solid-state drives is unlikely to change this balance for at least two
reasons. First, the cost differential between traditional magnetic disks and solid-state disks remains
substantial: large-data will for the most part remain on mechanical drives, at least in the near
future. Second, although solid-state disks have substantially faster seek times, order-of-magnitude
differences in performance between sequential and random access still remain.

MapReduce is primarily designed for batch processing over large datasets. To the extent
possible, all computations are organized into long streaming operations that take advantage of the
aggregate bandwidth of many disks in a cluster. Many aspects of MapReduce’s design explicitly trade
latency for throughput.

Hide system-level details from the application developer. According to many guides on the practice
of software engineering written by experienced industry professionals, one of the key reasons why
writing code is difficult is because the programmer must simultaneously keep track of many details
in short-term memory—ranging from the mundane (e.g., variable names) to the sophisticated (e.g.,
a corner case of an algorithm that requires special treatment). This imposes a high cognitive load
and requires intense concentration, which leads to a number of recommendations about a program-
mer’s environment (e.g., quiet office, comfortable furniture, large monitors, etc.). The challenges in
writing distributed software are greatly compounded—the programmer must manage details across
several threads, processes, or machines. Of course, the biggest headache in distributed programming
is that code runs concurrently in unpredictable orders, accessing data in unpredictable patterns.
This gives rise to race conditions, deadlocks, and other well-known problems. Programmers are
taught to use low-level devices such as mutexes and to apply high-level “design patterns” such as
producer–consumer queues to tackle these challenges, but the truth remains: concurrent programs
are notoriously difficult to reason about and even harder to debug.

MapReduce addresses the challenges of distributed programming by providing an abstraction
that isolates the developer from system-level details (e.g., locking of data structures, data starvation
issues in the processing pipeline, etc.). The programming model specifies simple and well-defined
interfaces between a small number of components, and therefore is easy for the programmer to reason

10Adapted from a post by Ted Dunning on the Hadoop mailing list.
11For more detail, Jacobs [76] provides real-world benchmarks in his discussion of large-data problems.

12 1. INTRODUCTION

about. MapReduce maintains a separation of what computations are to be performed and how those
computations are actually carried out on a cluster of machines. The first is under the control of
the programmer, while the second is exclusively the responsibility of the execution framework or
“runtime”.The advantage is that the execution framework only needs to be designed once and verified
for correctness—thereafter, as long as the developer expresses computations in the programming
model, code is guaranteed to behave as expected. The upshot is that the developer is freed from
having to worry about system-level details (e.g., no more debugging race conditions and addressing
lock contention) and can instead focus on algorithm or application design.

Seamless scalability. For data-intensive processing, it goes without saying that scalable algorithms
are highly desirable. As an aspiration, let us sketch the behavior of an ideal algorithm. We can define
scalability along at least two dimensions.12 First, in terms of data: given twice the amount of data,
the same algorithm should take at most twice as long to run, all else being equal. Second, in terms of
resources: given a cluster twice the size, the same algorithm should take no more than half as long to
run. Furthermore, an ideal algorithm would maintain these desirable scaling characteristics across
a wide range of settings: on data ranging from gigabytes to petabytes, on clusters consisting of a
few to a few thousand machines. Finally, the ideal algorithm would exhibit these desired behaviors
without requiring any modifications whatsoever, not even tuning of parameters.

Other than for embarrassingly parallel problems, algorithms with the characteristics sketched
above are, of course, unobtainable. One of the fundamental assertions in Fred Brook’s classic The
Mythical Man-Month [28] is that adding programmers to a project behind schedule will only make it
fall further behind.This is because complex tasks cannot be chopped into smaller pieces and allocated
in a linear fashion, and is often illustrated with a cute quote: “nine women cannot have a baby in
one month”. Although Brook’s observations are primarily about software engineers and the software
development process, the same is also true of algorithms: increasing the degree of parallelization
also increases communication costs. The algorithm designer is faced with diminishing returns, and
beyond a certain point, greater efficiencies gained by parallelization are entirely offset by increased
communication requirements.

Nevertheless, these fundamental limitations shouldn’t prevent us from at least striving for the
unobtainable. The truth is that most current algorithms are far from the ideal. In the domain of text
processing, for example, most algorithms today assume that data fit in memory on a single machine.
For the most part, this is a fair assumption. But what happens when the amount of data doubles in the
near future, and then doubles again shortly thereafter? Simply buying more memory is not a viable
solution, as the amount of data is growing faster than the price of memory is falling. Furthermore,
the price of a machine does not scale linearly with the amount of available memory beyond a certain
point (once again, the scaling “up” vs. scaling “out” argument). Quite simply, algorithms that require
holding intermediate data in memory on a single machine will break on sufficiently large datasets—
moving from a single machine to a cluster architecture requires fundamentally different algorithms
(and reimplementations).

12See also DeWitt and Gray [50] for slightly different definitions in terms of speedup and scaleup.

1.3. WHY IS THIS DIFFERENT? 13

Perhaps the most exciting aspect of MapReduce is that it represents a small step toward
algorithms that behave in the ideal manner discussed above. Recall that the programming model
maintains a clear separation between what computations need to occur with how those computations
are actually orchestrated on a cluster. As a result, a MapReduce algorithm remains fixed, and it is
the responsibility of the execution framework to execute the algorithm. Amazingly, the MapReduce
programming model is simple enough that it is actually possible, in many circumstances, to approach
the ideal scaling characteristics discussed above. We introduce the idea of the “tradeable machine
hour”, as a play on Brook’s classic title. If running an algorithm on a particular dataset takes 100
machine hours, then we should be able to finish in an hour on a cluster of 100 machines, or use a
cluster of 10 machines to complete the same task in ten hours.13 With MapReduce, this isn’t so far
from the truth, at least for some applications.

1.3 WHY IS THIS DIFFERENT?

“Due to the rapidly decreasing cost of processing, memory, and communication, it has
appeared inevitable for at least two decades that parallel machines will eventually displace
sequential ones in computationally intensive domains.This,however,has not happened.”
— Leslie Valiant [148]14

For several decades, computer scientists have predicted that the dawn of the age of parallel
computing was “right around the corner” and that sequential processing would soon fade into obso-
lescence (consider, for example, the above quote). Yet, until very recently, they have been wrong. The
relentless progress of Moore’s Law for several decades has ensured that most of the world’s prob-
lems could be solved by single-processor machines, save the needs of a few (scientists simulating
molecular interactions or nuclear reactions, for example). Couple that with the inherent challenges
of concurrency, and the result has been that parallel processing and distributed systems have largely
been confined to a small segment of the market and esoteric upper-level electives in the computer
science curriculum.

However, all of that changed around the middle of the first decade of this century. The
manner in which the semiconductor industry had been exploiting Moore’s Law simply ran out
of opportunities for improvement: faster clocks, deeper pipelines, superscalar architectures, and
other tricks of the trade reached a point of diminishing returns that did not justify continued
investment. This marked the beginning of an entirely new strategy and the dawn of the multi-core
era [115]. Unfortunately, this radical shift in hardware architecture was not matched at that time by
corresponding advances in how software could be easily designed for these new processors (but not
for lack of trying [104]). Nevertheless, parallel processing became an important issue at the forefront
of everyone’s mind—it represented the only way forward.

13Note that this idea meshes well with utility computing, where a 100-machine cluster running for one hour would cost the same
as a 10-machine cluster running for ten hours.

14Guess when this was written? You may be surprised.

14 1. INTRODUCTION

At around the same time, we witnessed the growth of large-data problems. In the late 1990s
and even during the beginning of the first decade of this century, relatively few organizations had data-
intensive processing needs that required large clusters: a handful of internet companies and perhaps
a few dozen large corporations. But then, everything changed. Through a combination of many
different factors (falling prices of disks, rise of user-generated web content, etc.), large-data problems
began popping up everywhere. Data-intensive processing needs became widespread, which drove
innovations in distributed computing such as MapReduce—first by Google, and then by Yahoo and
the open source community. This in turn created more demand: when organizations learned about
the availability of effective data analysis tools for large datasets, they began instrumenting various
business processes to gather even more data—driven by the belief that more data lead to deeper
insights and greater competitive advantages. Today, not only are large-data problems ubiquitous,
but technological solutions for addressing them are widely accessible. Anyone can download the
open-source Hadoop implementation of MapReduce, pay a modest fee to rent a cluster from a
utility cloud provider, and be happily processing terabytes upon terabytes of data within the week.
Finally, the computer scientists are right—the age of parallel computing has begun, both in terms of
multiple cores in a chip and multiple machines in a cluster (each of which often has multiple cores).

Why is MapReduce important? In practical terms, it provides a very effective tool for tackling
large-data problems. But beyond that, MapReduce is important in how it has changed the way
we organize computations at a massive scale. MapReduce represents the first widely adopted step
away from the von Neumann model that has served as the foundation of computer science over
the last half plus century. Valiant called this a bridging model [148], a conceptual bridge between
the physical implementation of a machine and the software that is to be executed on that machine.
Until recently, the von Neumann model has served us well: Hardware designers focused on efficient
implementations of the von Neumann model and didn’t have to think much about the actual soft-
ware that would run on the machines. Similarly, the software industry developed software targeted
at the model without worrying about the hardware details. The result was extraordinary growth:
chip designers churned out successive generations of increasingly powerful processors, and software
engineers were able to develop applications in high-level languages that exploited those processors.

Today, however, the von Neumann model isn’t sufficient anymore: we can’t treat a multi-core
processor or a large cluster as an agglomeration of many von Neumann machine instances commu-
nicating over some interconnect. Such a view places too much burden on the software developer
to effectively take advantage of available computational resources—it simply is the wrong level of
abstraction. MapReduce can be viewed as the first breakthrough in the quest for new abstractions
that allow us to organize computations, not over individual machines, but over entire clusters. As
Barroso puts it, the datacenter is the computer [18; 119].

To be fair, MapReduce is certainly not the first model of parallel computation that has been
proposed. The most prevalent model in theoretical computer science, which dates back several
decades, is the PRAM [60; 77].15 In the model, an arbitrary number of processors, sharing an

15More than a theoretical model, the PRAM has been recently prototyped in hardware [153].

1.4. WHAT THIS BOOK IS NOT 15

unboundedly large memory, operate synchronously on a shared input to produce some output.
Other models include LogP [43] and BSP [148]. For reasons that are beyond the scope of this book,
none of these previous models have enjoyed the success that MapReduce has in terms of adoption
and in terms of impact on the daily lives of millions of users.16

MapReduce is the most successful abstraction over large-scale computational resources we
have seen to date. However, as anyone who has taken an introductory computer science course
knows, abstractions manage complexity by hiding details and presenting well-defined behaviors to
users of those abstractions. They, inevitably, are imperfect—making certain tasks easier but others
more difficult, and sometimes, impossible (in the case where the detail suppressed by the abstraction
is exactly what the user cares about).This critique applies to MapReduce: it makes certain large-data
problems easier, but suffers from limitations as well. This means that MapReduce is not the final
word, but rather the first in a new class of programming models that will allow us to more effectively
organize computations at a massive scale.

So if MapReduce is only the beginning, what’s next beyond MapReduce? We’re getting ahead
of ourselves, as we can’t meaningfully answer this question before thoroughly understanding what
MapReduce can and cannot do well. This is exactly the purpose of this book: let us now begin our
exploration.

1.4 WHAT THIS BOOK IS NOT
Actually, not quite yet…A final word before we get started.This book is about MapReduce algorithm
design, particularly for text processing (and related) applications. Although our presentation most
closely follows the Hadoop open-source implementation of MapReduce, this book is explicitly not
about Hadoop programming. We don’t, for example, discuss APIs, command-line invocations for
running jobs, etc. For those aspects, we refer the reader to Tom White’s excellent book, “Hadoop:
The Definitive Guide” [154].

16Nevertheless, it is important to understand the relationship between MapReduce and existing models so that we can bring to
bear accumulated knowledge about parallel algorithms; for example, Karloff et al. [82] demonstrated that a large class of PRAM
algorithms can be efficiently simulated via MapReduce.

17

C H A P T E R 2

MapReduce Basics
The only feasible approach to tackling large-data problems today is to divide and conquer, a funda-
mental concept in computer science that is introduced very early in typical undergraduate curricula.
The basic idea is to partition a large problem into smaller sub-problems. To the extent that the
sub-problems are independent [5], they can be tackled in parallel by different workers—threads in a
processor core, cores in a multi-core processor, multiple processors in a machine, or many machines
in a cluster. Intermediate results from each individual worker are then combined to yield the final
output.1

The general principles behind divide-and-conquer algorithms are broadly applicable to a wide
range of problems in many different application domains. However, the details of their implemen-
tations are varied and complex. For example, the following are just some of the issues that need to
be addressed:

• How do we break up a large problem into smaller tasks? More specifically, how do we decom-
pose the problem so that the smaller tasks can be executed in parallel?

• How do we assign tasks to workers distributed across a potentially large number of machines
(while keeping in mind that some workers are better suited to running some tasks than others,
e.g., due to available resources, locality constraints, etc.)?

• How do we ensure that the workers get the data they need?

• How do we coordinate synchronization among the different workers?

• How do we share partial results from one worker that is needed by another?

• How do we accomplish all of the above in the face of software errors and hardware faults?

In traditional parallel or distributed programming environments, the developer needs to ex-
plicitly address many (and sometimes, all) of the above issues. In shared memory programming, the
developer needs to explicitly coordinate access to shared data structures through synchronization
primitives such as mutexes, to explicitly handle process synchronization through devices such as
barriers, and to remain ever vigilant for common problems such as deadlocks and race conditions.
Language extensions, like OpenMP for shared memory parallelism,2 or libraries implementing the
1We note that promising technologies such as quantum or biological computing could potentially induce a paradigm shift, but
they are far from being sufficiently mature to solve real-world problems.

2http://www.openmp.org/

http://www.openmp.org/

18 2. MAPREDUCE BASICS

Message Passing Interface (MPI) for cluster-level parallelism,3 provide logical abstractions that hide
details of operating system synchronization and communications primitives. However, even with
these extensions, developers are still burdened to keep track of how resources are made available to
workers. Additionally, these frameworks are mostly designed to tackle processor-intensive problems
and have only rudimentary support for dealing with very large amounts of input data. When using
existing parallel computing approaches for large-data computation, the programmer must devote a
significant amount of attention to low-level system details, which detracts from higher-level problem
solving.

One of the most significant advantages of MapReduce is that it provides an abstraction that
hides many system-level details from the programmer. Therefore, a developer can focus on what
computations need to be performed, as opposed to how those computations are actually carried out
or how to get the data to the processes that depend on them. Like OpenMP and MPI, MapReduce
provides a means to distribute computation without burdening the programmer with the details of
distributed computing (but at a different level of granularity). However, organizing and coordinating
large amounts of computation is only part of the challenge. Large-data processing by definition
requires bringing data and code together for computation to occur—no small feat for datasets that
are terabytes and perhaps petabytes in size! MapReduce addresses this challenge by providing a
simple abstraction for the developer, transparently handling most of the details behind the scenes
in a scalable, robust, and efficient manner. As we mentioned in Chapter 1, instead of moving large
amounts of data around, it is far more efficient, if possible, to move the code to the data. This is
operationally realized by spreading data across the local disks of nodes in a cluster and running
processes on nodes that hold the data. The complex task of managing storage in such a processing
environment is typically handled by a distributed file system that sits underneath MapReduce.

This chapter introduces the MapReduce programming model and the underlying distributed
file system. We start in Section 2.1 with an overview of functional programming, from which
MapReduce draws its inspiration. Section 2.2 introduces the basic programming model, focusing
on mappers and reducers. Section 2.3 discusses the role of the execution framework in actually
running MapReduce programs (called jobs). Section 2.4 fills in additional details by introducing
partitioners and combiners, which provide greater control over data flow. MapReduce would not be
practical without a tightly-integrated distributed file system that manages the data being processed;
Section 2.5 covers this in detail.Tying everything together,a complete cluster architecture is described
in Section 2.6 before the chapter ends with a summary.

2.1 FUNCTIONAL PROGRAMMING ROOTS
MapReduce has its roots in functional programming, which is exemplified in languages such as Lisp
and ML.4 A key feature of functional languages is the concept of higher-order functions, or functions

3http://www.mcs.anl.gov/mpi/
4However, there are important characteristics of MapReduce that make it non-functional in nature—this will become apparent
later.

http://www.mcs.anl.gov/mpi/

2.1. FUNCTIONAL PROGRAMMING ROOTS 19

f f f f f

g g g g g

Figure 2.1: Illustration of map and fold, two higher-order functions commonly used together in functional
programming: map takes a function f and applies it to every element in a list, while fold iteratively applies
a function g to aggregate results.

that can accept other functions as arguments. Two common built-in higher order functions are map
and fold, illustrated in Figure 2.1. Given a list, map takes as an argument a function f (that takes a
single argument) and applies it to all elements in a list (the top part of the diagram). Given a list,
fold takes as arguments a function g (that takes two arguments) and an initial value: g is first applied
to the initial value and the first item in the list, the result of which is stored in an intermediate
variable. This intermediate variable and the next item in the list serve as the arguments to a second
application of g, the results of which are stored in the intermediate variable. This process repeats
until all items in the list have been consumed; fold then returns the final value of the intermediate
variable.Typically, map and fold are used in combination. For example, to compute the sum of squares
of a list of integers, one could map a function that squares its argument (i.e., λx.x2) over the input
list, and then fold the resulting list with the addition function (more precisely, λxλy.x + y) using
an initial value of zero.

We can view map as a concise way to represent the transformation of a dataset (as defined
by the function f). In the same vein, we can view fold as an aggregation operation, as defined by
the function g. One immediate observation is that the application of f to each item in a list (or
more generally, to elements in a large dataset) can be parallelized in a straightforward manner, since
each functional application happens in isolation. In a cluster, these operations can be distributed
across many different machines. The fold operation, on the other hand, has more restrictions on
data locality—elements in the list must be “brought together” before the function g can be applied.
However, many real-world applications do not require g to be applied to all elements of the list. To
the extent that elements in the list can be divided into groups, the fold aggregations can also proceed

20 2. MAPREDUCE BASICS

in parallel. Furthermore, for operations that are commutative and associative, significant efficiencies
can be gained in the fold operation through local aggregation and appropriate reordering.

In a nutshell, we have described MapReduce. The map phase in MapReduce roughly corre-
sponds to the map operation in functional programming, whereas the reduce phase in MapReduce
roughly corresponds to the fold operation in functional programming. As we will discuss in detail
shortly, the MapReduce execution framework coordinates the map and reduce phases of processing
over large amounts of data on large clusters of commodity machines.

Viewed from a slightly different angle, MapReduce codifies a generic “recipe” for processing
large datasets that consists of two stages. In the first stage, a user-specified computation is applied
over all input records in a dataset. These operations occur in parallel and yield intermediate output
that is then aggregated by another user-specified computation. The programmer defines these two
types of computations, and the execution framework coordinates the actual processing (very loosely,
MapReduce provides a functional abstraction). Although such a two-stage processing structure may
appear to be very restrictive,many interesting algorithms can be expressed quite concisely—especially
if one decomposes complex algorithms into a sequence of MapReduce jobs. Subsequent chapters in
this book focus on how a number of algorithms can be implemented in MapReduce.

To be precise, MapReduce can refer to three distinct but related concepts. First, MapReduce
is a programming model, which is the sense discussed above. Second, MapReduce can refer to the
execution framework (i.e., the “runtime”) that coordinates the execution of programs written in this
particular style. Finally, MapReduce can refer to the software implementation of the programming
model and the execution framework: for example, Google’s proprietary implementation vs. the
open-source Hadoop implementation in Java. And, in fact, there are many implementations of
MapReduce, e.g., targeted specifically for multi-core processors [127], for GPGPUs [71], for the
CELL architecture [126], etc. There are some differences between the MapReduce programming
model implemented in Hadoop and Google’s proprietary implementation, which we will explicitly
discuss throughout the book. However, we take a rather Hadoop-centric view of MapReduce, since
Hadoop remains the most mature and accessible implementation to date, and therefore the one most
developers are likely to use.

2.2 MAPPERS AND REDUCERS
Key-value pairs form the basic data structure in MapReduce. Keys and values may be primitives such
as integers, floating point values, strings, and raw bytes, or they may be arbitrarily complex structures
(lists, tuples, associative arrays, etc.). Programmers typically need to define their own custom data
types, although a number of libraries such as Protocol Buffers,5 Thrift,6 and Avro7 simplify the task.

Part of the design of MapReduce algorithms involves imposing the key-value structure on
arbitrary datasets. For a collection of web pages, keys may be URLs and values may be the actual

5http://code.google.com/p/protobuf/
6http://incubator.apache.org/thrift/
7http://hadoop.apache.org/avro/

2.2. MAPPERS AND REDUCERS 21

HTML content. For a graph, keys may represent node ids and values may contain the adjacency lists
of those nodes (see Chapter 5 for more details). In some algorithms, input keys are not particularly
meaningful and are simply ignored during processing, while in other cases input keys are used to
uniquely identify a datum (such as a record id). In Chapter 3, we discuss the role of complex keys
and values in the design of various algorithms.

In MapReduce, the programmer defines a mapper and a reducer with the following signatures:

map: (k1, v1)→ [(k2, v2)]
reduce: (k2, [v2])→ [(k3, v3)]

The convention [. . .] is used throughout this book to denote a list. The input to a MapReduce
job starts as data stored on the underlying distributed file system (see Section 2.5). The mapper
is applied to every input key-value pair (split across an arbitrary number of files) to generate an
arbitrary number of intermediate key-value pairs.The reducer is applied to all values associated with
the same intermediate key to generate output key-value pairs.8 Implicit between the map and reduce
phases is a distributed “group by” operation on intermediate keys. Intermediate data arrive at each
reducer in order, sorted by the key. However, no ordering relationship is guaranteed for keys across
different reducers. Output key-value pairs from each reducer are written persistently back onto the
distributed file system (whereas intermediate key-value pairs are transient and not preserved). The
output ends up in r files on the distributed file system, where r is the number of reducers. For the
most part, there is no need to consolidate reducer output, since the r files often serve as input to yet
another MapReduce job. Figure 2.2 illustrates this two-stage processing structure.

A simple word count algorithm in MapReduce is shown in Figure 2.3. This algorithm counts
the number of occurrences of every word in a text collection, which may be the first step in, for
example, building a unigram language model (i.e., probability distribution over words in a collection).
Input key-values pairs take the form of (docid, doc) pairs stored on the distributed file system, where
the former is a unique identifier for the document, and the latter is the text of the document itself.
The mapper takes an input key-value pair, tokenizes the document, and emits an intermediate key-
value pair for every word: the word itself serves as the key, and the integer one serves as the value
(denoting that we’ve seen the word once). The MapReduce execution framework guarantees that
all values associated with the same key are brought together in the reducer. Therefore, in our word
count algorithm, we simply need to sum up all counts (ones) associated with each word.The reducer
does exactly this, and emits final key-value pairs with the word as the key, and the count as the value.
Final output is written to the distributed file system, one file per reducer. Words within each file will
be sorted by alphabetical order, and each file will contain roughly the same number of words. The
partitioner, which we discuss later in Section 2.4, controls the assignment of words to reducers. The
output can be examined by the programmer or used as input to another MapReduce program.

There are some differences between the Hadoop implementation of MapReduce and Google’s
implementation.9 In Hadoop, the reducer is presented with a key and an iterator over all values
8This characterization, while conceptually accurate, is a slight simplification. See Section 2.6 for more details.
9Personal communication, Jeff Dean.

22 2. MAPREDUCE BASICS

A B C D E F! " # $ % &

b1 2 3 6 5 2 b 7 8

mapper mapper mapper mapper

Shuffle and Sort: aggregate values by keys

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 9 8

reducer reducer reducer

X 5 Y 7 Z 9

Figure 2.2: Simplified view of MapReduce. Mappers are applied to all input key-value pairs, which
generate an arbitrary number of intermediate key-value pairs. Reducers are applied to all values associated
with the same key. Between the map and reduce phases lies a barrier that involves a large distributed sort
and group by.

1: class Mapper
2: method Map(docid a, doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: sum← sum + c

6: Emit(term t, count sum)

Figure 2.3: Pseudo-code for the word count algorithm in MapReduce.The mapper emits an intermediate
key-value pair for each word in a document. The reducer sums up all counts for each word.

2.2. MAPPERS AND REDUCERS 23

associated with the particular key.The values are arbitrarily ordered. Google’s implementation allows
the programmer to specify a secondary sort key for ordering the values (if desired)—in which case
values associated with each key would be presented to the developer’s reduce code in sorted order.
Later in Section 3.4 we discuss how to overcome this limitation in Hadoop to perform secondary
sorting. Another difference: in Google’s implementation the programmer is not allowed to change
the key in the reducer. That is, the reducer output key must be exactly the same as the reducer input
key. In Hadoop, there is no such restriction, and the reducer can emit an arbitrary number of output
key-value pairs (with different keys).

To provide a bit more implementation detail: pseudo-code provided in this book roughly
mirrors how MapReduce programs are written in Hadoop. Mappers and reducers are objects that
implement the Map and Reduce methods, respectively. In Hadoop, a mapper object is initialized
for each map task (associated with a particular sequence of key-value pairs called an input split)
and the Map method is called on each key-value pair by the execution framework. In configuring
a MapReduce job, the programmer provides a hint on the number of map tasks to run, but the
execution framework (see next section) makes the final determination based on the physical layout
of the data (more details in Section 2.5 and Section 2.6). The situation is similar for the reduce
phase: a reducer object is initialized for each reduce task, and the Reduce method is called once per
intermediate key. In contrast with the number of map tasks, the programmer can precisely specify the
number of reduce tasks. We will return to discuss the details of Hadoop job execution in Section 2.6,
which is dependent on an understanding of the distributed file system (covered in Section 2.5). To
reiterate: although the presentation of algorithms in this book closely mirrors the way they would
be implemented in Hadoop, our focus is on algorithm design and conceptual understanding—not
actual Hadoop programming. For that, we recommend Tom White’s book [154].

What are the restrictions on mappers and reducers? Mappers and reducers can express arbi-
trary computations over their inputs. However, one must generally be careful about use of external
resources since multiple mappers or reducers may be contending for those resources. For example,
it may be unwise for a mapper to query an external SQL database, since that would introduce a
scalability bottleneck on the number of map tasks that could be run in parallel (since they might
all be simultaneously querying the database).10 In general, mappers can emit an arbitrary number
of intermediate key-value pairs, and they need not be of the same type as the input key-value pairs.
Similarly, reducers can emit an arbitrary number of final key-value pairs, and they can differ in type
from the intermediate key-value pairs. Although not permitted in functional programming, mappers
and reducers can have side effects.This is a powerful and useful feature: for example, preserving state
across multiple inputs is central to the design of many MapReduce algorithms (see Chapter 3). Such
algorithms can be understood as having side effects that only change state that is internal to the
mapper or reducer. While the correctness of such algorithms may be more difficult to guarantee
(since the function’s behavior depends not only on the current input but on previous inputs), most
potential synchronization problems are avoided since internal state is private only to individual map-

10Unless, of course, the database itself is highly scalable.

24 2. MAPREDUCE BASICS

pers and reducers. In other cases (see Sections 4.4 and 6.5), it may be useful for mappers or reducers
to have external side effects, such as writing files to the distributed file system. Since many mappers
and reducers are run in parallel, and the distributed file system is a shared global resource, special
care must be taken to ensure that such operations avoid synchronization conflicts. One strategy is
to write a temporary file that is renamed upon successful completion of the mapper or reducer [45].

In addition to the “canonical” MapReduce processing flow, other variations are also possible.
MapReduce programs can contain no reducers, in which case mapper output is directly written to
disk (one file per mapper). For embarrassingly parallel problems, e.g., parse a large text collection or
independently analyze a large number of images, this would be a common pattern. The converse—a
MapReduce program with no mappers—is not possible, although in some cases it is useful for the
mapper to implement the identity function and simply pass input key-value pairs to the reducers.
This has the effect of sorting and regrouping the input for reduce-side processing. Similarly, in some
cases it is useful for the reducer to implement the identity function, in which case the program simply
sorts and groups mapper output. Finally, running identity mappers and reducers has the effect of
regrouping and resorting the input data (which is sometimes useful).

Although in the most common case, input to a MapReduce job comes from data stored on
the distributed file system and output is written back to the distributed file system, any other system
that satisfies the proper abstractions can serve as a data source or sink. With Google’s MapReduce
implementation, Bigtable [34], a sparse, distributed, persistent multidimensional sorted map, is
frequently used as a source of input and as a store of MapReduce output. HBase is an open-source
Bigtable clone and has similar capabilities. Also, Hadoop has been integrated with existing MPP
(massively parallel processing) relational databases, which allows a programmer to write MapReduce
jobs over database rows and dump output into a new database table.Finally, in some cases MapReduce
jobs may not consume any input at all (e.g., computing π) or may only consume a small amount of
data (e.g., input parameters to many instances of processor-intensive simulations running in parallel).

2.3 THE EXECUTION FRAMEWORK

One of the most important ideas behind MapReduce is separating the what of distributed processing
from the how. A MapReduce program, referred to as a job, consists of code for mappers and reducers
(as well as combiners and partitioners to be discussed in the next section) packaged together with
configuration parameters (such as where the input lies and where the output should be stored).
The developer submits the job to the submission node of a cluster (in Hadoop, this is called the
jobtracker) and execution framework (sometimes called the “runtime”) takes care of everything else:
it transparently handles all other aspects of distributed code execution, on clusters ranging from a
single node to a few thousand nodes. Specific responsibilities include:

Scheduling. Each MapReduce job is divided into smaller units called tasks (see Section 2.6 for
more details). For example, a map task may be responsible for processing a certain block of input
key-value pairs (called an input split in Hadoop); similarly, a reduce task may handle a portion of the

2.3. THE EXECUTION FRAMEWORK 25

intermediate key space. It is not uncommon for MapReduce jobs to have thousands of individual
tasks that need to be assigned to nodes in the cluster. In large jobs, the total number of tasks may
exceed the number of tasks that can be run on the cluster concurrently, making it necessary for
the scheduler to maintain some sort of a task queue and to track the progress of running tasks so
that waiting tasks can be assigned to nodes as they become available. Another aspect of scheduling
involves coordination among tasks belonging to different jobs (e.g., from different users). How can a
large, shared resource support several users simultaneously in a predictable, transparent,policy-driven
fashion? There has been some recent work along these lines in the context of Hadoop [131; 160].

Speculative execution is an optimization that is implemented by both Hadoop and Google’s
MapReduce implementation (called “backup tasks” [45]). Due to the barrier between the map and
reduce tasks, the map phase of a job is only as fast as the slowest map task. Similarly, the completion
time of a job is bounded by the running time of the slowest reduce task. As a result, the speed of
a MapReduce job is sensitive to what are known as stragglers, or tasks that take an usually long
time to complete. One cause of stragglers is flaky hardware: for example, a machine that is suffering
from recoverable errors may become significantly slower. With speculative execution, an identical
copy of the same task is executed on a different machine, and the framework simply uses the result
of the first task attempt to finish. Zaharia et al. [161] presented different execution strategies in
a recent paper, and Google reported that speculative execution can improve job running times by
44% [45].Although in Hadoop both map and reduce tasks can be speculatively executed, the common
wisdom is that the technique is more helpful for map tasks than reduce tasks, since each copy of the
reduce task needs to pull data over the network. Note, however, that speculative execution cannot
adequately address another common cause of stragglers: skew in the distribution of values associated
with intermediate keys (leading to reduce stragglers). In text processing we often observe Zipfian
distributions, which means that the task or tasks responsible for processing the most frequent few
elements will run much longer than the typical task. Better local aggregation, discussed in the next
chapter, is one possible solution to this problem.

Data/code co-location. The phrase data distribution is misleading, since one of the key ideas behind
MapReduce is to move the code, not the data. However, the more general point remains—in order
for computation to occur, we need to somehow feed data to the code. In MapReduce, this issue is
inextricably intertwined with scheduling and relies heavily on the design of the underlying distributed
file system.11 To achieve data locality, the scheduler starts tasks on the node that holds a particular
block of data (i.e., on its local drive) needed by the task. This has the effect of moving code to the
data. If this is not possible (e.g., a node is already running too many tasks), new tasks will be started
elsewhere, and the necessary data will be streamed over the network. An important optimization
here is to prefer nodes that are on the same rack in the datacenter as the node holding the relevant
data block, since inter-rack bandwidth is significantly less than intra-rack bandwidth.

11In the canonical case, that is. Recall that MapReduce may receive its input from other sources.

26 2. MAPREDUCE BASICS

Synchronization. In general, synchronization refers to the mechanisms by which multiple concur-
rently running processes “join up”, for example, to share intermediate results or otherwise exchange
state information. In MapReduce, synchronization is accomplished by a barrier between the map
and reduce phases of processing. Intermediate key-value pairs must be grouped by key, which is
accomplished by a large distributed sort involving all the nodes that executed map tasks and all the
nodes that will execute reduce tasks. This necessarily involves copying intermediate data over the
network, and therefore the process is commonly known as “shuffle and sort”. A MapReduce job
with m mappers and r reducers involves up to m× r distinct copy operations, since each mapper
may have intermediate output going to every reducer.

Note that the reduce computation cannot start until all the mappers have finished emitting
key-value pairs and all intermediate key-value pairs have been shuffled and sorted, since the ex-
ecution framework cannot otherwise guarantee that all values associated with the same key have
been gathered. This is an important departure from functional programming: in a fold operation,
the aggregation function g is a function of the intermediate value and the next item in the list—
which means that values can be lazily generated and aggregation can begin as soon as values are
available. In contrast, the reducer in MapReduce receives all values associated with the same key at
once. However, it is possible to start copying intermediate key-value pairs over the network to the
nodes running the reducers as soon as each mapper finishes—this is a common optimization and
implemented in Hadoop.

Error and fault handling. The MapReduce execution framework must accomplish all the tasks
above in an environment where errors and faults are the norm, not the exception. Since MapReduce
was explicitly designed around low-end commodity servers, the runtime must be especially resilient.
In large clusters, disk failures are common [123] and RAM experiences more errors than one might
expect [135]. Datacenters suffer from both planned outages (e.g., system maintenance and hardware
upgrades) and unexpected outages (e.g., power failure, connectivity loss, etc.).

And that’s just hardware. No software is bug free—exceptions must be appropriately trapped,
logged, and recovered from. Large-data problems have a penchant for uncovering obscure corner
cases in code that is otherwise thought to be bug-free. Furthermore, any sufficiently large dataset will
contain corrupted data or records that are mangled beyond a programmer’s imagination—resulting
in errors that one would never think to check for or trap. The MapReduce execution framework
must thrive in this hostile environment.

2.4 PARTITIONERS AND COMBINERS

We have thus far presented a simplified view of MapReduce.There are two additional elements that
complete the programming model: partitioners and combiners.

Partitioners are responsible for dividing up the intermediate key space and assigning inter-
mediate key-value pairs to reducers. In other words, the partitioner specifies the task to which an
intermediate key-value pair must be copied. Within each reducer, keys are processed in sorted order

2.4. PARTITIONERS AND COMBINERS 27

(which is how the “group by” is implemented).The simplest partitioner involves computing the hash
value of the key and then taking the mod of that value with the number of reducers. This assigns
approximately the same number of keys to each reducer (dependent on the quality of the hash func-
tion). Note, however, that the partitioner only considers the key and ignores the value—therefore, a
roughly even partitioning of the key space may nevertheless yield large differences in the number of
key-values pairs sent to each reducer (since different keys may have different numbers of associated
values).This imbalance in the amount of data associated with each key is relatively common in many
text processing applications due to the Zipfian distribution of word occurrences.

Combiners are an optimization in MapReduce that allow for local aggregation before the
shuffle and sort phase. We can motivate the need for combiners by considering the word count
algorithm in Figure 2.3, which emits a key-value pair for each word in the collection. Furthermore,
all these key-value pairs need to be copied across the network, and so the amount of intermediate data
will be larger than the input collection itself. This is clearly inefficient. One solution is to perform
local aggregation on the output of each mapper, i.e., to compute a local count for a word over all the
documents processed by the mapper. With this modification (assuming the maximum amount of
local aggregation possible), the number of intermediate key-value pairs will be at most the number
of unique words in the collection times the number of mappers (and typically far smaller because
each mapper may not encounter every word).

The combiner in MapReduce supports such an optimization. One can think of combiners as
“mini-reducers” that take place on the output of the mappers, prior to the shuffle and sort phase.
Each combiner operates in isolation and therefore does not have access to intermediate output from
other mappers. The combiner is provided keys and values associated with each key (the same types
as the mapper output keys and values). Critically, one cannot assume that a combiner will have the
opportunity to process all values associated with the same key.The combiner can emit any number of
key-value pairs, but the keys and values must be of the same type as the mapper output (same as the
reducer input).12 In cases where an operation is both associative and commutative (e.g., addition or
multiplication), reducers can directly serve as combiners. In general,however, reducers and combiners
are not interchangeable.

In many cases, proper use of combiners can spell the difference between an impractical algo-
rithm and an efficient algorithm.This topic will be discussed in Section 3.1, which focuses on various
techniques for local aggregation. It suffices to say for now that a combiner can significantly reduce
the amount of data that needs to be copied over the network, resulting in much faster algorithms.

The complete MapReduce model is shown in Figure 2.4. Output of the mappers is processed
by the combiners, which perform local aggregation to cut down on the number of intermediate key-
value pairs. The partitioner determines which reducer will be responsible for processing a particular

12A note on the implementation of combiners in Hadoop: by default, the execution framework reserves the right to use combiners at
its discretion. In reality, this means that a combiner may be invoked zero, one, or multiple times. In addition, combiners in Hadoop
may actually be invoked in the reduce phase, i.e., after key-value pairs have been copied over to the reducer, but before the user
reducer code runs. As a result, combiners must be carefully written so that they can be executed in these different environments.
Section 3.1.2 discusses this in more detail.

28 2. MAPREDUCE BASICS

A B C D E F! " # $ % &

mapper mapper mapper mapper

ba 1 2 c c3 6 a c5 2 b c7 8

combiner combiner combiner combiner

pp pp pp pp

ba 1 2 c 9 a c5 2 b c7 8

partitioner partitioner partitioner partitioner

Shuffle and Sort: aggregate values by keys

a 1 5 b 2 7 c 2 9 8

p p p p

reducer reducer reducer

X 5 Y 7 Z 9

Figure 2.4: Complete view of MapReduce, illustrating combiners and partitioners in addition to mappers
and reducers.Combiners can be viewed as “mini-reducers” in the map phase.Partitioners determine which
reducer is responsible for a particular key.

key, and the execution framework uses this information to copy the data to the right location
during the shuffle and sort phase.13 Therefore, a complete MapReduce job consists of code for the
mapper, reducer, combiner, and partitioner, along with job configuration parameters. The execution
framework handles everything else.

2.5 THE DISTRIBUTED FILE SYSTEM
So far, we have mostly focused on the processing aspect of data-intensive processing, but it is impor-
tant to recognize that without data, there is nothing to compute on. In high-performance computing
(HPC) and many traditional cluster architectures, storage is viewed as a distinct and separate com-
ponent from computation. Implementations vary widely, but network-attached storage (NAS) and
storage area networks (SAN) are common; supercomputers often have dedicated subsystems for
handling storage (separate nodes, and often even separate networks). Regardless of the details, the

13In Hadoop, partitioners are actually executed before combiners, so while Figure 2.4 is conceptually accurate, it doesn’t precisely
describe the Hadoop implementation.

2.5. THE DISTRIBUTED FILE SYSTEM 29

processing cycle remains the same at a high level: the compute nodes fetch input from storage, load
the data into memory, process the data, and then write back the results (with perhaps intermediate
checkpointing for long-running processes).

As dataset sizes increase, more compute capacity is required for processing. But as compute
capacity grows, the link between the compute nodes and the storage becomes a bottleneck. At
that point, one could invest in higher performance but more expensive networks (e.g., 10 gigabit
Ethernet) or special-purpose interconnects such as InfiniBand (even more expensive). In most cases,
this is not a cost-effective solution, as the price of networking equipment increases non-linearly
with performance (e.g., a switch with ten times the capacity is usually more than ten times more
expensive). Alternatively, one could abandon the separation of computation and storage as distinct
components in a cluster.The distributed file system (DFS) that underlies MapReduce adopts exactly
this approach.The Google File System (GFS) [57] supports Google’s proprietary implementation of
MapReduce; in the open-source world, HDFS (Hadoop Distributed File System) is an open-source
implementation of GFS that supports Hadoop. Although MapReduce doesn’t necessarily require
the distributed file system, it is difficult to realize many of the advantages of the programming model
without a storage substrate that behaves much like the DFS.14

Of course, distributed file systems are not new [7; 32; 74; 133; 147]. The MapReduce dis-
tributed file system builds on previous work but is specifically adapted to large-data processing
workloads, and therefore departs from previous architectures in certain respects (see discussion by
Ghemawat et al. [57] in the original GFS paper.). The main idea is to divide user data into blocks
and replicate those blocks across the local disks of nodes in the cluster. Blocking data, of course, is
not a new idea, but DFS blocks are significantly larger than block sizes in typical single-machine
file systems (64 MB by default). The distributed file system adopts a master–slave architecture in
which the master maintains the file namespace (metadata, directory structure, file to block mapping,
location of blocks, and access permissions) and the slaves manage the actual data blocks. In GFS,
the master is called the GFS master, and the slaves are called GFS chunkservers. In Hadoop, the
same roles are filled by the namenode and datanodes, respectively.15 This book adopts the Hadoop
terminology, although for most basic file operations GFS and HDFS work much the same way. The
architecture of HDFS is shown in Figure 2.5, redrawn from a similar diagram describing GFS [57].

In HDFS, an application client wishing to read a file (or a portion thereof) must first contact
the namenode to determine where the actual data is stored. In response to the client request, the
namenode returns the relevant block id and the location where the block is held (i.e.,which datanode).
The client then contacts the datanode to retrieve the data. Blocks are themselves stored on standard
single-machine file systems,so HDFS lies on top of the standard OS stack (e.g.,Linux).An important
feature of the design is that data is never moved through the namenode. Instead, all data transfer

14However, there is evidence that existing POSIX-based distributed cluster file systems (e.g., GPFS or PVFS) can serve as a replace-
ment for HDFS, when properly tuned or modified for MapReduce workloads [6; 146]. This, however, remains an experimental
use case.

15To be precise, namenode and datanode may refer to physical machines in a cluster, or they may refer to daemons running on those
machines providing the relevant services.

30 2. MAPREDUCE BASICS

HDFS namenode

(file name, block id)

(block id, block location)

HDFS namenode

File namespace
/foo/bar

block 3df2

Application

HDFS Client

instructions to datanode

datanode state
(block id, byte range)

block data
HDFS datanode

Linux file system

HDFS datanode

Linux file system

Figure 2.5: The architecture of HDFS. The namenode (master) is responsible for maintaining the file
namespace and directing clients to datanodes (slaves) that actually hold data blocks containing user data.

occurs directly between clients and datanodes; communication with the namenode only involves
transfer of metadata.

By default, HDFS stores three separate copies of each data block to ensure reliability, availabil-
ity, and performance. In large clusters, the three replicas are spread across different physical racks, so
HDFS is resilient towards two common failure scenarios: individual datanode crashes and failures in
networking equipment that bring an entire rack offline. Replicating blocks across physical machines
also increases opportunities to co-locate data and processing in the scheduling of MapReduce jobs,
since multiple copies yield more opportunities to exploit locality. The namenode is in periodic com-
munication with the datanodes to ensure proper replication of all the blocks: if there aren’t enough
replicas (e.g., due to disk or machine failures or to connectivity losses due to networking equipment
failures), the namenode directs the creation of additional copies;16 if there are too many replicas
(e.g., a repaired node rejoins the cluster), extra copies are discarded.

To create a new file and write data to HDFS, the application client first contacts the namenode,
which updates the file namespace after checking permissions and making sure the file doesn’t already
exist. The namenode allocates a new block on a suitable datanode, and the application is directed to
stream data directly to it. From the initial datanode, data is further propagated to additional replicas.
In the most recent release of Hadoop as of this writing (release 0.20.2), files are immutable—they
cannot be modified after creation. There are current plans to officially support file appends in the
near future, which is a feature already present in GFS.

In summary, the HDFS namenode has the following responsibilities:

16Note that the namenode coordinates the replication process, but data transfer occurs directly from datanode to datanode.

2.5. THE DISTRIBUTED FILE SYSTEM 31

• Namespace management. The namenode is responsible for maintaining the file namespace,
which includes metadata, directory structure, file to block mapping, location of blocks, and
access permissions. These data are held in memory for fast access and all mutations are per-
sistently logged.

• Coordinating file operations. The namenode directs application clients to datanodes for read
operations, and allocates blocks on suitable datanodes for write operations. All data trans-
fers occur directly between clients and datanodes. When a file is deleted, HDFS does not
immediately reclaim the available physical storage; rather, blocks are lazily garbage collected.

• Maintaining overall health of the file system. The namenode is in periodic contact with the
datanodes via heartbeat messages to ensure the integrity of the system. If the namenode
observes that a data block is under-replicated (fewer copies are stored on datanodes than the
desired replication factor), it will direct the creation of new replicas. Finally, the namenode
is also responsible for rebalancing the file system.17 During the course of normal operations,
certain datanodes may end up holding more blocks than others; rebalancing involves moving
blocks from datanodes with more blocks to datanodes with fewer blocks. This leads to better
load balancing and more even disk utilization.

Since GFS and HDFS were specifically designed to support Google’s proprietary and the open-
source implementation of MapReduce, respectively, they were designed with a number of assump-
tions about the operational environment, which in turn influenced the design of the systems. Un-
derstanding these choices is critical to designing effective MapReduce algorithms:

• The file system stores a relatively modest number of large files. The definition of “modest”
varies by the size of the deployment, but in HDFS multi-gigabyte files are common (and
even encouraged). There are several reasons why lots of small files are to be avoided. Since the
namenode must hold all file metadata in memory, this presents an upper bound on both the
number of files and blocks that can be supported.18 Large multi-block files represent a more
efficient use of namenode memory than many single-block files (each of which consumes less
space than a single block size). In addition, mappers in a MapReduce job use individual files as
a basic unit for splitting input data. At present, there is no default mechanism in Hadoop that
allows a mapper to process multiple files. As a result, mapping over many small files will yield
as many map tasks as there are files. This results in two potential problems: first, the startup
costs of mappers may become significant compared to the time spent actually processing input
key-value pairs; second, this may result in an excessive number of across-the-network copy
operations during the “shuffle and sort” phase (recall that a MapReduce job with m mappers
and r reducers involves up to m× r distinct copy operations).

17In Hadoop, this is a manually invoked process.
18According to Dhruba Borthakur in a post to the Hadoop mailing list on 6/8/2008, each block in HDFS occupies about 150 bytes

of memory on the namenode.

32 2. MAPREDUCE BASICS

• Workloads are batch oriented, dominated by long streaming reads and large sequential writes.
As a result,high sustained bandwidth is more important than low latency.This exactly describes
the nature of MapReduce jobs,which are batch operations on large amounts of data.Due to the
common-case workload, both HDFS and GFS do not implement any form of data caching.19

• Applications are aware of the characteristics of the distributed file system. Neither HDFS nor
GFS present a general POSIX-compliant API, but rather support only a subset of possible
file operations. This simplifies the design of the distributed file system, and in essence pushes
part of the data management onto the end application. One rationale for this decision is that
each application knows best how to handle data specific to that application, for example, in
terms of resolving inconsistent states and optimizing the layout of data structures.

• The file system is deployed in an environment of cooperative users. There is no discussion of
security in the original GFS paper, but HDFS explicitly assumes a datacenter environment
where only authorized users have access. File permissions in HDFS are only meant to prevent
unintended operations and can be easily circumvented.20

• The system is built from unreliable but inexpensive commodity components.As a result, failures
are the norm rather than the exception. HDFS is designed around a number of self-monitoring
and self-healing mechanisms to robustly cope with common failure modes.

Finally, some discussion is necessary to understand the single-master design of HDFS and GFS. It
has been demonstrated that in large-scale distributed systems, simultaneously providing consistency,
availability, and partition tolerance is impossible—this is Brewer’s so-called CAP Theorem [58].
Since partitioning is unavoidable in large-data systems, the real tradeoff is between consistency and
availability. A single-master design trades availability for consistency and significantly simplifies
implementation. If the master (HDFS namenode or GFS master) goes down, the entire file system
becomes unavailable, which trivially guarantees that the file system will never be in an inconsistent
state. An alternative design might involve multiple masters that jointly manage the file namespace—
such an architecture would increase availability (if one goes down, another can step in) at the cost
of consistency, not to mention requiring a more complex implementation (cf. [4; 105]).

The single-master design of GFS and HDFS is a well-known weakness, since if the master
goes offline, the entire file system and all MapReduce jobs running on top of it will grind to a halt.
This weakness is mitigated in part by the lightweight nature of file system operations. Recall that no
data is ever moved through the namenode and that all communication between clients and datanodes
involve only metadata. Because of this, the namenode rarely is the bottleneck, and for the most part
avoids load-induced crashes. In practice, this single point of failure is not as severe a limitation as
it may appear—with diligent monitoring of the namenode, mean time between failure measured in
months are not uncommon for production deployments. Furthermore, the Hadoop community is

19However, since the distributed file system is built on top of a standard operating system such as Linux, there is still OS-level
caching.

20However, there are existing plans to integrate Kerberos into Hadoop/HDFS.

2.6. HADOOP CLUSTER ARCHITECTURE 33

namenode

namenode daemon

job submission node

jobtracker

t kt k t kt k t kt k

namenode daemon jobtracker

datanode daemon

Linux file system

tasktracker

datanode daemon

Linux file system

tasktracker

datanode daemon

Linux file system

tasktracker

slave node

slave node

slave node

Figure 2.6: Architecture of a complete Hadoop cluster, which consists of three separate components:
the HDFS master (called the namenode), the job submission node (called the jobtracker), and many slave
nodes (three shown here). Each of the slave nodes runs a tasktracker for executing map and reduce tasks
and a datanode daemon for serving HDFS data.

well aware of this problem and has developed several reasonable workarounds—for example, a warm
standby namenode that can be quickly switched over when the primary namenode fails. The open
source environment and the fact that many organizations already depend on Hadoop for production
systems virtually guarantees that more effective solutions will be developed over time.

2.6 HADOOP CLUSTER ARCHITECTURE
Putting everything together, the architecture of a complete Hadoop cluster is shown in Figure 2.6.
The HDFS namenode runs the namenode daemon. The job submission node runs the jobtracker,
which is the single point of contact for a client wishing to execute a MapReduce job. The jobtracker
monitors the progress of running MapReduce jobs and is responsible for coordinating the execution
of the mappers and reducers. Typically, these services run on two separate machines, although in
smaller clusters they are often co-located.The bulk of a Hadoop cluster consists of slave nodes (only
three of which are shown in the figure) that run both a tasktracker, which is responsible for actually
running user code, and a datanode daemon, for serving HDFS data.

A Hadoop MapReduce job is divided up into a number of map tasks and reduce tasks.
Tasktrackers periodically send heartbeat messages to the jobtracker that also doubles as a vehicle for
task allocation. If a tasktracker is available to run tasks (in Hadoop parlance, has empty task slots),
the return acknowledgment of the tasktracker heartbeat contains task allocation information. The
number of reduce tasks is equal to the number of reducers specified by the programmer.The number
of map tasks, on the other hand, depends on many factors: the number of mappers specified by the

34 2. MAPREDUCE BASICS

programmer serves as a hint to the execution framework, but the actual number of tasks depends
on both the number of input files and the number of HDFS data blocks occupied by those files.
Each map task is assigned a sequence of input key-value pairs, called an input split in Hadoop. Input
splits are computed automatically and the execution framework strives to align them to HDFS block
boundaries so that each map task is associated with a single data block. In scheduling map tasks,
the jobtracker tries to take advantage of data locality—if possible, map tasks are scheduled on the
slave node that holds the input split, so that the mapper will be processing local data. The alignment
of input splits with HDFS block boundaries simplifies task scheduling. If it is not possible to run
a map task on local data, it becomes necessary to stream input key-value pairs across the network.
Since large clusters are organized into racks, with far greater intra-rack bandwidth than inter-rack
bandwidth, the execution framework strives to at least place map tasks on a rack which has a copy
of the data block.

Although conceptually in MapReduce one can think of the mapper being applied to all input
key-value pairs and the reducer being applied to all values associated with the same key, actual job
execution is a bit more complex. In Hadoop, mappers are Java objects with a Map method (among
others). A mapper object is instantiated for every map task by the tasktracker. The life-cycle of this
object begins with instantiation, where a hook is provided in the API to run programmer-specified
code. This means that mappers can read in “side data”, providing an opportunity to load state,
static data sources, dictionaries, etc. After initialization, the Map method is called (by the execution
framework) on all key-value pairs in the input split. Since these method calls occur in the context of
the same Java object, it is possible to preserve state across multiple input key-value pairs within the
same map task—this is an important property to exploit in the design of MapReduce algorithms, as
we will see in the next chapter. After all key-value pairs in the input split have been processed, the
mapper object provides an opportunity to run programmer-specified termination code. This, too,
will be important in the design of MapReduce algorithms.

The actual execution of reducers is similar to that of the mappers. Each reducer object is
instantiated for every reduce task. The Hadoop API provides hooks for programmer-specified ini-
tialization and termination code. After initialization, for each intermediate key in the partition
(defined by the partitioner), the execution framework repeatedly calls the Reduce method with an
intermediate key and an iterator over all values associated with that key. The programming model
also guarantees that intermediate keys will be presented to the Reduce method in sorted order.
Since this occurs in the context of a single object, it is possible to preserve state across multiple
intermediate keys (and associated values) within a single reduce task. Once again, this property is
critical in the design of MapReduce algorithms and will be discussed in the next chapter.

2.7 SUMMARY
This chapter provides a basic overview of the MapReduce programming model, starting with its roots
in functional programming and continuing with a description of mappers, reducers, partitioners, and
combiners. Significant attention is also given to the underlying distributed file system, which is a

2.7. SUMMARY 35

tightly-integrated component of the MapReduce environment. Given this basic understanding, we
now turn our attention to the design of MapReduce algorithms.

37

C H A P T E R 3

MapReduce Algorithm Design
A large part of the power of MapReduce comes from its simplicity: in addition to preparing the
input data, the programmer needs only to implement the mapper, the reducer, and optionally, the
combiner and the partitioner. All other aspects of execution are handled transparently by the exe-
cution framework—on clusters ranging from a single node to a few thousand nodes, over datasets
ranging from gigabytes to petabytes. However, this also means that any conceivable algorithm that
a programmer wishes to develop must be expressed in terms of a small number of rigidly defined
components that must fit together in very specific ways. It may not appear obvious how a multitude
of algorithms can be recast into this programming model. The purpose of this chapter is to provide,
primarily through examples, a guide to MapReduce algorithm design. These examples illustrate
what can be thought of as “design patterns” for MapReduce, which instantiate arrangements of
components and specific techniques designed to handle frequently encountered situations across a
variety of problem domains. Two of these design patterns are used in the scalable inverted indexing
algorithm we’ll present later in Chapter 4; concepts presented here will show up again in Chapter 5
(graph processing) and Chapter 6 (expectation-maximization algorithms).

Synchronization is perhaps the most tricky aspect of designing MapReduce algorithms (or
for that matter, parallel and distributed algorithms in general). Other than embarrassingly-parallel
problems, processes running on separate nodes in a cluster must, at some point in time, come
together—for example, to distribute partial results from nodes that produced them to the nodes that
will consume them. Within a single MapReduce job, there is only one opportunity for cluster-wide
synchronization—during the shuffle and sort stage where intermediate key-value pairs are copied
from the mappers to the reducers and grouped by key. Beyond that, mappers and reducers run in
isolation without any mechanisms for direct communication. Furthermore, the programmer has little
control over many aspects of execution, for example:

• Where a mapper or reducer runs (i.e., on which node in the cluster).

• When a mapper or reducer begins or finishes.

• Which input key-value pairs are processed by a specific mapper.

• Which intermediate key-value pairs are processed by a specific reducer.

Nevertheless, the programmer does have a number of techniques for controlling execution and
managing the flow of data in MapReduce. In summary, they are:

38 3. MAPREDUCE ALGORITHM DESIGN

1. The ability to construct complex data structures as keys and values to store and communicate
partial results.

2. The ability to execute user-specified initialization code at the beginning of a map or reduce
task, and the ability to execute user-specified termination code at the end of a map or reduce
task.

3. The ability to preserve state in both mappers and reducers across multiple input or intermediate
keys.

4. The ability to control the sort order of intermediate keys, and therefore the order in which a
reducer will encounter particular keys.

5. The ability to control the partitioning of the key space, and therefore the set of keys that will
be encountered by a particular reducer.

It is important to realize that many algorithms cannot be easily expressed as a single MapReduce
job. One must often decompose complex algorithms into a sequence of jobs, which requires or-
chestrating data so that the output of one job becomes the input to the next. Many algorithms are
iterative in nature, requiring repeated execution until some convergence criteria—graph algorithms
in Chapter 5 and expectation-maximization algorithms in Chapter 6 behave in exactly this way.
Often, the convergence check itself cannot be easily expressed in MapReduce. The standard solu-
tion is an external (non-MapReduce) program that serves as a “driver” to coordinate MapReduce
iterations.

This chapter explains how various techniques to control code execution and data flow can
be applied to design algorithms in MapReduce. The focus is both on scalability—ensuring that
there are no inherent bottlenecks as algorithms are applied to increasingly larger datasets—and
efficiency—ensuring that algorithms do not needlessly consume resources and thereby reducing the
cost of parallelization. The gold standard, of course, is linear scalability: an algorithm running on
twice the amount of data should take only twice as long. Similarly, an algorithm running on twice
the number of nodes should only take half as long.

The chapter is organized as follows:

• Section 3.1 introduces the important concept of local aggregation in MapReduce and strategies
for designing efficient algorithms that minimize the amount of partial results that need to be
copied across the network. The proper use of combiners is discussed in detail, as well as the
“in-mapper combining” design pattern.

• Section 3.2 uses the example of building word co-occurrence matrices on large text corpora
to illustrate two common design patterns, which we dub “pairs” and “stripes”. These two
approaches are useful in a large class of problems that require keeping track of joint events
across a large number of observations.

3.1. LOCAL AGGREGATION 39

• Section 3.3 shows how co-occurrence counts can be converted into relative frequencies using
a pattern known as “order inversion”. The sequencing of computations in the reducer can be
recast as a sorting problem, where pieces of intermediate data are sorted into exactly the order
that is required to carry out a series of computations. Often, a reducer needs to compute an
aggregate statistic on a set of elements before individual elements can be processed. Normally,
this would require two passes over the data, but with the “order inversion” design pattern,
the aggregate statistic can be computed in the reducer before the individual elements are
encountered. This may seem counter-intuitive: how can we compute an aggregate statistic on
a set of elements before encountering elements of that set? As it turns out, clever sorting of
special key-value pairs enables exactly this.

• Section 3.4 provides a general solution to secondary sorting, which is the problem of sort-
ing values associated with a key in the reduce phase. We call this technique “value-to-key
conversion”.

• Section 3.5 covers the topic of performing joins on relational datasets and presents three
different approaches: reduce-side, map-side, and memory-backed joins.

3.1 LOCAL AGGREGATION
In the context of data-intensive distributed processing, the single most important aspect of syn-
chronization is the exchange of intermediate results, from the processes that produced them to
the processes that will ultimately consume them. In a cluster environment, with the exception of
embarrassingly-parallel problems, this necessarily involves transferring data over the network. Fur-
thermore, in Hadoop, intermediate results are written to local disk before being sent over the network.
Since network and disk latencies are relatively expensive compared to other operations, reductions
in the amount of intermediate data translate into increases in algorithmic efficiency. In MapReduce,
local aggregation of intermediate results is one of the keys to efficient algorithms. Through use of
the combiner and by taking advantage of the ability to preserve state across multiple inputs, it is
often possible to substantially reduce both the number and size of key-value pairs that need to be
shuffled from the mappers to the reducers.

3.1.1 COMBINERS AND IN-MAPPER COMBINING
We illustrate various techniques for local aggregation using the simple word count example presented
in Section 2.2. For convenience, Figure 3.1 repeats the pseudo-code of the basic algorithm, which is
quite simple: the mapper emits an intermediate key-value pair for each term observed, with the term
itself as the key and a value of one; reducers sum up the partial counts to arrive at the final count.

The first technique for local aggregation is the combiner, already discussed in Section 2.4.
Combiners provide a general mechanism within the MapReduce framework to reduce the amount
of intermediate data generated by the mappers—recall that they can be understood as “mini-reducers”
that process the output of mappers. In this example, the combiners aggregate term counts across the

40 3. MAPREDUCE ALGORITHM DESIGN

1: class Mapper
2: method Map(docid a, doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: sum← sum + c

6: Emit(term t, count sum)

Figure 3.1: Pseudo-code for the basic word count algorithm in MapReduce (repeated from Figure 2.3).

documents processed by each map task. This results in a reduction in the number of intermediate
key-value pairs that need to be shuffled across the network—from the order of total number of terms
in the collection to the order of the number of unique terms in the collection.1

An improvement on the basic algorithm is shown in Figure 3.2 (the mapper is modified but
the reducer remains the same as in Figure 3.1 and therefore is not repeated). An associative array
(i.e., Map in Java) is introduced inside the mapper to tally up term counts within a single document:
instead of emitting a key-value pair for each term in the document, this version emits a key-value pair
for each unique term in the document. Given that some words appear frequently within a document
(for example, a document about dogs is likely to have many occurrences of the word “dog”), this can
yield substantial savings in the number of intermediate key-value pairs emitted, especially for long
documents.

This basic idea can be taken one step further, as illustrated in the variant of the word count
algorithm in Figure 3.3 (once again, only the mapper is modified). The workings of this algorithm
critically depends on the details of how map and reduce tasks in Hadoop are executed, discussed
in Section 2.6. Recall, a (Java) mapper object is created for each map task, which is responsible
for processing a block of input key-value pairs. Prior to processing any input key-value pairs, the
mapper’s Initialize method is called, which is an API hook for user-specified code. In this case,
we initialize an associative array for holding term counts. Since it is possible to preserve state across
multiple calls of the Map method (for each input key-value pair), we can continue to accumulate
partial term counts in the associative array across multiple documents, and emit key-value pairs only

1More precisely, if the combiners take advantage of all opportunities for local aggregation, the algorithm would generate at most
m× V intermediate key-value pairs, where m is the number of mappers and V is the vocabulary size (number of unique terms in
the collection), since every term could have been observed in every mapper. However, there are two additional factors to consider.
Due to the Zipfian nature of term distributions, most terms will not be observed by most mappers (for example, terms that
occur only once will by definition only be observed by one mapper). On the other hand, combiners in Hadoop are treated as
optional optimizations, so there is no guarantee that the execution framework will take advantage of all opportunities for partial
aggregation.

3.1. LOCAL AGGREGATION 41

1: class Mapper
2: method Map(docid a, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H {t} ← H {t} + 1 &Tally counts for entire document
6: for all term t ∈ H do
7: Emit(term t, count H {t})

Figure 3.2: Pseudo-code for the improved MapReduce word count algorithm that uses an associative
array to aggregate term counts on a per-document basis. Reducer is the same as in Figure 3.1.

1: class Mapper
2: method Initialize
3: H ← new AssociativeArray
4: method Map(docid a, doc d)
5: for all term t ∈ doc d do
6: H {t} ← H {t} + 1 &Tally counts across documents
7: method Close
8: for all term t ∈ H do
9: Emit(term t, count H {t})

Figure 3.3: Pseudo-code for the improved MapReduce word count algorithm that demonstrates the
“in-mapper combining” design pattern. Reducer is the same as in Figure 3.1.

when the mapper has processed all documents. That is, emission of intermediate data is deferred
until the Close method in the pseudo-code. Recall that this API hook provides an opportunity to
execute user-specified code after the Map method has been applied to all input key-value pairs of
the input data split to which the map task was assigned.

With this technique, we are in essence incorporating combiner functionality directly inside
the mapper.There is no need to run a separate combiner, since all opportunities for local aggregation
are already exploited.2 This is a sufficiently common design pattern in MapReduce that it’s worth
giving it a name, “in-mapper combining”, so that we can refer to the pattern more conveniently
throughout the book. We’ll see later on how this pattern can be applied to a variety of problems.
There are two main advantages to using this design pattern:

First, it provides control over when local aggregation occurs and how it exactly takes place.
In contrast, the semantics of the combiner is underspecified in MapReduce. For example, Hadoop
makes no guarantees on how many times the combiner is applied, or that it is even applied at all.The

2Leaving aside the minor complication that in Hadoop, combiners can be run in the reduce phase also (when merging intermediate
key-value pairs from different map tasks). However, in practice, it makes almost no difference either way.

42 3. MAPREDUCE ALGORITHM DESIGN

combiner is provided as a semantics-preserving optimization to the execution framework, which has
the option of using it, perhaps multiple times, or not at all (or even in the reduce phase). In some
cases (although not in this particular example), such indeterminism is unacceptable, which is exactly
why programmers often choose to perform their own local aggregation in the mappers.

Second, in-mapper combining will typically be more efficient than using actual combiners.
One reason for this is the additional overhead associated with actually materializing the key-value
pairs. Combiners reduce the amount of intermediate data that is shuffled across the network, but
don’t actually reduce the number of key-value pairs that are emitted by the mappers in the first place.
With the algorithm in Figure 3.2, intermediate key-value pairs are still generated on a per-document
basis, only to be “compacted” by the combiners.This process involves unnecessary object creation and
destruction (garbage collection takes time), and furthermore, object serialization and deserialization
(when intermediate key-value pairs fill the in-memory buffer holding map outputs and need to be
temporarily spilled to disk). In contrast, with in-mapper combining, the mappers will generate only
those key-value pairs that need to be shuffled across the network to the reducers.

There are, however, drawbacks to the in-mapper combining pattern. First, it breaks the func-
tional programming underpinnings of MapReduce, since state is being preserved across multiple
input key-value pairs. Ultimately, this isn’t a big deal, since pragmatic concerns for efficiency of-
ten trump theoretical “purity”, but there are practical consequences as well. Preserving state across
multiple input instances means that algorithmic behavior may depend on the order in which input
key-value pairs are encountered. This creates the potential for ordering-dependent bugs, which are
difficult to debug on large datasets in the general case (although the correctness of in-mapper com-
bining for word count is easy to demonstrate). Second, there is a fundamental scalability bottleneck
associated with the in-mapper combining pattern. It critically depends on having sufficient mem-
ory to store intermediate results until the mapper has completely processed all key-value pairs in
an input split. In the word count example, the memory footprint is bound by the vocabulary size,
since it is theoretically possible that a mapper encounters every term in the collection. Heap’s Law,
a well-known result in information retrieval, accurately models the growth of vocabulary size as a
function of the collection size—the somewhat surprising fact is that the vocabulary size never stops
growing.3 Therefore, the algorithm in Figure 3.3 will scale only up to a point, beyond which the
associative array holding the partial term counts will no longer fit in memory.4

One common solution to limiting memory usage when using the in-mapper combining tech-
nique is to “block” input key-value pairs and “flush” in-memory data structures periodically.The idea
is simple: instead of emitting intermediate data only after every key-value pair has been processed,
emit partial results after processing every n key-value pairs. This is straightforwardly implemented
with a counter variable that keeps track of the number of input key-value pairs that have been

3In more detail, Heap’s Law relates the vocabulary size V to the collection size as follows: V = kT b , where T is the number of
tokens in the collection. Typical values of the parameters k and b are: 30 ≤ k ≤ 100 and b ∼ 0.5 ([101], p. 81).

4A few more details: note what matters is that the partial term counts encountered within a particular input split fits into memory.
However, as collection sizes increase, one will often want to increase the input split size to limit the growth of the number of map
tasks (in order to reduce the number of distinct copy operations necessary to shuffle intermediate data over the network).

3.1. LOCAL AGGREGATION 43

processed. As an alternative, the mapper could keep track of its own memory footprint and flush
intermediate key-value pairs once memory usage has crossed a certain threshold. In both approaches,
either the block size or the memory usage threshold needs to be determined empirically: with too
large a value, the mapper may run out of memory, but with too small a value, opportunities for
local aggregation may be lost. Furthermore, in Hadoop physical memory is split between multiple
tasks that may be running on a node concurrently; these tasks are all competing for finite resources,
but since the tasks are not aware of each other, it is difficult to coordinate resource consumption
effectively. In practice, however, one often encounters diminishing returns in performance gains
with increasing buffer sizes, such that it is not worth the effort to search for an optimal buffer size
(personal communication, Jeff Dean).

In MapReduce algorithms, the extent to which efficiency can be increased through local
aggregation depends on the size of the intermediate key space, the distribution of keys themselves,
and the number of key-value pairs that are emitted by each individual map task. Opportunities
for aggregation, after all, come from having multiple values associated with the same key (whether
one uses combiners or employs the in-mapper combining pattern). In the word count example, local
aggregation is effective because many words are encountered multiple times within a map task. Local
aggregation is also an effective technique for dealing with reduce stragglers (see Section 2.3) that
result from a highly skewed (e.g., Zipfian) distribution of values associated with intermediate keys.
In our word count example, we do not filter frequently occurring words: therefore, without local
aggregation, the reducer that’s responsible for computing the count of ‘the’ will have a lot more
work to do than the typical reducer, and therefore will likely be a straggler. With local aggregation
(either combiners or in-mapper combining), we substantially reduce the number of values associated
with frequently occurring terms, which alleviates the reduce straggler problem.

3.1.2 ALGORITHMIC CORRECTNESS WITH LOCAL AGGREGATION
Although use of combiners can yield dramatic reductions in algorithm running time, care must
be taken in applying them. Since combiners in Hadoop are viewed as optional optimizations, the
correctness of the algorithm cannot depend on computations performed by the combiner or depend
on them even being run at all. In any MapReduce program, the reducer input key-value type must
match the mapper output key-value type: this implies that the combiner input and output key-value
types must match the mapper output key-value type (which is the same as the reducer input key-
value type). In cases where the reduce computation is both commutative and associative, the reducer
can also be used (unmodified) as the combiner (as is the case with the word count example). In the
general case, however, combiners and reducers are not interchangeable.

Consider a simple example: we have a large dataset where input keys are strings and input
values are integers, and we wish to compute the mean of all integers associated with the same key
(rounded to the nearest integer). A real-world example might be a large user log from a popular
website, where keys represent user ids and values represent some measure of activity such as elapsed
time for a particular session—the task would correspond to computing the mean session length on

44 3. MAPREDUCE ALGORITHM DESIGN

1: class Mapper
2: method Map(string t, integer r)
3: Emit(string t, integer r)

1: class Reducer
2: method Reduce(string t, integers [r1, r2, . . .])
3: sum← 0
4: cnt ← 0
5: for all integer r ∈ integers [r1, r2, . . .] do
6: sum← sum + r

7: cnt ← cnt + 1
8: ravg ← sum/cnt

9: Emit(string t, integer ravg)

Figure 3.4: Pseudo-code for the basic MapReduce algorithm that computes the mean of values associated
with the same key.

a per-user basis, which would be useful for understanding user demographics. Figure 3.4 shows the
pseudo-code of a simple algorithm for accomplishing this task that does not involve combiners. We
use an identity mapper, which simply passes all input key-value pairs to the reducers (appropriately
grouped and sorted). The reducer keeps track of the running sum and the number of integers
encountered. This information is used to compute the mean once all values are processed. The mean
is then emitted as the output value in the reducer (with the input string as the key).

This algorithm will indeed work, but suffers from the same drawbacks as the basic word count
algorithm in Figure 3.1: it requires shuffling all key-value pairs from mappers to reducers across the
network, which is highly inefficient. Unlike in the word count example, the reducer cannot be used
as a combiner in this case. Consider what would happen if we did: the combiner would compute the
mean of an arbitrary subset of values associated with the same key, and the reducer would compute
the mean of those values. As a concrete example, we know that:

Mean(1, 2, 3, 4, 5))= Mean(Mean(1, 2), Mean(3, 4, 5))

In general, the mean of means of arbitrary subsets of a set of numbers is not the same as the mean
of the set of numbers. Therefore, this approach would not produce the correct result.5

So how might we properly take advantage of combiners? An attempt is shown in Figure 3.5.
The mapper remains the same, but we have added a combiner that partially aggregates results by
computing the numeric components necessary to arrive at the mean. The combiner receives each
string and the associated list of integer values, from which it computes the sum of those values and
5There is, however, one special case in which using reducers as combiners would produce the correct result: if each combiner
computed the mean of equal-size subsets of the values. However, since such fine-grained control over the combiners is impossible
in MapReduce, such a scenario is highly unlikely.

3.1. LOCAL AGGREGATION 45

1: class Mapper
2: method Map(string t, integer r)
3: Emit(string t, integer r)

1: class Combiner
2: method Combine(string t, integers [r1, r2, . . .])
3: sum← 0
4: cnt ← 0
5: for all integer r ∈ integers [r1, r2, . . .] do
6: sum← sum + r

7: cnt ← cnt + 1
8: Emit(string t, pair (sum, cnt)) & Separate sum and count

1: class Reducer
2: method Reduce(string t, pairs [(s1, c1), (s2, c2) . . .])
3: sum← 0
4: cnt ← 0
5: for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2) . . .] do
6: sum← sum + s

7: cnt ← cnt + c

8: ravg ← sum/cnt

9: Emit(string t, integer ravg)

Figure 3.5: Pseudo-code for an incorrect first attempt at introducing combiners to compute the mean
of values associated with each key. The mismatch between combiner input and output key-value types
violates the MapReduce programming model.

the number of integers encountered (i.e., the count). The sum and count are packaged into a pair,
and emitted as the output of the combiner, with the same string as the key. In the reducer, pairs of
partial sums and counts can be aggregated to arrive at the mean. Up until now, all keys and values
in our algorithms have been primitives (string, integers, etc.). However, there are no prohibitions in
MapReduce for more complex types,6 and, in fact, this represents a key technique in MapReduce
algorithm design that we introduced at the beginning of this chapter. We will frequently encounter
complex keys and values throughput the rest of this book.

Unfortunately, this algorithm will not work. Recall that combiners must have the same input
and output key-value type, which also must be the same as the mapper output type and the reducer
input type. This is clearly not the case. To understand why this restriction is necessary in the pro-
gramming model, remember that combiners are optimizations that cannot change the correctness
of the algorithm. So let us remove the combiner and see what happens: the output value type of the

6In Hadoop, either custom types or types defined using a library such as Protocol Buffers, Thrift, or Avro.

46 3. MAPREDUCE ALGORITHM DESIGN

1: class Mapper
2: method Map(string t, integer r)
3: Emit(string t, pair (r, 1))

1: class Combiner
2: method Combine(string t, pairs [(s1, c1), (s2, c2) . . .])
3: sum← 0
4: cnt ← 0
5: for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2) . . .] do
6: sum← sum + s

7: cnt ← cnt + c

8: Emit(string t, pair (sum, cnt))

1: class Reducer
2: method Reduce(string t, pairs [(s1, c1), (s2, c2) . . .])
3: sum← 0
4: cnt ← 0
5: for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2) . . .] do
6: sum← sum + s

7: cnt ← cnt + c

8: ravg ← sum/cnt

9: Emit(string t, integer ravg)

Figure 3.6: Pseudo-code for a MapReduce algorithm that computes the mean of values associated with
each key. This algorithm correctly takes advantage of combiners.

mapper is integer, so the reducer expects to receive a list of integers as values. But the reducer actually
expects a list of pairs! The correctness of the algorithm is contingent on the combiner running on
the output of the mappers, and more specifically, that the combiner is run exactly once. Recall from
our previous discussion that Hadoop makes no guarantees on how many times combiners are called;
it could be zero, one, or multiple times. This violates the MapReduce programming model.

Another stab at the algorithm is shown in Figure 3.6, and this time, the algorithm is correct.
In the mapper we emit as the value a pair consisting of the integer and one—this corresponds to a
partial count over one instance. The combiner separately aggregates the partial sums and the partial
counts (as before), and emits pairs with updated sums and counts. The reducer is similar to the
combiner, except that the mean is computed at the end. In essence, this algorithm transforms a
non-associative operation (mean of numbers) into an associative operation (element-wise sum of a
pair of numbers, with an additional division at the very end).

Let us verify the correctness of this algorithm by repeating the previous exercise: What would
happen if no combiners were run? With no combiners, the mappers would send pairs (as values)

3.2. PAIRS AND STRIPES 47

1: class Mapper
2: method Initialize
3: S ← new AssociativeArray
4: C ← new AssociativeArray
5: method Map(string t, integer r)
6: S{t} ← S{t} + r

7: C{t} ← C{t} + 1

8: method Close
9: for all term t ∈ S do

10: Emit(term t, pair (S{t}, C{t}))

Figure 3.7: Pseudo-code for a MapReduce algorithm that computes the mean of values associated with
each key, illustrating the in-mapper combining design pattern.Only the mapper is shown here; the reducer
is the same as in Figure 3.6

directly to the reducers. There would be as many intermediate pairs as there were input key-value
pairs, and each of those would consist of an integer and one. The reducer would still arrive at
the correct sum and count, and hence the mean would be correct. Now add in the combiners: the
algorithm would remain correct, no matter how many times they run, since the combiners merely
aggregate partial sums and counts to pass along to the reducers. Note that although the output
key-value type of the combiner must be the same as the input key-value type of the reducer, the
reducer can emit final key-value pairs of a different type.

Finally, in Figure 3.7, we present an even more efficient algorithm that exploits the in-mapper
combining pattern. Inside the mapper, the partial sums and counts associated with each string are
held in memory across input key-value pairs. Intermediate key-value pairs are emitted only after
the entire input split has been processed; similar to before, the value is a pair consisting of the sum
and count. The reducer is exactly the same as in Figure 3.6. Moving partial aggregation from the
combiner directly into the mapper is subjected to all the trade offs and caveats discussed earlier this
section, but in this case the memory footprint of the data structures for holding intermediate data
is likely to be modest, making this variant algorithm an attractive option.

3.2 PAIRS AND STRIPES

One common approach for synchronization in MapReduce is to construct complex keys and values
in such a way that data necessary for a computation are naturally brought together by the execution
framework. We first touched on this technique in the previous section, in the context of “packaging”
partial sums and counts in a complex value (i.e., pair) that is passed from mapper to combiner to
reducer. Building on previously published work [54; 94], this section introduces two common design
patterns we have dubbed “pairs” and “stripes” that exemplify this strategy.

48 3. MAPREDUCE ALGORITHM DESIGN

As a running example, we focus on the problem of building word co-occurrence matrices
from large corpora, a common task in corpus linguistics and statistical natural language processing.
Formally, the co-occurrence matrix of a corpus is a square n× n matrix where n is the number of
unique words in the corpus (i.e., the vocabulary size). A cell mij contains the number of times word
wi co-occurs with word wj within a specific context—a natural unit such as a sentence, paragraph,
or a document, or a certain window of m words (where m is an application-dependent parameter).
Note that the upper and lower triangles of the matrix are identical since co-occurrence is a symmetric
relation, though in the general case relations between words need not be symmetric. For example,
a co-occurrence matrix M where mij is the count of how many times word wi was immediately
succeeded by word wj would usually not be symmetric.

This task is quite common in text processing and provides the starting point to many other
algorithms, e.g., for computing statistics such as pointwise mutual information [38], for unsupervised
sense clustering [136], and more generally, a large body of work in lexical semantics based on
distributional profiles of words, dating back to Firth [55] and Harris [69] in the 1950s and 1960s.
The task also has applications in information retrieval (e.g., automatic thesaurus construction [137]
and stemming [157]), and other related fields such as text mining. More importantly, this problem
represents a specific instance of the task of estimating distributions of discrete joint events from a
large number of observations, a very common task in statistical natural language processing for which
there are nice MapReduce solutions. Indeed, concepts presented here are also used in Chapter 6
when we discuss expectation-maximization algorithms.

Beyond text processing, problems in many application domains share similar characteristics.
For example, a large retailer might analyze point-of-sale transaction records to identify correlated
product purchases (e.g., customers who buy this tend to also buy that),which would assist in inventory
management and product placement on store shelves. Similarly, an intelligence analyst might wish to
identify associations between re-occurring financial transactions that are otherwise unrelated, which
might provide a clue in thwarting terrorist activity. The algorithms discussed in this section could
be adapted to tackle these related problems.

It is obvious that the space requirement for the word co-occurrence problem is O(n2), where
n is the size of the vocabulary, which for real-world English corpora can be hundreds of thousands
of words, or even billions of words in web-scale collections.7 The computation of the word co-
occurrence matrix is quite simple if the entire matrix fits into memory—however, in the case where
the matrix is too big to fit in memory, a naïve implementation on a single machine can be very slow
as memory is paged to disk. Although compression techniques can increase the size of corpora for
which word co-occurrence matrices can be constructed on a single machine, it is clear that there are
inherent scalability limitations. We describe two MapReduce algorithms for this task that can scale
to large corpora.

7The size of the vocabulary depends on the definition of a “word” and techniques (if any) for corpus pre-processing. One common
strategy is to replace all rare words (below a certain frequency) with a “special” token such as <UNK> (which stands for “unknown”)
to model out-of-vocabulary words. Another technique involves replacing numeric digits with #, such that 1.32 and 1.19 both
map to the same token (#.##).

3.2. PAIRS AND STRIPES 49

Pseudo-code for the first algorithm, dubbed the “pairs” approach, is shown in Figure 3.8. As
usual, document ids and the corresponding contents make up the input key-value pairs.The mapper
processes each input document and emits intermediate key-value pairs with each co-occurring word
pair as the key and the integer one (i.e., the count) as the value.This is straightforwardly accomplished
by two nested loops: the outer loop iterates over all words (the left element in the pair), and the
inner loop iterates over all neighbors of the first word (the right element in the pair). The neighbors
of a word can either be defined in terms of a sliding window or some other contextual unit such as a
sentence. The MapReduce execution framework guarantees that all values associated with the same
key are brought together in the reducer. Thus, in this case the reducer simply sums up all the values
associated with the same co-occurring word pair to arrive at the absolute count of the joint event in
the corpus, which is then emitted as the final key-value pair. Each pair corresponds to a cell in the
word co-occurrence matrix.This algorithm illustrates the use of complex keys in order to coordinate
distributed computations.

An alternative approach, dubbed the “stripes” approach, is presented in Figure 3.9. Like the
pairs approach, co-occurring word pairs are generated by two nested loops. However, the major
difference is that instead of emitting intermediate key-value pairs for each co-occurring word pair,
co-occurrence information is first stored in an associative array, denoted H . The mapper emits key-
value pairs with words as keys and corresponding associative arrays as values, where each associative
array encodes the co-occurrence counts of the neighbors of a particular word (i.e., its context). The
MapReduce execution framework guarantees that all associative arrays with the same key will be
brought together in the reduce phase of processing. The reducer performs an element-wise sum of
all associative arrays with the same key, accumulating counts that correspond to the same cell in
the co-occurrence matrix. The final associative array is emitted with the same word as the key. In
contrast to the pairs approach, each final key-value pair encodes a row in the co-occurrence matrix.

It is immediately obvious that the pairs algorithm generates an immense number of key-
value pairs compared to the stripes approach. The stripes representation is much more compact,
since with pairs the left element is repeated for every co-occurring word pair. The stripes approach
also generates fewer and shorter intermediate keys, and therefore the execution framework has less
sorting to perform. However, values in the stripes approach are more complex, and come with more
serialization and deserialization overhead than with the pairs approach.

Both algorithms can benefit from the use of combiners, since the respective operations in
their reducers (addition and element-wise sum of associative arrays) are both commutative and
associative. However, combiners with the stripes approach have more opportunities to perform local
aggregation because the key space is the vocabulary—associative arrays can be merged whenever a
word is encountered multiple times by a mapper. In contrast, the key space in the pairs approach
is the cross of the vocabulary with itself, which is far larger—counts can be aggregated only when
the same co-occurring word pair is observed multiple times by an individual mapper (which is less
likely than observing multiple occurrences of a word, as in the stripes case).

50 3. MAPREDUCE ALGORITHM DESIGN

1: class Mapper
2: method Map(docid a, doc d)
3: for all term w ∈ doc d do
4: for all term u ∈ Neighbors(w) do
5: Emit(pair (w, u), count 1) & Emit count for each co-occurrence

1: class Reducer
2: method Reduce(pair p, counts [c1, c2, . . .])
3: s ← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: s ← s + c & Sum co-occurrence counts
6: Emit(pair p, count s)

Figure 3.8: Pseudo-code for the “pairs” approach for computing word co-occurrence matrices from large
corpora.

1: class Mapper
2: method Map(docid a, doc d)
3: for all term w ∈ doc d do
4: H ← new AssociativeArray
5: for all term u ∈ Neighbors(w) do
6: H {u} ← H {u} + 1 &Tally words co-occurring with w

7: Emit(Term w, Stripe H)

1: class Reducer
2: method Reduce(term w, stripes [H1, H2, H3, . . .])
3: Hf ← new AssociativeArray
4: for all stripe H ∈ stripes [H1, H2, H3, . . .] do
5: Sum(Hf , H) & Element-wise sum

6: Emit(term w, stripe Hf)

Figure 3.9: Pseudo-code for the “stripes” approach for computing word co-occurrence matrices from
large corpora.

3.2. PAIRS AND STRIPES 51

For both algorithms, the in-mapper combining optimization discussed in the previous section
can also be applied; the modification is sufficiently straightforward that we leave the implementation
as an exercise for the reader. However, the above caveats remain: there will be far fewer opportunities
for partial aggregation in the pairs approach due to the sparsity of the intermediate key space. The
sparsity of the key space also limits the effectiveness of in-memory combining, since the mapper
may run out of memory to store partial counts before all documents are processed, necessitating
some mechanism to periodically emit key-value pairs (which further limits opportunities to perform
partial aggregation). Similarly, for the stripes approach, memory management will also be more
complex than in the simple word count example. For common terms, the associative array may grow
to be quite large, necessitating some mechanism to periodically flush in-memory structures.

It is important to consider potential scalability bottlenecks of either algorithm. The stripes
approach makes the assumption that, at any point in time, each associative array is small enough to
fit into memory—otherwise, memory paging will significantly impact performance. The size of the
associative array is bounded by the vocabulary size, which is itself unbounded with respect to corpus
size (recall the previous discussion of Heap’s Law). Therefore, as the sizes of corpora increase, this
will become an increasingly pressing issue—perhaps not for gigabyte-sized corpora, but certainly for
terabyte-sized and petabyte-sized corpora that will be commonplace tomorrow. The pairs approach,
on the other hand, does not suffer from this limitation, since it does not need to hold intermediate
data in memory.

Given this discussion, which approach is faster? Here, we present previously published re-
sults [94] that empirically answered this question. We implemented both algorithms in Hadoop and
applied them to a corpus of 2.27 million documents from the Associated Press Worldstream (APW)
totaling 5.7 GB.8 Prior to working with Hadoop, the corpus was first preprocessed as follows: All
XML markup was removed, followed by tokenization and stopword removal using standard tools
from the Lucene search engine. All tokens were then replaced with unique integers for a more effi-
cient encoding. Figure 3.10 compares the running time of the pairs and stripes approach on different
fractions of the corpus, with a co-occurrence window size of two.These experiments were performed
on a Hadoop cluster with 19 slave nodes, each with 2 single-core processors and 2 disks.

Results demonstrate that the stripes approach is much faster than the pairs approach: 666
seconds (∼11 minutes) compared to 3758 seconds (∼62 minutes) for the entire corpus (improvement
by a factor of 5.7). The mappers in the pairs approach generated 2.6 billion intermediate key-value
pairs totaling 31.2 GB. After the combiners, this was reduced to 1.1 billion key-value pairs, which
quantifies the amount of intermediate data transferred across the network. In the end, the reducers
emitted a total of 142 million final key-value pairs (the number of non-zero cells in the co-occurrence
matrix). On the other hand, the mappers in the stripes approach generated 653 million intermediate
key-value pairs totaling 48.1 GB. After the combiners, only 28.8 million key-value pairs remained.
The reducers emitted a total of 1.69 million final key-value pairs (the number of rows in the co-

8This was a subset of the English Gigaword corpus (version 3) distributed by the Linguistic Data Consortium (LDC catalog
number LDC2007T07).

52 3. MAPREDUCE ALGORITHM DESIGN

occurrence matrix). As expected, the stripes approach provided more opportunities for combiners to
aggregate intermediate results, thus greatly reducing network traffic in the shuffle and sort phase.
Figure 3.10 also shows that both algorithms exhibit highly desirable scaling characteristics—linear
in the amount of input data. This is confirmed by a linear regression applied to the running time
data, which yields an R2 value close to one.

An additional series of experiments explored the scalability of the stripes approach along
another dimension: the size of the cluster. These experiments were made possible by Amazon’s EC2
service, which allows users to rapidly provision clusters of varying sizes for limited durations (for
more information, refer back to our discussion of utility computing in Section 1.1). Virtualized
computational units in EC2 are called instances, and the user is charged only for the instance-hours
consumed. Figure 3.11 (left) shows the running time of the stripes algorithm (on the same corpus,
with same setup as before), on varying cluster sizes, from 20 slave “small” instances all the way up to
80 slave “small” instances (along the x-axis). Running times are shown with solid squares. Figure 3.11
(right) recasts the same results to illustrate scaling characteristics. The circles plot the relative size
and speedup of the EC2 experiments, with respect to the 20-instance cluster. These results show
highly desirable linear scaling characteristics (i.e., doubling the cluster size makes the job twice as
fast). This is confirmed by a linear regression with an R2 value close to one.

Viewed abstractly, the pairs and stripes algorithms represent two different approaches to
counting co-occurring events from a large number of observations.This general description captures
the gist of many algorithms in fields as diverse as text processing, data mining, and bioinformatics.
For this reason, these two design patterns are broadly useful and frequently observed in a variety of
applications.

To conclude, it is worth noting that the pairs and stripes approaches represent endpoints
along a continuum of possibilities. The pairs approach individually records each co-occurring event,
while the stripes approach records all co-occurring events with respect a conditioning event. A
middle ground might be to record a subset of the co-occurring events with respect to a conditioning
event. We might divide up the entire vocabulary into b buckets (e.g., via hashing), so that words
co-occurring with wi would be divided into b smaller “sub-stripes”, associated with ten separate keys,
(wi, 1), (wi, 2) . . . (wi, b). This would be a reasonable solution to the memory limitations of the
stripes approach, since each of the sub-stripes would be smaller. In the case of b = |V |, where |V | is
the vocabulary size, this is equivalent to the pairs approach. In the case of b = 1, this is equivalent
to the standard stripes approach.

3.3 COMPUTING RELATIVE FREQUENCIES
Let us build on the pairs and stripes algorithms presented in the previous section and continue with
our running example of constructing the word co-occurrence matrix M for a large corpus. Recall that
in this large square n× n matrix, where n = |V | (the vocabulary size), cell mij contains the number
of times word wi co-occurs with word wj within a specific context.The drawback of absolute counts
is that it doesn’t take into account the fact that some words appear more frequently than others.Word

3.3. COMPUTING RELATIVE FREQUENCIES 53

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Percentage of the APW corpus

R2 = 0.992

R2 = 0.999

"stripes" approach
"pairs" approach

Figure 3.10: Running time of the “pairs” and “stripes” algorithms for computing word co-occurrence
matrices on different fractions of the APW corpus. These experiments were performed on a Hadoop
cluster with 19 slaves, each with 2 single-core processors and 2 disks.

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Size of EC2 cluster (number of slave instances)

1x

2x

3x

4x

1x 2x 3x 4x

R
el

at
iv

e
sp

ee
du

p

Relative size of EC2 cluster

R2 = 0.997

Figure 3.11: Running time of the stripes algorithm on the APW corpus with Hadoop clusters of different
sizes from EC2 (left). Scaling characteristics (relative speedup) in terms of increasing Hadoop cluster
size (right).

54 3. MAPREDUCE ALGORITHM DESIGN

wi may co-occur frequently with wj simply because one of the words is very common. A simple
remedy is to convert absolute counts into relative frequencies, f (wj |wi).That is, what proportion of
the time does wj appear in the context of wi? This can be computed using the following equation:

f (wj |wi) = N(wi, wj)∑
w′ N(wi, w′)

(3.1)

Here, N(·, ·) indicates the number of times a particular co-occurring word pair is observed in the
corpus. We need the count of the joint event (word co-occurrence), divided by what is known as the
marginal (the sum of the counts of the conditioning variable co-occurring with anything else).

Computing relative frequencies with the stripes approach is straightforward. In the reducer,
counts of all words that co-occur with the conditioning variable (wi in the above example) are
available in the associative array.Therefore, it suffices to sum all those counts to arrive at the marginal
(i.e.,

∑
w′ N(wi, w

′)), and then divide all the joint counts by the marginal to arrive at the relative
frequency for all words. This implementation requires minimal modification to the original stripes
algorithm in Figure 3.9, and illustrates the use of complex data structures to coordinate distributed
computations in MapReduce. Through appropriate structuring of keys and values, one can use the
MapReduce execution framework to bring together all the pieces of data required to perform a
computation. Note that, as before, this algorithm also assumes that each associative array fits into
memory.

How might one compute relative frequencies with the pairs approach? In the pairs approach,
the reducer receives (wi, wj) as the key and the count as the value. From this alone it is not possible
to compute f (wj |wi) since we do not have the marginal. Fortunately, as in the mapper, the reducer
can preserve state across multiple keys. Inside the reducer, we can buffer in memory all the words that
co-occur with wi and their counts, in essence building the associative array in the stripes approach.
To make this work, we must define the sort order of the pair so that keys are first sorted by the left
word, and then by the right word. Given this ordering, we can easily detect if all pairs associated
with the word we are conditioning on (wi) have been encountered. At that point we can go back
through the in-memory buffer, compute the relative frequencies, and then emit those results in the
final key-value pairs.

There is one more modification necessary to make this algorithm work. We must ensure that
all pairs with the same left word are sent to the same reducer. This, unfortunately, does not happen
automatically: recall that the default partitioner is based on the hash value of the intermediate key,
modulo the number of reducers. For a complex key, the raw byte representation is used to compute
the hash value. As a result, there is no guarantee that, for example, (dog, aardvark) and (dog, zebra) are
assigned to the same reducer. To produce the desired behavior, we must define a custom partitioner
that only pays attention to the left word. That is, the partitioner should partition based on the hash
of the left word only.

This algorithm will indeed work, but it suffers from the same drawback as the stripes approach:
as the size of the corpus grows, so does that vocabulary size, and at some point there will not be
sufficient memory to store all co-occurring words and their counts for the word we are conditioning

3.3. COMPUTING RELATIVE FREQUENCIES 55

key values
(dog, ∗) [6327, 8514, . . .] compute marginal:

∑
w′ N(dog, w′) = 42908

(dog, aardvark) [2,1] f (aardvark|dog) = 3/42908
(dog, aardwolf) [1] f (aardwolf|dog) = 1/42908
…
(dog, zebra) [2,1,1,1] f (zebra|dog) = 5/42908
(doge, ∗) [682, . . .] compute marginal:

∑
w′ N(doge, w′) = 1267

…

Figure 3.12: Example of the sequence of key-value pairs presented to the reducer in the pairs algorithm
for computing relative frequencies. This illustrates the application of the order inversion design pattern.

on. For computing the co-occurrence matrix, the advantage of the pairs approach is that it doesn’t
suffer from any memory bottlenecks. Is there a way to modify the basic pairs approach so that this
advantage is retained?

As it turns out, such an algorithm is indeed possible, although it requires the coordination of
several mechanisms in MapReduce. The insight lies in properly sequencing data presented to the
reducer. If it were possible to somehow compute (or otherwise obtain access to) the marginal in the
reducer before processing the joint counts, the reducer could simply divide the joint counts by the
marginal to compute the relative frequencies. The notion of “before” and “after” can be captured in
the ordering of key-value pairs, which can be explicitly controlled by the programmer. That is, the
programmer can define the sort order of keys so that data needed earlier is presented to the reducer
before data that is needed later. However, we still need to compute the marginal counts. Recall that
in the basic pairs algorithm, each mapper emits a key-value pair with the co-occurring word pair
as the key. To compute relative frequencies, we modify the mapper so that it additionally emits a
“special” key of the form (wi, ∗), with a value of one, that represents the contribution of the word
pair to the marginal. Through use of combiners, these partial marginal counts will be aggregated
before being sent to the reducers. Alternatively, the in-mapper combining pattern can be used to
even more efficiently aggregate marginal counts.

In the reducer, we must make sure that the special key-value pairs representing the partial
marginal contributions are processed before the normal key-value pairs representing the joint counts.
This is accomplished by defining the sort order of the keys so that pairs with the special symbol of
the form (wi, ∗) are ordered before any other key-value pairs where the left word is wi . In addition,
as before we must also properly define the partitioner to pay attention to only the left word in each
pair. With the data properly sequenced, the reducer can directly compute the relative frequencies.

A concrete example is shown in Figure 3.12, which lists the sequence of key-value pairs that a
reducer might encounter. First, the reducer is presented with the special key (dog, ∗) and a number
of values, each of which represents a partial marginal contribution from the map phase (assume here
either combiners or in-mapper combining, so the values represent partially aggregated counts). The

56 3. MAPREDUCE ALGORITHM DESIGN

reducer accumulates these counts to arrive at the marginal,
∑

w′ N(dog, w′). The reducer holds on
to this value as it processes subsequent keys. After (dog, ∗), the reducer will encounter a series of
keys representing joint counts; let’s say the first of these is the key (dog, aardvark). Associated with
this key will be a list of values representing partial joint counts from the map phase (two separate
values in this case). Summing these counts will yield the final joint count, i.e., the number of times
dog and aardvark co-occur in the entire collection. At this point, since the reducer already knows the
marginal, simple arithmetic suffices to compute the relative frequency. All subsequent joint counts
are processed in exactly the same manner. When the reducer encounters the next special key-value
pair (doge, ∗), the reducer resets its internal state and starts to accumulate the marginal all over
again. Observe that the memory requirement for this algorithm is minimal, since only the marginal
(an integer) needs to be stored. No buffering of individual co-occurring word counts is necessary,
and therefore we have eliminated the scalability bottleneck of the previous algorithm.

This design pattern, which we call “order inversion”, occurs surprisingly often and across
applications in many domains. It is so named because through proper coordination, we can access
the result of a computation in the reducer (for example, an aggregate statistic) before processing the
data needed for that computation. The key insight is to convert the sequencing of computations
into a sorting problem. In most cases, an algorithm requires data in some fixed order: by controlling
how keys are sorted and how the key space is partitioned, we can present data to the reducer in
the order necessary to perform the proper computations. This greatly cuts down on the amount of
partial results that the reducer needs to hold in memory.

To summarize, the specific application of the order inversion design pattern for computing
relative frequencies requires the following:

• Emitting a special key-value pair for each co-occurring word pair in the mapper to capture its
contribution to the marginal.

• Controlling the sort order of the intermediate key so that the key-value pairs representing the
marginal contributions are processed by the reducer before any of the pairs representing the
joint word co-occurrence counts.

• Defining a custom partitioner to ensure that all pairs with the same left word are shuffled to
the same reducer.

• Preserving state across multiple keys in the reducer to first compute the marginal based on
the special key-value pairs and then dividing the joint counts by the marginals to arrive at the
relative frequencies.

As we will see in Chapter 4, this design pattern is also used in inverted index construction to properly
set compression parameters for postings lists.

3.4. SECONDARY SORTING 57

3.4 SECONDARY SORTING
MapReduce sorts intermediate key-value pairs by the keys during the shuffle and sort phase, which is
very convenient if computations inside the reducer rely on sort order (e.g., the order inversion design
pattern described in the previous section). However, what if in addition to sorting by key, we also need
to sort by value? Google’s MapReduce implementation provides built-in functionality for (optional)
secondary sorting, which guarantees that values arrive in sorted order. Hadoop, unfortunately, does
not have this capability built in.

Consider the example of sensor data from a scientific experiment: there are m sensors each
taking readings on a continuous basis, where m is potentially a large number. A dump of the sensor
data might look something like the following, where rx after each timestamp represents the actual
sensor reading (unimportant for this discussion, but may be a series of values, one or more complex
records, or even raw bytes of images).

(t1, m1, r80521)

(t1, m2, r14209)

(t1, m3, r76042)

...

(t2, m1, r21823)

(t2, m2, r66508)

(t2, m3, r98347)

Suppose we wish to reconstruct the activity at each individual sensor over time. A MapReduce
program to accomplish this might map over the raw data and emit the sensor id as the intermediate
key, with the rest of each record as the value:

m1 → (t1, r80521)

This would bring all readings from the same sensor together in the reducer. However, since Map-
Reduce makes no guarantees about the ordering of values associated with the same key, the sensor
readings will not likely be in temporal order. The most obvious solution is to buffer all the readings
in memory and then sort by timestamp before additional processing. However, it should be apparent
by now that any in-memory buffering of data introduces a potential scalability bottleneck. What if
we are working with a high frequency sensor or sensor readings over a long period of time? What
if the sensor readings themselves are large complex objects? This approach may not scale in these
cases—the reducer would run out of memory trying to buffer all values associated with the same
key.

This is a common problem, since in many applications we wish to first group together data one
way (e.g., by sensor id), and then sort within the groupings another way (e.g., by time). Fortunately,
there is a general purpose solution, which we call the “value-to-key conversion” design pattern. The
basic idea is to move part of the value into the intermediate key to form a composite key, and let the
MapReduce execution framework handle the sorting. In the above example, instead of emitting the
sensor id as the key, we would emit the sensor id and the timestamp as a composite key:

58 3. MAPREDUCE ALGORITHM DESIGN

(m1, t1)→ (r80521)

The sensor reading itself now occupies the value. We must define the intermediate key sort order to
first sort by the sensor id (the left element in the pair) and then by the timestamp (the right element
in the pair). We must also implement a custom partitioner so that all pairs associated with the same
sensor are shuffled to the same reducer.

Properly orchestrated, the key-value pairs will be presented to the reducer in the correct sorted
order:

(m1, t1)→ [(r80521)]
(m1, t2)→ [(r21823)]
(m1, t3)→ [(r146925)]
. . .

However, note that sensor readings are now split across multiple keys. The reducer will need to
preserve state and keep track of when readings associated with the current sensor end and the next
sensor begin.9

The basic tradeoff between the two approaches discussed above (buffer and in-memory sort
vs. value-to-key conversion) is where sorting is performed. One can explicitly implement secondary
sorting in the reducer, which is likely to be faster but suffers from a scalability bottleneck.10 With
value-to-key conversion, sorting is offloaded to the MapReduce execution framework. Note that
this approach can be arbitrarily extended to tertiary, quaternary, etc. sorting. This pattern results in
many more keys for the framework to sort, but distributed sorting is a task that the MapReduce
runtime excels at since it lies at the heart of the programming model.

3.5 RELATIONAL JOINS
One popular application of Hadoop is data-warehousing. In an enterprise setting, a data warehouse
serves as a vast repository of data, holding everything from sales transactions to product inventories.
Typically, the data is relational in nature, but increasingly data warehouses are used to store semi-
structured data (e.g., query logs) as well as unstructured data. Data warehouses form a foundation
for business intelligence applications designed to provide decision support. It is widely believed that
insights gained by mining historical, current, and prospective data can yield competitive advantages
in the marketplace.

Traditionally, data warehouses have been implemented through relational databases, partic-
ularly those optimized for a specific workload known as online analytical processing (OLAP). A
number of vendors offer parallel databases, but customers find that they often cannot cost-effectively
scale to the crushing amounts of data an organization needs to deal with today. Parallel databases
9Alternatively, Hadoop provides API hooks to define “groups” of intermediate keys that should be processed together in the reducer.

10Note that, in principle, this need not be an in-memory sort. It is entirely possible to implement a disk-based sort within the
reducer, although one would be duplicating functionality that is already present in the MapReduce execution framework. It makes
more sense to take advantage of functionality that is already present with value-to-key conversion.

3.5. RELATIONAL JOINS 59

are often quite expensive—on the order of tens of thousands of dollars per terabyte of user data.
Over the past few years, Hadoop has gained popularity as a platform for data-warehousing. Ham-
merbacher [68], for example, discussed Facebook’s experiences with scaling up business intelligence
applications with Oracle databases, which they ultimately abandoned in favor of a Hadoop-based
solution developed in-house called Hive (which is now an open-source project). Pig [114] is a
platform for massive data analytics built on Hadoop and capable of handling structured as well as
semi-structured data. It was originally developed by Yahoo, but is now also an open-source project.

Given successful applications of Hadoop to data-warehousing and complex analytical queries
that are prevalent in such an environment, it makes sense to examine MapReduce algorithms for
manipulating relational data.This section focuses specifically on performing relational joins in Map-
Reduce. We should stress here that even though Hadoop has been applied to process relational data,
Hadoop is not a database.There is an ongoing debate between advocates of parallel databases and pro-
ponents of MapReduce regarding the merits of both approaches for OLAP-type workloads. Dewitt
and Stonebraker, two well-known figures in the database community, famously decried MapReduce
as “a major step backwards” in a controversial blog post.11 With colleagues, they ran a series of
benchmarks that demonstrated the supposed superiority of column-oriented parallel databases over
Hadoop [120; 144].However, see Dean and Ghemawat’s counterarguments [47] and recent attempts
at hybrid architectures [1].

We shall refrain here from participating in this lively debate, and instead focus on discussing
algorithms. From an application point of view, it is highly unlikely that an analyst interacting with
a data warehouse would ever be called upon to write MapReduce programs (and indeed, Hadoop-
based systems such as Hive and Pig present a much higher-level language for interacting with large
amounts of data). Nevertheless, it is instructive to understand the algorithms that underlie basic
relational operations.

This section presents three different strategies for performing relational joins on two datasets
(relations), generically named S and T . Let us suppose that relation S looks something like the
following:

(k1, s1, S1)

(k2, s2, S2)

(k3, s3, S3)

. . .

where k is the key we would like to join on, sn is a unique id for the tuple, and the Sn after sn denotes
other attributes in the tuple (unimportant for the purposes of the join). Similarly, suppose relation
T looks something like this:

(k1, t1,T1)

(k3, t2,T2)

11http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

60 3. MAPREDUCE ALGORITHM DESIGN

(k8, t3,T3)

. . .

where k is the join key, tn is a unique id for the tuple, and the Tn after tn denotes other attributes in
the tuple.

To make this task more concrete, we present one realistic scenario: S might represent a col-
lection of user profiles, in which case k could be interpreted as the primary key (i.e., user id). The
tuples might contain demographic information such as age, gender, income, etc. The other dataset,
T , might represent logs of online activity. Each tuple might correspond to a page view of a particular
URL and may contain additional information such as time spent on the page, ad revenue generated,
etc. The k in these tuples could be interpreted as the foreign key that associates each individual page
view with a user. Joining these two datasets would allow an analyst, for example, to break down
online activity in terms of demographics.

3.5.1 REDUCE-SIDE JOIN
The first approach to relational joins is what’s known as a reduce-side join. The idea is quite simple:
we map over both datasets and emit the join key as the intermediate key, and the tuple itself as
the intermediate value. Since MapReduce guarantees that all values with the same key are brought
together, all tuples will be grouped by the join key—which is exactly what we need to perform the join
operation. This approach is known as a parallel sort-merge join in the database community [134].
In more detail, there are three different cases to consider.

The first and simplest is a one-to-one join, where at most one tuple from S and one tuple from
T share the same join key (but it may be the case that no tuple from S shares the join key with a
tuple from T , or vice versa). In this case, the algorithm sketched above will work fine. The reducer
will be presented keys and lists of values along the lines of the following:

k23 → [(s64, S64), (t84,T84)]
k37 → [(s68, S68)]
k59 → [(t97,T97), (s81, S81)]
k61 → [(t99,T99)]
. . .

Since we’ve emitted the join key as the intermediate key, we can remove it from the value to save a
bit of space.12 If there are two values associated with a key, then we know that one must be from S

and the other must be from T . However, recall that in the basic MapReduce programming model,
no guarantees are made about value ordering, so the first value might be from S or from T . We
can proceed to join the two tuples and perform additional computations (e.g., filter by some other
attribute, compute aggregates, etc.). If there is only one value associated with a key, this means that
no tuple in the other dataset shares the join key, so the reducer does nothing.

12Not very important if the intermediate data is compressed.

3.5. RELATIONAL JOINS 61

Let us now consider the one-to-many join. Assume that tuples in S have unique join keys (i.e.,
k is the primary key in S), so that S is the “one” and T is the “many”. The above algorithm will still
work, but when processing each key in the reducer, we have no idea when the value corresponding
to the tuple from S will be encountered, since values are arbitrarily ordered.The easiest solution is to
buffer all values in memory, pick out the tuple from S, and then cross it with every tuple from T to
perform the join. However, as we have seen several times already, this creates a scalability bottleneck
since we may not have sufficient memory to hold all the tuples with the same join key.

This is a problem that requires a secondary sort, and the solution lies in the value-to-key
conversion design pattern we just presented. In the mapper, instead of simply emitting the join key
as the intermediate key, we instead create a composite key consisting of the join key and the tuple
id (from either S or T). Two additional changes are required: First, we must define the sort order of
the keys to first sort by the join key, and then sort all tuple ids from S before all tuple ids from T .
Second, we must define the partitioner to pay attention to only the join key, so that all composite
keys with the same join key arrive at the same reducer.

After applying the value-to-key conversion design pattern, the reducer will be presented with
keys and values along the lines of the following:

(k82, s105)→ [(S105)]
(k82, t98)→ [(T98)]
(k82, t101)→ [(T101)]
(k82, t137)→ [(T137)]
. . .

Since both the join key and the tuple id are present in the intermediate key, we can remove them
from the value to save a bit of space.13 Whenever the reducer encounters a new join key, it is
guaranteed that the associated value will be the relevant tuple from S. The reducer can hold this
tuple in memory and then proceed to cross it with tuples from T in subsequent steps (until a new
join key is encountered). Since the MapReduce execution framework performs the sorting, there is
no need to buffer tuples (other than the single one from S). Thus, we have eliminated the scalability
bottleneck.

Finally, let us consider the many-to-many join case. Assuming that S is the smaller dataset,
the above algorithm works as well. Consider what happens at the reducer:

(k82, s105)→ [(S105)]
(k82, s124)→ [(S124)]
. . .

(k82, t98)→ [(T98)]
(k82, t101)→ [(T101)]
(k82, t137)→ [(T137)]
. . .

13Once again, not very important if the intermediate data is compressed.

62 3. MAPREDUCE ALGORITHM DESIGN

All the tuples from S with the same join key will be encountered first, which the reducer can buffer
in memory. As the reducer processes each tuple from T , it is crossed with all the tuples from S. Of
course, we are assuming that the tuples from S (with the same join key) will fit into memory, which
is a limitation of this algorithm (and why we want to control the sort order so that the smaller dataset
comes first).

The basic idea behind the reduce-side join is to repartition the two datasets by the join key.
The approach isn’t particularly efficient since it requires shuffling both datasets across the network.
This leads us to the map-side join.

3.5.2 MAP-SIDE JOIN
Suppose we have two datasets that are both sorted by the join key. We can perform a join by scanning
through both datasets simultaneously—this is known as a merge join in the database community. We
can parallelize this by partitioning and sorting both datasets in the same way. For example, suppose
S and T were both divided into ten files, partitioned in the same manner by the join key. Further
suppose that in each file, the tuples were sorted by the join key. In this case, we simply need to merge
join the first file of S with the first file of T , the second file with S with the second file of T , etc.
This can be accomplished in parallel, in the map phase of a MapReduce job—hence, a map-side
join. In practice, we map over one of the datasets (the larger one) and inside the mapper read the
corresponding part of the other dataset to perform the merge join.14 No reducer is required, unless
the programmer wishes to repartition the output or perform further processing.

A map-side join is far more efficient than a reduce-side join since there is no need to shuffle
the datasets over the network. But is it realistic to expect that the stringent conditions required for
map-side joins are satisfied? In many cases, yes. The reason is that relational joins happen within
the broader context of a workflow, which may include multiple steps. Therefore, the datasets that
are to be joined may be the output of previous processes (either MapReduce jobs or other code).
If the workflow is known in advance and relatively static (both reasonable assumptions in a mature
workflow), we can engineer the previous processes to generate output sorted and partitioned in a
way that makes efficient map-side joins possible (in MapReduce, by using a custom partitioner
and controlling the sort order of key-value pairs). For ad hoc data analysis, reduce-side joins are a
more general, albeit less efficient, solution. Consider the case where datasets have multiple keys that
one might wish to join on—then no matter how the data is organized, map-side joins will require
repartitioning of the data. Alternatively, it is always possible to repartition a dataset using an identity
mapper and reducer. But of course, this incurs the cost of shuffling data over the network.

There is a final restriction to bear in mind when using map-side joins with the Hadoop
implementation of MapReduce. We assume here that the datasets to be joined were produced by
previous MapReduce jobs, so this restriction applies to keys the reducers in those jobs may emit.
Hadoop permits reducers to emit keys that are different from the input key whose values they are

14Note that this almost always implies a non-local read.

3.6. SUMMARY 63

processing (that is, input and output keys need not be the same, nor even the same type).15 However,
if the output key of a reducer is different from the input key, then the output dataset from the reducer
will not necessarily be partitioned in a manner consistent with the specified partitioner (because the
partitioner applies to the input keys rather than the output keys). Since map-side joins depend on
consistent partitioning and sorting of keys, the reducers used to generate data that will participate
in a later map-side join must not emit any key but the one they are currently processing.

3.5.3 MEMORY-BACKED JOIN
In addition to the two previous approaches to joining relational data that leverage the MapReduce
framework to bring together tuples that share a common join key, there is a family of approaches we
call memory-backed joins based on random access probes. The simplest version is applicable when
one of the two datasets completely fits in memory on each node. In this situation, we can load the
smaller dataset into memory in every mapper, populating an associative array to facilitate random
access to tuples based on the join key. The mapper initialization API hook (see Section 3.1.1) can
be used for this purpose. Mappers are then applied to the other (larger) dataset, and for each input
key-value pair, the mapper probes the in-memory dataset to see if there is a tuple with the same
join key. If there is, the join is performed. This is known as a simple hash join by the database
community [51].

What if neither dataset fits in memory? The simplest solution is to divide the smaller dataset,
let’s say S, into n partitions, such that S = S1 ∪ S2 ∪ . . . ∪ Sn.We can choose n so that each partition
is small enough to fit in memory, and then run n memory-backed hash joins.This, of course, requires
streaming through the other dataset n times.

There is an alternative approach to memory-backed joins for cases where neither datasets
fit into memory. A distributed key-value store can be used to hold one dataset in memory across
multiple machines while mapping over the other. The mappers would then query this distributed
key-value store in parallel and perform joins if the join keys match.16 The open-source caching
system memcached can be used for exactly this purpose, and therefore we’ve dubbed this approach
memcached join. For more information, this approach is detailed in a technical report [95].

3.6 SUMMARY
This chapter provides a guide on the design of MapReduce algorithms. In particular, we present a
number of “design patterns” that capture effective solutions to common problems. In summary, they
are:

• “In-mapper combining”, where the functionality of the combiner is moved into the mapper.
Instead of emitting intermediate output for every input key-value pair, the mapper aggregates

15In contrast, recall from Section 2.2 that in Google’s implementation, reducers’ output keys must be exactly same as their input
keys.

16In order to achieve good performance in accessing distributed key-value stores, it is often necessary to batch queries before making
synchronous requests (to amortize latency over many requests) or to rely on asynchronous requests.

64 3. MAPREDUCE ALGORITHM DESIGN

partial results across multiple input records and only emits intermediate key-value pairs after
some amount of local aggregation is performed.

• The related patterns “pairs” and “stripes” for keeping track of joint events from a large number
of observations. In the pairs approach, we keep track of each joint event separately, whereas in
the stripes approach we keep track of all events that co-occur with the same event. Although
the stripes approach is significantly more efficient, it requires memory on the order of the size
of the event space, which presents a scalability bottleneck.

• “Order inversion”, where the main idea is to convert the sequencing of computations into
a sorting problem. Through careful orchestration, we can send the reducer the result of a
computation (e.g., an aggregate statistic) before it encounters the data necessary to produce
that computation.

• “Value-to-key conversion”, which provides a scalable solution for secondary sorting. By moving
part of the value into the key, we can exploit the MapReduce execution framework itself for
sorting.

Ultimately, controlling synchronization in the MapReduce programming model boils down to ef-
fective use of the following techniques:

1. Constructing complex keys and values that bring together data necessary for a computation.
This is used in all of the above design patterns.

2. Executing user-specified initialization and termination code in either the mapper or reducer.
For example, in-mapper combining depends on emission of intermediate key-value pairs in
the map task termination code.

3. Preserving state across multiple inputs in the mapper and reducer. This is used in in-mapper
combining, order inversion, and value-to-key conversion.

4. Controlling the sort order of intermediate keys.This is used in order inversion and value-to-key
conversion.

5. Controlling the partitioning of the intermediate key space. This is used in order inversion and
value-to-key conversion.

This concludes our overview of MapReduce algorithm design. It should be clear by now that although
the programming model forces one to express algorithms in terms of a small set of rigidly defined
components, there are many tools at one’s disposal to shape the flow of computation. In the next
few chapters, we will focus on specific classes of MapReduce algorithms: for inverted indexing in
Chapter 4, for graph processing in Chapter 5, and for expectation-maximization in Chapter 6.

65

C H A P T E R 4

Inverted Indexing for Text
Retrieval

Web search is the quintessential large-data problem. Given an information need expressed as a short
query consisting of a few terms, the system’s task is to retrieve relevant web objects (web pages,
PDF documents, PowerPoint slides, etc.) and present them to the user. How large is the web? It is
difficult to compute exactly, but even a conservative estimate would place the size at several tens of
billions of pages, totaling hundreds of terabytes (considering text alone). In real-world applications,
users demand results quickly from a search engine—query latencies longer than a few hundred
milliseconds will try a user’s patience. Fulfilling these requirements is quite an engineering feat,
considering the amounts of data involved!

Nearly all retrieval engines for full-text search today rely on a data structure called an inverted
index, which given a term provides access to the list of documents that contain the term. In infor-
mation retrieval parlance, objects to be retrieved are generically called “documents” even though in
actuality they may be web pages, PDFs, or even fragments of code. Given a user query, the retrieval
engine uses the inverted index to score documents that contain the query terms with respect to
some ranking model, taking into account features such as term matches, term proximity, attributes
of the terms in the document (e.g., bold, appears in title, etc.), as well as the hyperlink structure of
the documents (e.g., PageRank [117], which we’ll discuss in Chapter 5, or related metrics such as
HITS [84] and SALSA [88]).

The web search problem decomposes into three components: gathering web content (crawl-
ing), construction of the inverted index (indexing) and ranking documents given a query (retrieval).
Crawling and indexing share similar characteristics and requirements, but these are very different
from retrieval. Gathering web content and building inverted indexes are for the most part offline
problems. Both need to be scalable and efficient, but they do not need to operate in real time. In-
dexing is usually a batch process that runs periodically: the frequency of refreshes and updates is
usually dependent on the design of the crawler. Some sites (e.g., news organizations) update their
content quite frequently and need to be visited often; other sites (e.g., government regulations) are
relatively static. However, even for rapidly changing sites, it is usually tolerable to have a delay of
a few minutes until content is searchable. Furthermore, since the amount of content that changes
rapidly is relatively small, running smaller-scale index updates at greater frequencies is usually an
adequate solution.1 Retrieval, on the other hand, is an online problem that demands sub-second

1Leaving aside the problem of searching live data streams such a tweets, which requires different techniques and algorithms.

66 4. INVERTED INDEXING FOR TEXT RETRIEVAL

response time. Individual users expect low query latencies, but query throughput is equally impor-
tant since a retrieval engine must usually serve many users concurrently. Furthermore, query loads
are highly variable, depending on the time of day, and can exhibit “spikey” behavior due to special
circumstances (e.g., a breaking news event triggers a large number of searches on the same topic).
On the other hand, resource consumption for the indexing problem is more predictable.

A comprehensive treatment of web search is beyond the scope of this chapter, and even this
entire book. Explicitly recognizing this, we mostly focus on the problem of inverted indexing, the
task most amenable to solutions in MapReduce. This chapter begins by first providing an overview
of web crawling (Section 4.1) and introducing the basic structure of an inverted index (Section 4.2).
A baseline inverted indexing algorithm in MapReduce is presented in Section 4.3. We point out a
scalability bottleneck in that algorithm, which leads to a revised version presented in Section 4.4.
Index compression is discussed in Section 4.5, which fills in missing details on building compact
index structures. Since MapReduce is primarily designed for batch-oriented processing, it does not
provide an adequate solution for the retrieval problem, an issue we discuss in Section 4.6.The chapter
concludes with a summary and pointers to additional readings.

4.1 WEB CRAWLING

Before building inverted indexes, we must first acquire the document collection over which these
indexes are to be built. In academia and for research purposes, this can be relatively straightforward.
Standard collections for information retrieval research are widely available for a variety of genres
ranging from blogs to newswire text. For researchers who wish to explore web-scale retrieval, there
is the ClueWeb09 collection that contains one billion web pages in ten languages (totaling 25 tera-
bytes) crawled by Carnegie Mellon University in early 2009.2 Obtaining access to these standard
collections is usually as simple as signing an appropriate data license from the distributor of the
collection, paying a reasonable fee, and arranging for receipt of the data.3

For real-world web search, however, one cannot simply assume that the collection is already
available. Acquiring web content requires crawling, which is the process of traversing the web by
repeatedly following hyperlinks and storing downloaded pages for subsequent processing. Concep-
tually, the process is quite simple to understand: we start by populating a queue with a “seed” list
of pages. The crawler downloads pages in the queue, extracts links from those pages to add to the
queue, stores the pages for further processing, and repeats. In fact, rudimentary web crawlers can be
written in a few hundred lines of code.

However, effective and efficient web crawling is far more complex.The following lists a number
of issues that real-world crawlers must contend with:

2http://boston.lti.cs.cmu.edu/Data/clueweb09/
3As an interesting side note, in the 1990s, research collections were distributed via postal mail on CD-ROMs, and later, on DVDs.
Electronic distribution became common earlier this decade for collections below a certain size. However, many collections today
are so large that the only practical method of distribution is shipping hard drives via postal mail.

4.1. WEB CRAWLING 67

• A web crawler must practice good “etiquette” and not overload web servers. For example, it is
common practice to wait a fixed amount of time before repeated requests to the same server. In
order to respect these constraints while maintaining good throughput, a crawler typically keeps
many execution threads running in parallel and maintains many TCP connections (perhaps
hundreds) open at the same time.

• Since a crawler has finite bandwidth and resources, it must prioritize the order in which
unvisited pages are downloaded. Such decisions must be made online and in an adversarial
environment, in the sense that spammers actively create “link farms” and “spider traps” full of
spam pages to trick a crawler into overrepresenting content from a particular site.

• Most real-world web crawlers are distributed systems that run on clusters of machines, often
geographically distributed. To avoid downloading a page multiple times and to ensure data
consistency, the crawler as a whole needs mechanisms for coordination and load-balancing. It
also needs to be robust with respect to machine failures, network outages, and errors of various
types.

• Web content changes, but with different frequency depending on both the site and the nature
of the content. A web crawler needs to learn these update patterns to ensure that content is
reasonably current. Getting the right recrawl frequency is tricky: too frequent means wasted
resources, but not frequent enough leads to stale content.

• The web is full of duplicate content. Examples include multiple copies of a popular conference
paper, mirrors of frequently accessed sites such as Wikipedia, and newswire content that is
often duplicated. The problem is compounded by the fact that most repetitious pages are not
exact duplicates but near duplicates (that is, basically the same page but with different ads,
navigation bars, etc.) It is desirable during the crawling process to identify near duplicates and
select the best exemplar to index.

• The web is multilingual. There is no guarantee that pages in one language only link to pages
in the same language. For example, a professor in Asia may maintain her website in the local
language,but link to her publications in English.Furthermore,many pages contain a mix of text
in different languages. Since document processing techniques (e.g., tokenization, stemming)
differ by language, it is important to identify the (dominant) language on a page.

The above discussion is not meant to be an exhaustive enumeration of issues, but rather to give the
reader an appreciation of the complexities involved in this intuitively simple task. For more infor-
mation, see a recent survey on web crawling [113]. Section 4.7 provides suggestions for additional
readings.

68 4. INVERTED INDEXING FOR TEXT RETRIEVAL

terms postings

term1

term2

term3

 d1 p d5 p d6 p d11 p

 d11 p d23d23 pp d59 p d84d84 pp

 d1 p d4 p d11d11 pp d19 p3

1 p 4 p 1111 pp 19 p

Figure 4.1: Simple illustration of an inverted index. Each term is associated with a list of postings. Each
posting is comprised of a document id and a payload, denoted by p in this case. An inverted index provides
quick access to documents ids that contain a term.

4.2 INVERTED INDEXES
In its basic form, an inverted index consists of postings lists, one associated with each term that
appears in the collection.4 The structure of an inverted index is illustrated in Figure 4.1. A postings
list is comprised of individual postings, each of which consists of a document id and a payload—
information about occurrences of the term in the document. The simplest payload is…nothing!
For simple boolean retrieval, no additional information is needed in the posting other than the
document id; the existence of the posting itself indicates the presence of the term in the document.
The most common payload, however, is term frequency (tf), or the number of times the term occurs
in the document. More complex payloads include positions of every occurrence of the term in the
document (to support phrase queries and document scoring based on term proximity), properties
of the term (such as if it occurred in the page title or not, to support document ranking based on
notions of importance), or even the results of additional linguistic processing (for example, indicating
that the term is part of a place name, to support address searches). In the web context, anchor text
information (text associated with hyperlinks from other pages to the page in question) is useful in
enriching the representation of document content (e.g., [107]); this information is often stored in
the index as well.

In the example shown in Figure 4.1, we see that term1 occurs in {d1, d5, d6, d11, . . .}, term2

occurs in {d11, d23, d59, d84, . . .}, and term3 occurs in {d1, d4, d11, d19, . . .}. In an actual implemen-
tation, we assume that documents can be identified by a unique integer ranging from 1 to n, where
n is the total number of documents.5 Generally, postings are sorted by document id, although other
sort orders are possible as well. The document ids have no inherent semantic meaning, although
assignment of numeric ids to documents need not be arbitrary. For example, pages from the same

4In information retrieval parlance, term is preferred over word since documents are processed (e.g., tokenization and stemming)
into basic units that are often not words in the linguistic sense.

5It is preferable to start numbering the documents at one since it is not possible to code zero with many common compression
schemes used in information retrieval; see Section 4.5.

4.3. INVERTED INDEXING: BASELINE IMPLEMENTATION 69

domain may be consecutively numbered. Or, alternatively, pages that are higher in quality (based,
for example, on PageRank values) might be assigned smaller numeric values so that they appear
toward the front of a postings list. Either way, an auxiliary data structure is necessary to maintain
the mapping from integer document ids to some other more meaningful handle, such as a URL.

Given a query, retrieval involves fetching postings lists associated with query terms and travers-
ing the postings to compute the result set. In the simplest case, boolean retrieval involves set op-
erations (union for boolean OR and intersection for boolean AND) on postings lists, which can
be accomplished very efficiently since the postings are sorted by document id. In the general case,
however, query–document scores must be computed. Partial document scores are stored in structures
called accumulators. At the end (i.e., once all postings have been processed), the top k documents are
then extracted to yield a ranked list of results for the user. Of course, there are many optimization
strategies for query evaluation (both approximate and exact) that reduce the number of postings a
retrieval engine must examine.

The size of an inverted index varies, depending on the payload stored in each posting. If
only term frequency is stored, a well-optimized inverted index can be a tenth of the size of the
original document collection. An inverted index that stores positional information would easily be
several times larger than one that does not. Generally, it is possible to hold the entire vocabulary
(i.e., dictionary of all the terms) in memory, especially with techniques such as front-coding [156].
However, with the exception of well-resourced, commercial web search engines,6 postings lists
are usually too large to store in memory and must be held on disk, usually in compressed form
(more details in Section 4.5). Query evaluation, therefore, necessarily involves random disk access
and “decoding” of the postings. One important aspect of the retrieval problem is to organize disk
operations such that random seeks are minimized.

Once again, this brief discussion glosses over many complexities and does a huge injustice
to the tremendous amount of research in information retrieval. However, our goal is to provide
the reader with an overview of the important issues; Section 4.7 provides references to additional
readings.

4.3 INVERTED INDEXING: BASELINE IMPLEMENTATION
MapReduce was designed from the very beginning to produce the various data structures involved
in web search, including inverted indexes and the web graph. We begin with the basic inverted
indexing algorithm shown in Figure 4.2.

Input to the mapper consists of document ids (keys) paired with the actual content (values).
Individual documents are processed in parallel by the mappers. First, each document is analyzed and
broken down into its component terms.The processing pipeline differs depending on the application
and type of document, but for web pages typically involves stripping out HTML tags and other
elements such as JavaScript code, tokenizing, case folding, removing stopwords (common words
such as ‘the’, ‘a’, ‘of ’, etc.), and stemming (removing affixes from words so that ‘dogs’ becomes ‘dog’).
6Google keeps indexes in memory.

70 4. INVERTED INDEXING FOR TEXT RETRIEVAL

1: class Mapper
2: procedure Map(docid n, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H {t} ← H {t} + 1

6: for all term t ∈ H do
7: Emit(term t, posting 〈n, H {t}〉)
1: class Reducer
2: procedure Reduce(term t, postings [〈n1, f1〉, 〈n2, f2〉 . . .])
3: P ← new List
4: for all posting 〈a, f 〉 ∈ postings [〈n1, f1〉, 〈n2, f2〉 . . .] do
5: P.Add(〈a, f 〉)
6: P.Sort()

7: Emit(term t, postings P)

Figure 4.2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce. Mappers emit
postings keyed by terms, the execution framework groups postings by term, and the reducers write
postings lists to disk.

Once the document has been analyzed, term frequencies are computed by iterating over all the terms
and keeping track of counts. Lines 4 and 5 in the pseudo-code reflect the process of computing term
frequencies, but hides the details of document processing. After this histogram has been built, the
mapper then iterates over all terms. For each term, a pair consisting of the document id and the term
frequency is created. Each pair, denoted by 〈n, H {t}〉 in the pseudo-code, represents an individual
posting. The mapper then emits an intermediate key-value pair with the term as the key and the
posting as the value, in line 7 of the mapper pseudo-code. Although as presented here only the
term frequency is stored in the posting, this algorithm can be easily augmented to store additional
information (e.g., term positions) in the payload.

In the shuffle and sort phase, the MapReduce runtime essentially performs a large, distributed
group by of the postings by term. Without any additional effort by the programmer, the execution
framework brings together all the postings that belong in the same postings list. This tremendously
simplifies the task of the reducer, which simply needs to gather together all the postings and write
them to disk.The reducer begins by initializing an empty list and then appends all postings associated
with the same key (term) to the list. The postings are then sorted by document id, and the entire
postings list is emitted as a value, with the term as the key. Typically, the postings list is first
compressed, but we leave this aside for now (see Section 4.4 for more details). The final key-value
pairs are written to disk and comprise the inverted index. Since each reducer writes its output in
a separate file in the distributed file system, our final index will be split across r files, where r is

4.3. INVERTED INDEXING: BASELINE IMPLEMENTATION 71

one fish, two fish
doc 1

red fish, blue fish
doc 2

one red bird
doc 3

mapper mapper mapper

d1 2fish

d1 1one

d1 1two

d2 1blue

d2 2fish

d2 1red

d3 1bird

d3 1one

d3 1red

reducer

d1 1two d2 1red d3 1red

Shuffle and Sort: aggregate values by keys

reducer reducerreducer

d1 2fish d2 2 d3 1bird

d1 1one

d1 1two

d2 1blue

d2 1red d3 1

d3 1

Figure 4.3: Simple illustration of the baseline inverted indexing algorithm in MapReduce with three
mappers and two reducers. Postings are shown as pairs of boxes (docid, tf).

the number of reducers. There is no need to further consolidate these files. Separately, we must also
build an index to the postings lists themselves for the retrieval engine: this is typically in the form
of mappings from term to (file, byte offset) pairs, so that given a term, the retrieval engine can fetch
its postings list by opening the appropriate file and seeking to the correct byte offset position in that
file.

Execution of the complete algorithm is illustrated in Figure 4.3 with a toy example consisting of
three documents, three mappers, and two reducers. Intermediate key-value pairs (from the mappers)
and the final key-value pairs comprising the inverted index (from the reducers) are shown in the
boxes with dotted lines. Postings are shown as pairs of boxes, with the document id on the left and
the term frequency on the right.

The MapReduce programming model provides a very concise expression of the inverted
indexing algorithm. Its implementation is similarly concise: the basic algorithm can be implemented
in as few as a couple dozen lines of code in Hadoop (with minimal document processing). Such an
implementation can be completed as a week-long programming assignment in a course for advanced
undergraduates or first-year graduate students [83; 93]. In a non-MapReduce indexer, a significant

72 4. INVERTED INDEXING FOR TEXT RETRIEVAL

fraction of the code is devoted to grouping postings by term, given constraints imposed by memory
and disk (e.g., memory capacity is limited, disk seeks are slow, etc.). In MapReduce, the programmer
does not need to worry about any of these issues—most of the heavy lifting is performed by the
execution framework.

4.4 INVERTED INDEXING: REVISED IMPLEMENTATION
The inverted indexing algorithm presented in the previous section serves as a reasonable baseline.
However, there is a significant scalability bottleneck: the algorithm assumes that there is sufficient
memory to hold all postings associated with the same term. Since the basic MapReduce execution
framework makes no guarantees about the ordering of values associated with the same key, the
reducer first buffers all postings (line 5 of the reducer pseudo-code in Figure 4.2) and then performs
an in-memory sort before writing the postings to disk.7 For efficient retrieval, postings need to be
sorted by document id. However, as collections become larger, postings lists grow longer, and at
some point in time, reducers will run out of memory.

There is a simple solution to this problem. Since the execution framework guarantees that
keys arrive at each reducer in sorted order, one way to overcome the scalability bottleneck is to let
the MapReduce runtime do the sorting for us. Instead of emitting key-value pairs of the following
type:

(term t, posting 〈docid, f 〉)
We emit intermediate key-value pairs of this type instead:

(tuple 〈t, docid〉, tf f)

In other words, the key is a tuple containing the term and the document id, while the value is the
term frequency.This is exactly the value-to-key conversion design pattern introduced in Section 3.4.
With this modification, the programming model ensures that the postings arrive in the correct order.
This, combined with the fact that reducers can hold state across multiple keys, allows postings lists
to be created with minimal memory usage. As a detail, remember that we must define a custom
partitioner to ensure that all tuples with the same term are shuffled to the same reducer.

The revised MapReduce inverted indexing algorithm is shown in Figure 4.4. The mapper
remains unchanged for the most part, other than differences in the intermediate key-value pairs.
The Reduce method is called for each key (i.e., 〈t, n〉), and by design, there will only be one
value associated with each key. For each key-value pair, a posting can be directly added to the
postings list. Since the postings are guaranteed to arrive in sorted order by document id, they can be
incrementally coded in compressed form—thus ensuring a small memory footprint. Finally, when
all postings associated with the same term have been processed (i.e., t)= tprev), the entire postings
list is emitted.The final postings list must be written out in the Close method. As with the baseline
7See similar discussion in Section 3.4: in principle, this need not be an in-memory sort. It is entirely possible to implement a
disk-based sort within the reducer.

4.4. INVERTED INDEXING: REVISED IMPLEMENTATION 73

1: class Mapper
2: method Map(docid n, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H {t} ← H {t} + 1

6: for all term t ∈ H do
7: Emit(tuple 〈t, n〉, tf H {t})
1: class Reducer
2: method Initialize
3: tprev ← ∅
4: P ← new PostingsList
5: method Reduce(tuple 〈t, n〉, tf [f])
6: if t)= tprev ∧ tprev)= ∅ then
7: Emit(term t, postings P)

8: P.Reset()

9: P.Add(〈n, f 〉)
10: tprev ← t

11: method Close
12: Emit(term t, postings P)

Figure 4.4: Pseudo-code of a scalable inverted indexing algorithm in MapReduce. By applying the
value-to-key conversion design pattern, the execution framework is exploited to sort postings so that they
arrive sorted by document id in the reducer.

algorithm, payloads can be easily changed: by simply replacing the intermediate value f (term
frequency) with whatever else is desired (e.g., term positional information).

There is one more detail we must address when building inverted indexes. Since almost all
retrieval models take into account document length when computing query–document scores, this
information must also be extracted. Although it is straightforward to express this computation as
another MapReduce job, this task can actually be folded into the inverted indexing process. When
processing the terms in each document, the document length is known, and can be written out as
“side data” directly to HDFS. We can take advantage of the ability for a mapper to hold state across
the processing of multiple documents in the following manner: an in-memory associative array
is created to store document lengths, which is populated as each document is processed.8 When
the mapper finishes processing input records, document lengths are written out to HDFS (i.e., in
the Close method). This approach is essentially a variant of the in-mapper combining pattern.
Document length data end up in m different files, where m is the number of mappers; these files are

8In general, there is no worry about insufficient memory to hold these data.

74 4. INVERTED INDEXING FOR TEXT RETRIEVAL

then consolidated into a more compact representation. Alternatively, document length information
can be emitted in special key-value pairs by the mapper. One must then write a custom partitioner
so that these special key-value pairs are shuffled to a single reducer, which will be responsible for
writing out the length data separate from the postings lists.

4.5 INDEX COMPRESSION
We return to the question of how postings are actually compressed and stored on disk. This chap-
ter devotes a substantial amount of space to this topic because index compression is one of the
main differences between a “toy” indexer and one that works on real-world collections. Otherwise,
MapReduce inverted indexing algorithms are pretty straightforward.

Let us consider the canonical case where each posting consists of a document id and the term
frequency. A naïve implementation might represent the first as a 32-bit integer9 and the second as
a 16-bit integer. Thus, a postings list might be encoded as follows:

[(5, 2), (7, 3), (12, 1), (49, 1), (51, 2), . . .]
where each posting is represented by a pair in parentheses. Note that all brackets, parentheses, and
commas are only included to enhance readability; in reality, the postings would be represented as a
long stream of integers. This naïve implementation would require six bytes per posting. Using this
scheme, the entire inverted index would be about as large as the collection itself. Fortunately, we can
do significantly better.

The first trick is to encode differences between document ids as opposed to the document ids
themselves. Since the postings are sorted by document ids, the differences (called d-gaps) must be
positive integers greater than zero. The above postings list, represented with d-gaps, would be:

[(5, 2), (2, 3), (5, 1), (37, 1), (2, 2), . . .]
Of course, we must actually encode the first document id. We haven’t lost any information, since
the original document ids can be easily reconstructed from the d-gaps. However, it’s not obvious
that we’ve reduced the space requirements either, since the largest possible d-gap is one less than the
number of documents in the collection.

This is where the second trick comes in, which is to represent the d-gaps in a way such that
it takes less space for smaller numbers. Similarly, we want to apply the same techniques to compress
the term frequencies, since for the most part they are also small values. But to understand how this is
done, we need to take a slight detour into compression techniques, particularly for coding integers.

Compression, in general, can be characterized as either lossless or lossy: it’s fairly obvious that
loseless compression is required in this context. To start, it is important to understand that all
compression techniques represent a time–space tradeoff. That is, we reduce the amount of space
on disk necessary to store data, but at the cost of extra processor cycles that must be spent coding
9However, note that 232 − 1 is “only” 4,294,967,295, which is much less than even the most conservative estimate of the size of
the web.

4.5. INDEX COMPRESSION 75

and decoding data. Therefore, it is possible that compression reduces size but also slows processing.
However, if the two factors are properly balanced (i.e., decoding speed can keep up with disk
bandwidth), we can achieve the best of both worlds: smaller and faster.

4.5.1 BYTE-ALIGNED AND WORD-ALIGNED CODES
In most programming languages, an integer is encoded in four bytes and holds a value between 0
and 232 − 1, inclusive. We limit our discussion to unsigned integers, since d-gaps are always positive
(and greater than zero). This means that 1 and 4,294,967,295 both occupy four bytes. Obviously,
encoding d-gaps this way doesn’t yield any reductions in size.

A simple approach to compression is to only use as many bytes as is necessary to represent the
integer.This is known as variable-length integer coding (varInt for short) and accomplished by using
the high order bit of every byte as the continuation bit, which is set to one in the last byte and zero
elsewhere. As a result, we have 7 bits per byte for coding the value, which means that 0 ≤ n < 27

can be expressed with 1 byte, 27 ≤ n < 214 with 2 bytes, 214 ≤ n < 221 with 3, and 221 ≤ n < 228

with 4 bytes. This scheme can be extended to code arbitrarily large integers (i.e., beyond 4 bytes).
As a concrete example, the two numbers:

127, 128

would be coded as such:

1 1111111, 0 0000001 1 0000000

The above code contains two code words, the first consisting of 1 byte, and the second consisting of 2
bytes. Of course, the comma and the spaces are there only for readability. Variable-length integers are
byte-aligned because the code words always fall along byte boundaries. As a result, there is never any
ambiguity about where one code word ends and the next begins. However, the downside of varInt
coding is that decoding involves lots of bit operations (masks, shifts). Furthermore, the continuation
bit sometimes results in frequent branch mispredicts (depending on the actual distribution of d-gaps),
which slows down processing.

A variant of the varInt scheme was described by Jeff Dean in a keynote talk at the WSDM
2009 conference.10 The insight is to code groups of four integers at a time. Each group begins with
a prefix byte, divided into four 2-bit values that specify the byte length of each of the following
integers. For example, the following prefix byte:

00,00,01,10

indicates that the following four integers are one byte, one byte, two bytes, and three bytes, respec-
tively. Therefore, each group of four integers would consume anywhere between 5 and 17 bytes. A
simple lookup table based on the prefix byte directs the decoder on how to process subsequent bytes
to recover the coded integers. The advantage of this group varInt coding scheme is that values can

10http://research.google.com/people/jeff/WSDM09-keynote.pdf

76 4. INVERTED INDEXING FOR TEXT RETRIEVAL

be decoded with fewer branch mispredicts and bitwise operations. Experiments reported by Dean
suggest that decoding integers with this scheme is more than twice as fast as the basic varInt scheme.

In most architectures, accessing entire machine words is more efficient than fetching all its
bytes separately.Therefore, it makes sense to store postings in increments of 16-bit, 32-bit, or 64-bit
machine words. Anh and Moffat [8] presented several word-aligned coding methods, one of which
is called Simple-9, based on 32-bit words. In this coding scheme, four bits in each 32-bit word are
reserved as a selector. The remaining 28 bits are used to code actual integer values. Now, there are a
variety of ways these 28 bits can be divided to code one or more integers: 28 bits can be used to code
one 28-bit integer, two 14-bit integers, three 9-bit integers (with one bit unused), etc., all the way
up to twenty-eight 1-bit integers. In fact, there are nine different ways the 28 bits can be divided
into equal parts (hence the name of the technique), some with leftover unused bits. This is stored in
the selector bits. Therefore, decoding involves reading a 32-bit word, examining the selector to see
how the remaining 28 bits are packed, and then appropriately decoding each integer. Coding works
in the opposite way: the algorithm scans ahead to see how many integers can be squeezed into 28
bits, packs those integers, and sets the selector bits appropriately.

4.5.2 BIT-ALIGNED CODES
The advantage of byte-aligned and word-aligned codes is that they can be coded and decoded quickly.
The downside, however, is that they must consume multiples of eight bits, even when fewer bits might
suffice (the Simple-9 scheme gets around this by packing multiple integers into a 32-bit word, but
even then, bits are often wasted). In bit-aligned codes, on the other hand, code words can occupy
any number of bits, meaning that boundaries can fall anywhere. In practice, coding and decoding
bit-aligned codes require processing bytes and appropriately shifting or masking bits (usually more
involved than varInt and group varInt coding).

One additional challenge with bit-aligned codes is that we need a mechanism to delimit code
words, i.e., tell where the last ends and the next begins, since there are no byte boundaries to guide
us. To address this issue, most bit-aligned codes are so-called prefix codes (confusingly, they are also
called prefix-free codes), in which no valid code word is a prefix of any other valid code word. For
example, coding 0 ≤ x < 3 with {0, 1, 01} is not a valid prefix code, since 0 is a prefix of 01, and
so we can’t tell if 01 is two code words or one. On the other hand, {00, 01, 1} is a valid prefix code,
such that a sequence of bits:

0001101001010100

can be unambiguously segmented into:

00 01 1 01 00 1 01 01 00

and decoded without any additional delimiters.
One of the simplest prefix codes is the unary code. An integer x > 0 is coded as x − 1 one

bits followed by a zero bit. Note that unary codes do not allow the representation of zero, which

4.5. INDEX COMPRESSION 77

Golomb
x unary γ b = 5 b = 10
1 0 0 0:00 0:000
2 10 10:0 0:01 0:001
3 110 10:1 0:10 0:010
4 1110 110:00 0:110 0:011
5 11110 110:01 0:111 0:100
6 111110 110:10 10:00 0:101
7 1111110 110:11 10:01 0:1100
8 11111110 1110:000 10:10 0:1101
9 111111110 1110:001 10:110 0:1110
10 1111111110 1110:010 10:111 0:1111

Figure 4.5: The first ten positive integers in unary, γ , and Golomb (b = 5, 10) codes.

is fine since d-gaps and term frequencies should never be zero.11 As an example, 4 in unary code
is 1110. With unary code we can code x in x bits, which although economical for small values,
becomes inefficient for even moderately large values. Unary codes are rarely used by themselves, but
form a component of other coding schemes. Unary codes of the first ten positive integers are shown
in Figure 4.5.

Elias γ code is an efficient coding scheme that is widely used in practice. An integer x > 0
is broken into two components, 1 + 1log2 x2 (= n, the length), which is coded in unary code,
and x − 21log2 x2 (= r , the remainder), which is in binary.12 The unary component n specifies the
number of bits required to code x, and the binary component codes the remainder r in n− 1 bits.
As an example, consider x = 10: 1 + 1log2 102 = 4, which is 1110. The binary component codes
x − 23 = 2 in 4− 1 = 3 bits, which is 010. Putting both together, we arrive at 1110:010. The extra
colon is inserted only for readability; it’s not part of the final code, of course.

Working in reverse, it is easy to unambiguously decode a bit stream of γ codes: First, we read
a unary code cu, which is a prefix code. This tells us that the binary portion is written in cu − 1 bits,
which we then read as cb. We can then reconstruct x as 2cu−1 + cb. For x < 16, γ codes occupy
less than a full byte, which makes them more compact than variable-length integer codes. Since
term frequencies for the most part are relatively small, γ codes make sense for them and can yield
substantial space savings. For reference, the γ codes of the first ten positive integers are shown in
Figure 4.5. A variation on γ code is δ code, where the n portion of the γ code is coded in γ code
itself (as opposed to unary code). For smaller values γ codes are more compact, but for larger values,
δ codes take less space.

11As a note, some sources describe slightly different formulations of the same coding scheme. Here, we adopt the conventions used
in the classic IR text Managing Gigabytes [156].

12Note that 1x2 is the floor function, which maps x to the largest integer not greater than x, so, e.g., 13.82 = 3. This is the default
behavior in many programming languages when casting from a floating-point type to an integer type.

78 4. INVERTED INDEXING FOR TEXT RETRIEVAL

Unary and γ codes are parameterless, but even better compression can be achieved with
parameterized codes. A good example of this is Golomb code. For some parameter b, an integer
x > 0 is coded in two parts: first, we compute q = 1(x − 1)/b2 and code q + 1 in unary; then,
we code the remainder r = x − qb − 1 in truncated binary. This is accomplished as follows: if b

is a power of two, then truncated binary is exactly the same as normal binary, requiring log2 b

bits. Otherwise, we code the first 21log2 b2+1 − b values of r in 1log2 b2 bits and code the rest of
the values of r by coding r + 21log2 b2+1 − b in ordinary binary representation using 1log2 b2 + 1
bits. In this case, the r is coded in either 1log2 b2 or 1log2 b2 + 1 bits, and unlike ordinary binary
coding, truncated binary codes are prefix codes. As an example, if b = 5, then r can take the values
{0, 1, 2, 3, 4}, which would be coded with the following code words: {00, 01, 10, 110, 111}. For
reference, Golomb codes of the first ten positive integers are shown in Figure 4.5 for b = 5 and
b = 10. A special case of Golomb code is worth noting: if b is a power of two, then coding and
decoding can be handled more efficiently (needing only bit shifts and bit masks, as opposed to
multiplication and division). These are known as Rice codes.

Researchers have shown that Golomb compression works well for d-gaps, and is optimal with
the following parameter setting:

b ≈ 0.69× N

df
(4.1)

where df is the document frequency of the term, and N is the number of documents in the collec-
tion.13

Putting everything together, one popular approach for postings compression is to represent
d-gaps with Golomb codes and term frequencies with γ codes [156; 162]. If positional information
is desired, we can use the same trick to code differences between term positions using γ codes.

4.5.3 POSTINGS COMPRESSION
Having completed our slight detour into integer compression techniques, we can now return to
the scalable inverted indexing algorithm shown in Figure 4.4 and discuss how postings lists can be
properly compressed. As we can see from the previous section, there is a wide range of choices that
represent different trade offs between compression ratio and decoding speed.Actual performance also
depends on characteristics of the collection, which, among other factors, determine the distribution
of d-gaps. Büttcher et al. [30] recently compared the performance of various compression techniques
on coding document ids. In terms of the amount of compression that can be obtained (measured in
bits per docid), Golomb and Rice codes performed the best, followed by γ codes, Simple-9, varInt,
and group varInt (the least space efficient). In terms of raw decoding speed, the order was almost

13For details as to why this is the case, we refer the reader elsewhere [156], but here’s the intuition: under reasonable assumptions,
the appearance of postings can be modeled as a sequence of independent Bernoulli trials, which implies a certain distribution of
d-gaps. From this we can derive an optimal setting of b.

4.5. INDEX COMPRESSION 79

the reverse: group varInt was the fastest, followed by varInt.14 Simple-9 was substantially slower,
and the bit-aligned codes were even slower than that. Within the bit-aligned codes, Rice codes were
the fastest, followed by γ , with Golomb codes being the slowest (about ten times slower than group
varInt).

Let us discuss what modifications are necessary to our inverted indexing algorithm if we were
to adopt Golomb compression for d-gaps and represent term frequencies with γ codes. Note that
this represents a space-efficient encoding, at the cost of slower decoding compared to alternatives.
Whether or not this is actually a worthwhile tradeoff in practice is not important here: use of Golomb
codes serves a pedagogical purpose, to illustrate how one might set compression parameters.

Coding term frequencies with γ codes is easy since they are parameterless. Compressing d-
gaps with Golomb codes, however, is a bit tricky, since two parameters are required: the size of the
document collection and the number of postings for a particular postings list (i.e., the document
frequency, or df). The first is easy to obtain and can be passed into the reducer as a constant. The
df of a term, however, is not known until all the postings have been processed—and unfortunately,
the parameter must be known before any posting is coded. At first glance, this seems like a chicken-
and-egg problem. A two-pass solution that involves first buffering the postings (in memory) would
suffer from the memory bottleneck we’ve been trying to avoid in the first place.

To get around this problem, we need to somehow inform the reducer of a term’s df before
any of its postings arrive. This can be solved with the order inversion design pattern introduced in
Section 3.3 to compute relative frequencies. The solution is to have the mapper emit special keys of
the form 〈t, ∗〉 to communicate partial document frequencies.That is, inside the mapper, in addition
to emitting intermediate key-value pairs of the following form:

(tuple 〈t, docid〉, tf f)

we also emit special intermediate key-value pairs like this:

(tuple 〈t, ∗〉, df e)

to keep track of document frequencies associated with each term. In practice, we can accomplish
this by applying the in-mapper combining design pattern (see Section 3.1). The mapper holds an
in-memory associative array that keeps track of how many documents a term has been observed in
(i.e., the local document frequency of the term for the subset of documents processed by the mapper).
Once the mapper has processed all input records, special keys of the form 〈t, ∗〉 are emitted with the
partial df as the value.

To ensure that these special keys arrive first, we define the sort order of the tuple so that the
special symbol ∗ precedes all documents (part of the order inversion design pattern). Thus, for each
term, the reducer will first encounter the 〈t, ∗〉 key, associated with a list of values representing partial
df values originating from each mapper. Summing all these partial contributions will yield the term’s

14However, this study found less speed difference between group varInt and basic varInt than Dean’s analysis, presumably due to
the different distribution of d-gaps in the collections they were examining.

80 4. INVERTED INDEXING FOR TEXT RETRIEVAL

df, which can then be used to set the Golomb compression parameter b. This allows the postings
to be incrementally compressed as they are encountered in the reducer—memory bottlenecks are
eliminated since we do not need to buffer postings in memory.

Once again, the order inversion design pattern comes to the rescue. Recall that the pattern is
useful when a reducer needs to access the result of a computation (e.g., an aggregate statistic) before
it encounters the data necessary to produce that computation. For computing relative frequencies,
that bit of information was the marginal. In this case, it’s the document frequency.

4.6 WHAT ABOUT RETRIEVAL?

Thus far, we have briefly discussed web crawling and focused mostly on MapReduce algorithms for
inverted indexing. What about retrieval? It should be fairly obvious that MapReduce, which was
designed for large batch operations, is a poor solution for retrieval. Since users demand sub-second
response times, every aspect of retrieval must be optimized for low latency, which is exactly the
opposite tradeoff made in MapReduce. Recall the basic retrieval problem: we must look up postings
lists corresponding to query terms, systematically traverse those postings lists to compute query–
document scores, and then return the top k results to the user. Looking up postings implies random
disk seeks, since for the most part postings are too large to fit into memory (leaving aside caching
and other special cases for now). Unfortunately, random access is not a forte of the distributed file
system underlying MapReduce—such operations require multiple round-trip network exchanges
(and associated latencies). In HDFS, a client must first obtain the location of the desired data block
from the namenode before the appropriate datanode can be contacted for the actual data. Of course,
access will typically require a random disk seek on the datanode itself.

It should be fairly obvious that serving the search needs of a large number of users, each of
whom demand sub-second response times, is beyond the capabilities of any single machine. The
only solution is to distribute retrieval across a large number of machines, which necessitates breaking
up the index in some manner. There are two main partitioning strategies for distributed retrieval:
document partitioning and term partitioning. Under document partitioning, the entire collection is
broken up into multiple smaller sub-collections, each of which is assigned to a server. In other
words, each server holds the complete index for a subset of the entire collection. This corresponds
to partitioning vertically in Figure 4.6. With term partitioning, on the other hand, each server is
responsible for a subset of the terms for the entire collection. That is, a server holds the postings for
all documents in the collection for a subset of terms. This corresponds to partitioning horizontally
in Figure 4.6.

Document and term partitioning require different retrieval strategies and represent different
trade offs. Retrieval under document partitioning involves a query broker, which forwards the user’s
query to all partition servers, merges partial results from each, and then returns the final results to the
user. With this architecture, searching the entire collection requires that the query be processed by
every partition server. However, since each partition operates independently and traverses postings

4.6. WHAT ABOUT RETRIEVAL? 81

d1 d2 d3 d4 d5 d6 d7 d8 d9

2 3

1 1 4

1 1 2

t1

t2

t3

partitiona

5 2 2

1 1 3

2 1

t4

t5

t

partitionb

2 1

2 1 4

1 2 3

t6

t7

t8 partitionc

1 2 1t9

partition1 partition2 partition3

Figure 4.6: Term–document matrix for a toy collection (nine documents,nine terms) illustrating different
partitioning strategies: partitioning vertically (1, 2, 3) corresponds to document partitioning, whereas
partitioning horizontally (a, b, c) corresponds to term partitioning.

in parallel, document partitioning typically yields shorter query latencies (compared to a single
monolithic index with much longer postings lists).

Retrieval under term partitioning,on the other hand, requires a very different strategy.Suppose
the user’s query Q contains three terms,q1,q2, and q3. Under the pipelined query evaluation strategy,
the broker begins by forwarding the query to the server that holds the postings for q1 (usually the
least frequent term). The server traverses the appropriate postings list and computes partial query–
document scores, stored in the accumulators. The accumulators are then passed to the server that
holds the postings associated with q2 for additional processing, and then to the server for q3, before
final results are passed back to the broker and returned to the user. Although this query evaluation
strategy may not substantially reduce the latency of any particular query, it can theoretically increase
a system’s throughput due to the far smaller number of total disk seeks required for each user
query (compared to document partitioning). However, load-balancing is tricky in a pipelined term-
partitioned architecture due to skew in the distribution of query terms, which can create “hot spots”
on servers that hold the postings for frequently occurring query terms.

82 4. INVERTED INDEXING FOR TEXT RETRIEVAL

In general, studies have shown that document partitioning is a better strategy overall [109],
and this is the strategy adopted by Google [16]. Furthermore, it is known that Google maintains its
indexes in memory (although this is certainly not the common case for search engines in general).
One key advantage of document partitioning is that result quality degrades gracefully with machine
failures. Partition servers that are offline will simply fail to deliver results for their subsets of the
collection. With sufficient partitions, users might not even be aware that documents are missing.
For most queries, the web contains more relevant documents than any user has time to digest:
users of course care about getting relevant documents (sometimes, they are happy with a single
relevant document), but they are generally less discriminating when it comes to which relevant
documents appear in their results (out of the set of all relevant documents). Note that partitions may
be unavailable due to reasons other than machine failure: cycling through different partitions is a
very simple and non-disruptive strategy for index updates.

Working in a document-partitioned architecture, there are a variety of approaches to dividing
up the web into smaller pieces. Proper partitioning of the collection can address one major weakness
of this architecture, which is that every partition server is involved in every user query. Along one
dimension, it is desirable to partition by document quality using one or more classifiers; see [124] for
a recent survey on web page classification. Partitioning by document quality supports a multi-phase
search strategy: the system examines partitions containing high quality documents first, and only
backs off to partitions containing lower quality documents if necessary. This reduces the number of
servers that need to be contacted for a user query. Along an orthogonal dimension, it is desirable
to partition documents by content (perhaps also guided by the distribution of user queries from
logs), so that each partition is “well separated” from the others in terms of topical coverage. This
also reduces the number of machines that need to be involved in serving a user’s query: the broker
can direct queries only to the partitions that are likely to contain relevant documents, as opposed to
forwarding the user query to all the partitions.

On a large scale, reliability of service is provided by replication, both in terms of multiple
machines serving the same partition within a single datacenter, but also replication across geograph-
ically distributed datacenters. This creates at least two query routing problems: since it makes sense
to serve clients from the closest datacenter, a service must route queries to the appropriate location.
Within a single datacenter, the system needs to properly balance load across replicas.

There are two final components of real-world search engines that are worth discussing. First,
recall that postings only store document ids. Therefore, raw retrieval results consist of a ranked list
of semantically meaningless document ids. It is typically the responsibility of document servers,
functionally distinct from the partition servers holding the indexes, to generate meaningful output
for user presentation. Abstractly, a document server takes as input a query and a document id, and
computes an appropriate result entry, typically comprising the title and URL of the page, a snippet
of the source document showing the user’s query terms in context, and additional metadata about
the document. Second, query evaluation can benefit immensely from caching, of individual postings
(assuming that the index is not already in memory) and even results of entire queries [13]. This is

4.7. SUMMARY AND ADDITIONAL READINGS 83

made possible by the Zipfian distribution of queries, with very frequent queries at the head of the
distribution dominating the total number of queries. Search engines take advantage of this with
cache servers, which are functionally distinct from all of the components discussed above.

4.7 SUMMARY AND ADDITIONAL READINGS
Web search is a complex problem that breaks down into three conceptually distinct components.
First, the documents collection must be gathered (by crawling the web). Next, inverted indexes and
other auxiliary data structures must be built from the documents. Both of these can be considered
offline problems. Finally, index structures must be accessed and processed in response to user queries
to generate search results. This last task is an online problem that demands both low latency and
high throughput.

This chapter primarily focused on building inverted indexes, the problem most suitable for
MapReduce. After all, inverted indexing is nothing but a very large distributed sort and group by
operation! We began with a baseline implementation of an inverted indexing algorithm, but quickly
noticed a scalability bottleneck that stemmed from having to buffer postings in memory. Application
of the value-to-key conversion design pattern (Section 3.4) addressed the issue by offloading the
task of sorting postings by document id to the MapReduce execution framework. We also surveyed
various techniques for integer compression, which yield postings lists that are both more compact
and faster to process. As a specific example, one could use Golomb codes for compressing d-gaps
and γ codes for term frequencies. We showed how the order inversion design pattern introduced in
Section 3.3 for computing relative frequencies can be used to properly set compression parameters.

Additional Readings. Our brief discussion of web search glosses over many complexities and does
a huge injustice to the tremendous amount of research in information retrieval. Here, however, we
provide a few entry points into the literature. A survey article by Zobel and Moffat [162] is an excel-
lent starting point on indexing and retrieval algorithms. Another by Baeza-Yates et al. [11] overviews
many important issues in distributed retrieval. A keynote talk at the WSDM 2009 conference by Jeff
Dean revealed a lot of information about the evolution of the Google search architecture.15 Finally,
a number of general information retrieval textbooks have been recently published [30; 42; 101]. Of
these three, the one by Büttcher et al. [30] is noteworthy in having detailed experimental evaluations
that compare the performance (both effectiveness and efficiency) of a wide range of algorithms and
techniques. While outdated in many other respects, the textbook Managing Gigabytes [156] remains
an excellent source for index compression techniques. Finally, ACM SIGIR is an annual conference
and the most prestigious venue for academic information retrieval research; proceedings from those
events are perhaps the best starting point for those wishing to keep abreast of publicly documented
developments in the field.

15http://research.google.com/people/jeff/WSDM09-keynote.pdf

85

C H A P T E R 5

Graph Algorithms
Graphs are ubiquitous in modern society: examples encountered by almost everyone on a daily
basis include the hyperlink structure of the web (simply known as the web graph), social networks
(manifest in the flow of email, phone call patterns, connections on social networking sites, etc.), and
transportation networks (roads, bus routes, flights, etc.). Our very own existence is dependent on an
intricate metabolic and regulatory network, which can be characterized as a large, complex graph
involving interactions between genes, proteins, and other cellular products. This chapter focuses
on graph algorithms in MapReduce. Although most of the content has nothing to do with text
processing per se, documents frequently exist in the context of some underlying network, making
graph analysis an important component of many text processing applications.Perhaps the best known
example is PageRank, a measure of web page quality based on the structure of hyperlinks, which is
used in ranking results for web search. As one of the first applications of MapReduce, PageRank
exemplifies a large class of graph algorithms that can be concisely captured in the programming
model. We will discuss PageRank in detail later this chapter.

In general, graphs can be characterized by nodes (or vertices) and links (or edges) that connect
pairs of nodes.1 These connections can be directed or undirected. In some graphs, there may be an
edge from a node to itself, resulting in a self loop; in others, such edges are disallowed.We assume that
both nodes and links may be annotated with additional metadata: as a simple example, in a social
network where nodes represent individuals, there might be demographic information (e.g., age,
gender, location) attached to the nodes and type information attached to the links (e.g., indicating
type of relationship such as “friend” or “spouse”).

Mathematicians have always been fascinated with graphs, dating back to Euler’s paper on the
Seven Bridges of Königsberg in 1736.Over the past few centuries, graphs have been extensively studied,
and today much is known about their properties. Far more than theoretical curiosities, theorems and
algorithms on graphs can be applied to solve many real-world problems:

• Graph search and path planning. Search algorithms on graphs are invoked millions of times a
day, whenever anyone searches for directions on the web. Similar algorithms are also involved
in friend recommendations and expert-finding in social networks. Path planning problems
involving everything from network packets to delivery trucks represent another large class of
graph search problems.

• Graph clustering. Can a large graph be divided into components that are relatively disjoint (for
example, as measured by inter-component links [59])? Among other applications, this task is

1Throughout this chapter, we use node interchangeably with vertex and similarly with link and edge.

86 5. GRAPH ALGORITHMS

useful for identifying communities in social networks (of interest to sociologists who wish to
understand how human relationships form and evolve) and for partitioning large graphs (of
interest to computer scientists who seek to better parallelize graph processing). See [158] for
a survey.

• Minimum spanning trees. A minimum spanning tree for a graph G with weighted edges is
a tree that contains all vertices of the graph and a subset of edges connecting all the vertices
together that minimizes the sum of edge weights. A real-world example of this problem is
a telecommunications company that wishes to lay optical fiber to span a number of destina-
tions at the lowest possible cost (where weights denote costs). This approach has also been
applied to wide variety of problems, including social networks and the migration of Polynesian
islanders [64].

• Bipartite graph matching. A bipartite graph is one whose vertices can be divided into two
disjoint sets. Matching problems on such graphs can be used to model job seekers looking for
employment or singles looking for dates.

• Maximum flow. In a weighted directed graph with two special nodes called the source and
the sink, the max flow problem involves computing the amount of “traffic” that can be sent
from source to sink given various flow capacities defined by edge weights. Transportation
companies (airlines, shipping, etc.) and network operators grapple with complex versions of
these problems on a daily basis.

• Identifying “special” nodes. There are many ways to define what special means, including
metrics based on node in-degree, average distance to other nodes, and relationship to cluster
structure. These special nodes are important to investigators attempting to break up terrorist
cells, epidemiologists modeling the spread of diseases, advertisers trying to promote products,
and many others.

A common feature of these problems is the scale of the datasets on which the algorithms must
operate: for example, the hyperlink structure of the web, which contains billions of pages, or social
networks that contain hundreds of millions of individuals. Clearly, algorithms that run on a single
machine and depend on the entire graph residing in memory are not scalable. We’d like to put
MapReduce to work on these challenges.2

This chapter is organized as follows: we begin in Section 5.1 with an introduction to graph
representations, and then explore two classic graph algorithms in MapReduce: parallel breadth-first
search (Section 5.2) and PageRank (Section 5.3). Before concluding with a summary and pointing
out additional readings, Section 5.4 discusses a number of general issue that affect graph processing
with MapReduce.

2As a side note, Google recently published a short description of a system called Pregel [98], based on Valiant’s Bulk Synchronous
Parallel model [148], for large-scale graph algorithms; a longer description is anticipated in a forthcoming paper [99].

5.1. GRAPH REPRESENTATIONS 87

n1

n2
n1 n2 n3 n4 n5

n1 0 1 0 1 0

n2 0 0 1 0 1

n1 [n2, n4]

n2 [n3, n5]

n3
n5

n2 0 0 1 0 1

n3 0 0 0 1 0

n4 0 0 0 0 1

n5 1 1 1 0 0

n2 [n3, n5]

n3 [n4]

n4 [n5]

n5 [n1, n2, n3]

n4 adjacency matrix adjacency lists

Figure 5.1: A simple directed graph (left) represented as an adjacency matrix (middle) and with adjacency
lists (right).

5.1 GRAPH REPRESENTATIONS
One common way to represent a graph is with an adjacency matrix. A graph with n nodes can be
represented as an n× n square matrix M , where a value in cell mij indicates an edge from node ni to
node nj . In the case of graphs with weighted edges, the matrix cells contain edge weights; otherwise,
each cell contains either a one (indicating an edge), or a zero (indicating none). With undirected
graphs, only half the matrix is used (e.g., cells above the diagonal). For graphs that allow self loops
(a directed edge from a node to itself), the diagonal might be populated; otherwise, the diagonal
remains empty. Figure 5.1 provides an example of a simple directed graph (left) and its adjacency
matrix representation (middle).

Although mathematicians prefer the adjacency matrix representation of graphs for easy manip-
ulation with linear algebra, such a representation is far from ideal for computer scientists concerned
with efficient algorithmic implementations. Most of the applications discussed in the chapter in-
troduction involve sparse graphs, where the number of actual edges is far smaller than the number
of possible edges.3 For example, in a social network of n individuals, there are n(n− 1)/2 possible
“friendships” (where n may be on the order of hundreds of millions). However, even the most gre-
garious will have relatively few friends compared to the size of the network (thousands, perhaps, but
still far smaller than hundreds of millions). The same is true for the hyperlink structure of the web:
each individual web page links to a minuscule portion of all the pages on the web. In this chapter,
we assume processing of sparse graphs, although we will return to this issue in Section 5.4.

The major problem with an adjacency matrix representation for sparse graphs is itsO(n2) space
requirement. Furthermore, most of the cells are zero, by definition. As a result, most computational
implementations of graph algorithms operate over adjacency lists, in which a node is associated
with neighbors that can be reached via outgoing edges. Figure 5.1 also shows the adjacency list
representation of the graph under consideration (on the right). For example, since n1 is connected

3Unfortunately, there is no precise definition of sparseness agreed upon by all, but one common definition is that a sparse graph
has O(n) edges, where n is the number of vertices.

88 5. GRAPH ALGORITHMS

by directed edges to n2 and n4, those two nodes will be on the adjacency list of n1. There are two
options for encoding undirected graphs: one could simply encode each edge twice (if ni and nj are
connected, each appears on each other’s adjacency list). Alternatively, one could order the nodes
(arbitrarily or otherwise) and encode edges only on the adjacency list of the node that comes first in
the ordering (i.e., if i < j , then nj is on the adjacency list of ni , but not the other way around).

Note that certain graph operations are easier on adjacency matrices than on adjacency lists.
In the first, operations on incoming links for each node translate into a column scan on the matrix,
whereas operations on outgoing links for each node translate into a row scan. With adjacency lists,
it is natural to operate on outgoing links, but computing anything that requires knowledge of the
incoming links of a node is difficult. However, as we shall see, the shuffle and sort mechanism in
MapReduce provides an easy way to group edges by their destination nodes, thus allowing us to
compute over incoming edges in the reducer. This property of the execution framework can also be
used to invert the edges of a directed graph, by mapping over the nodes’ adjacency lists and emitting
key–value pairs with the destination node id as the key and the source node id as the value.4

5.2 PARALLEL BREADTH-FIRST SEARCH

One of the most common and well-studied problems in graph theory is the single-source shortest path
problem, where the task is to find shortest paths from a source node to all other nodes in the graph
(or alternatively, edges can be associated with costs or weights, in which case the task is to compute
lowest-cost or lowest-weight paths). Such problems are a staple in undergraduate algorithm courses,
where students are taught the solution using Dijkstra’s algorithm. However, this famous algorithm
assumes sequential processing—how would we solve this problem in parallel, and more specifically,
with MapReduce?

As a refresher and also to serve as a point of comparison, Dijkstra’s algorithm is shown in
Figure 5.2, adapted from Cormen, Leiserson, and Rivest’s classic algorithms textbook [41] (often
simply known as CLR). The input to the algorithm is a directed, connected graph G = (V , E)

represented with adjacency lists, w containing edge distances such that w(u, v) ≥ 0, and the source
node s. The algorithm begins by first setting distances to all vertices d[v], v ∈ V to ∞, except for
the source node, whose distance to itself is zero. The algorithm maintains Q, a global priority queue
of vertices with priorities equal to their distance values d.

Dijkstra’s algorithm operates by iteratively selecting the node with the lowest current distance
from the priority queue (initially, this is the source node). At each iteration, the algorithm “expands”
that node by traversing the adjacency list of the selected node to see if any of those nodes can be
reached with a path of a shorter distance. The algorithm terminates when the priority queue Q is
empty, or equivalently, when all nodes have been considered. Note that the algorithm as presented

4This technique is used in anchor text inversion, where one gathers the anchor text of hyperlinks pointing to a particular page. It is
common practice to enrich a web page’s standard textual representation with all of the anchor texts associated with its incoming
hyperlinks (e.g., [107]).

5.2. PARALLEL BREADTH-FIRST SEARCH 89

1: Dijkstra(G, w, s)
2: d[s] ← 0
3: for all vertex v ∈ V do
4: d[v] ←∞
5: Q← {V }
6: while Q)= ∅ do
7: u← ExtractMin(Q)

8: for all vertex v ∈ u.AdjacencyList do
9: if d[v] > d[u] + w(u, v) then

10: d[v] ← d[u] + w(u, v)

Figure 5.2: Pseudo-code for Dijkstra’s algorithm, which is based on maintaining a global priority queue
of nodes with priorities equal to their distances from the source node. At each iteration, the algorithm
expands the node with the shortest distance and updates distances to all reachable nodes.

in Figure 5.2 only computes the shortest distances. The actual paths can be recovered by storing
“backpointers” for every node indicating a fragment of the shortest path.

A sample trace of the algorithm running on a simple graph is shown in Figure 5.3 (example
also adapted from CLR). We start out in (a) with n1 having a distance of zero (since it’s the source)
and all other nodes having a distance of ∞. In the first iteration (a), n1 is selected as the node to
expand (indicated by the thicker border). After the expansion, we see in (b) that n2 and n3 can be
reached at a distance of 10 and 5, respectively. Also, we see in (b) that n3 is the next node selected
for expansion. Nodes we have already considered for expansion are shown in black. Expanding n3,
we see in (c) that the distance to n2 has decreased because we’ve found a shorter path. The nodes
that will be expanded next, in order, are n5, n2, and n4. The algorithm terminates with the end state
shown in (f), where we’ve discovered the shortest distance to all nodes.

The key to Dijkstra’s algorithm is the priority queue that maintains a globally sorted list of
nodes by current distance. This is not possible in MapReduce, as the programming model does not
provide a mechanism for exchanging global data. Instead, we adopt a brute force approach known as
parallel breadth-first search. First, as a simplification let us assume that all edges have unit distance
(modeling, for example, hyperlinks on the web). This makes the algorithm easier to understand, but
we’ll relax this restriction later.

The intuition behind the algorithm is this: the distance of all nodes connected directly to the
source node is one; the distance of all nodes directly connected to those is two; and so on. Imagine
water rippling away from a rock dropped into a pond—that’s a good image of how parallel breadth-
first search works. However, what if there are multiple paths to the same node? Suppose we wish to
compute the shortest distance to node n. The shortest path must go through one of the nodes in M

that contains an outgoing edge to n: we need to examine all m ∈ M to find ms , the node with the
shortest distance. The shortest distance to n is the distance to ms plus one.

90 5. GRAPH ALGORITHMS

! !1

n2 n4

10 !1

n2 n4

8 141

n2 n4

0

! !
10

5

2 3
9

4 6
n1

0

10 !
10

5

2 3
9

4 6
n1

0

8 14
10

5

2 3
9

4 6
n1

! !

5

2

7
1

n3 n5

5 !

5

2

7
1

n3 n5

5 7

5

2

7
1

n3 n5
(a) (b) (c)

8 13
10

1

n2 n4

8 9
10

1

n2 n4

8 9
10

1

n2 n4

0

5 7

10

5

2 3
9

7

4 6
n1

0

5 7

10

5

2 3
9

7

4 6
n1

0

5 7

10

5

2 3
9

7

4 6
n1

5 7
2

n3 n5

5 7
2

n3 n5

5 7
2

n3 n5
(d) (e) (f)

Figure 5.3: Example of Dijkstra’s algorithm applied to a simple graph with five nodes, with n1 as the
source and edge distances as indicated. Parts (a)–(e) show the running of the algorithm at each iteration,
with the current distance inside the node. Nodes with thicker borders are those being expanded; nodes
that have already been expanded are shown in black.

Pseudo-code for the implementation of the parallel breadth-first search algorithm is provided
in Figure 5.4. As with Dijkstra’s algorithm, we assume a connected, directed graph represented as
adjacency lists. Distance to each node is directly stored alongside the adjacency list of that node, and
initialized to ∞ for all nodes except for the source node. In the pseudo-code, we use n to denote
the node id (an integer) and N to denote the node’s corresponding data structure (adjacency list and
current distance). The algorithm works by mapping over all nodes and emitting a key-value pair for
each neighbor on the node’s adjacency list. The key contains the node id of the neighbor, and the
value is the current distance to the node plus one. This says: if we can reach node n with a distance
d, then we must be able to reach all the nodes that are connected to n with distance d + 1. After
shuffle and sort, reducers will receive keys corresponding to the destination node ids and distances
corresponding to all paths leading to that node.The reducer will select the shortest of these distances
and then update the distance in the node data structure.

It is apparent that parallel breadth-first search is an iterative algorithm, where each iteration
corresponds to a MapReduce job. The first time we run the algorithm, we “discover” all nodes that
are connected to the source. The second iteration, we discover all nodes connected to those, and

5.2. PARALLEL BREADTH-FIRST SEARCH 91

1: class Mapper
2: method Map(nid n, node N)
3: d ← N.Distance
4: Emit(nid n, N) & Pass along graph structure
5: for all nodeid m ∈ N.AdjacencyList do
6: Emit(nid m, d + 1) & Emit distances to reachable nodes

1: class Reducer
2: method Reduce(nid m, [d1, d2, . . .])
3: dmin ←∞
4: M ← ∅
5: for all d ∈ counts [d1, d2, . . .] do
6: if IsNode(d) then
7: M ← d & Recover graph structure
8: else if d < dmin then & Look for shorter distance
9: dmin ← d

10: M.Distance← dmin & Update shortest distance
11: Emit(nid m, node M)

Figure 5.4: Pseudo-code for parallel breath-first search in MapReduce: the mappers emit distances to
reachable nodes, while the reducers select the minimum of those distances for each destination node.
Each iteration (one MapReduce job) of the algorithm expands the “search frontier” by one hop.

so on. Each iteration of the algorithm expands the “search frontier” by one hop, and, eventually, all
nodes will be discovered with their shortest distances (assuming a fully-connected graph). Before
we discuss termination of the algorithm, there is one more detail required to make the parallel
breadth-first search algorithm work. We need to “pass along” the graph structure from one iteration
to the next. This is accomplished by emitting the node data structure itself, with the node id as a key
(Figure 5.4, line 4 in the mapper). In the reducer, we must distinguish the node data structure from
distance values (Figure 5.4, lines 5–6 in the reducer), and update the minimum distance in the node
data structure before emitting it as the final value. The final output is now ready to serve as input to
the next iteration.5

So how many iterations are necessary to compute the shortest distance to all nodes? The
answer is the diameter of the graph, or the greatest distance between any pair of nodes.This number
is surprisingly small for many real-world problems: the saying “six degrees of separation” suggests
that everyone on the planet is connected to everyone else by at most six steps (the people a person
knows are one step away, people that they know are two steps away, etc.). If this is indeed true,

5Note that in this algorithm we are overloading the value type, which can either be a distance (integer) or a complex data structure
representing a node. The best way to achieve this in Hadoop is to create a wrapper object with an indicator variable specifying
what the content is.

92 5. GRAPH ALGORITHMS

then parallel breadth-first search on the global social network would take at most six MapReduce
iterations. For more serious academic studies of “small world” phenomena in networks, we refer the
reader to a number of publications [2; 61; 62; 152]. In practical terms, we iterate the algorithm until
there are no more node distances that are∞. Since the graph is connected, all nodes are reachable,
and since all edge distances are one, all discovered nodes are guaranteed to have the shortest distances
(i.e., there is not a shorter path that goes through a node that hasn’t been discovered).

The actual checking of the termination condition must occur outside of MapReduce.Typically,
execution of an iterative MapReduce algorithm requires a non-MapReduce “driver” program, which
submits a MapReduce job to iterate the algorithm, checks to see if a termination condition has been
met, and if not, repeats. Hadoop provides a lightweight API for constructs called “counters”, which,
as the name suggests, can be used for counting events that occur during execution, e.g., number
of corrupt records, number of times a certain condition is met, or anything that the programmer
desires. Counters can be defined to count the number of nodes that have distances of∞: at the end
of the job, the driver program can access the final counter value and check to see if another iteration
is necessary.

Finally, as with Dijkstra’s algorithm in the form presented earlier, the parallel breadth-first
search algorithm only finds the shortest distances, not the actual shortest paths. However, the path
can be straightforwardly recovered. Storing “backpointers” at each node, as with Dijkstra’s algorithm,
will work, but may not be efficient since the graph needs to be traversed again to reconstruct the
path segments. A simpler approach is to emit paths along with distances in the mapper, so that each
node will have its shortest path easily accessible at all times. The additional space requirements for
shuffling these data from mappers to reducers are relatively modest, since for the most part paths
(i.e., sequence of node ids) are relatively short.

Up until now, we have been assuming that all edges are unit distance. Let us relax that
restriction and see what changes are required in the parallel breadth-first search algorithm. The
adjacency lists, which were previously lists of node ids, must now encode the edge distances as well.
In line 6 of the mapper code in Figure 5.4, instead of emitting d + 1 as the value, we must now
emit d + w where w is the edge distance. No other changes to the algorithm are required, but
the termination behavior is very different. To illustrate, consider the graph fragment in Figure 5.5,
where s is the source node, and in this iteration, we just “discovered” node r for the very first time.
Assume for the sake of argument that we’ve already discovered the shortest distance to node p,
and that the shortest distance to r so far goes through p. This, however, does not guarantee that
we’ve discovered the shortest distance to r , since there may exist a path going through q that we
haven’t encountered yet (because it lies outside the search frontier).6 However, as the search frontier
expands, we’ll eventually cover q and all other nodes along the path from p to q to r—which means
that with sufficient iterations, we will discover the shortest distance to r . But how do we know that
we’ve found the shortest distance to p? Well, if the shortest path to p lies within the search frontier,

6Note that the same argument does not apply to the unit edge distance case: the shortest path cannot lie outside the search frontier
since any such path would necessarily be longer.

5.2. PARALLEL BREADTH-FIRST SEARCH 93

r

search frontier

s

p
q

Figure 5.5: In the single-source shortest path problem with arbitrary edge distances, the shortest path
from source s to node r may go outside the current search frontier, in which case we will not find the
shortest distance to r until the search frontier expands to cover q.

n6 n7
n8

1
1

1

10

n1
n5

n9

1 1

1

n2
n3

n4
1

1

Figure 5.6: A sample graph that elicits worst-case behavior for parallel breadth-first search. Eight iter-
ations are required to discover shortest distances to all nodes from n1.

we would have already discovered it. And if it doesn’t, the above argument applies. Similarly, we
can repeat the same argument for all nodes on the path from s to p. The conclusion is that, with
sufficient iterations, we’ll eventually discover all the shortest distances.

So exactly how many iterations does “eventually” mean? In the worst case, we might need as
many iterations as there are nodes in the graph minus one. In fact, it is not difficult to construct
graphs that will elicit this worse-case behavior: Figure 5.6 provides an example, with n1 as the source.
The parallel breadth-first search algorithm would not discover that the shortest path from n1 to n6

goes through n3, n4, and n5 until the fifth iteration. Three more iterations are necessary to cover
the rest of the graph. Fortunately, for most real-world graphs, such extreme cases are rare, and the
number of iterations necessary to discover all shortest distances is quite close to the diameter of the
graph, as in the unit edge distance case.

In practical terms, how do we know when to stop iterating in the case of arbitrary edge
distances? The algorithm can terminate when shortest distances at every node no longer change.

94 5. GRAPH ALGORITHMS

Once again, we can use counters to keep track of such events. Every time we encounter a shorter
distance in the reducer, we increment a counter. At the end of each MapReduce iteration, the driver
program reads the counter value and determines if another iteration is necessary.

Compared to Dijkstra’s algorithm on a single processor, parallel breadth-first search in Map-
Reduce can be characterized as a brute force approach that “wastes” a lot of time performing compu-
tations whose results are discarded. At each iteration, the algorithm attempts to recompute distances
to all nodes, but in reality only useful work is done along the search frontier: inside the search frontier,
the algorithm is simply repeating previous computations.7 Outside the search frontier, the algorithm
hasn’t discovered any paths to nodes there yet, so no meaningful work is done.Dijkstra’s algorithm,on
the other hand, is far more efficient. Every time a node is explored, we’re guaranteed to have already
found the shortest path to it. However, this is made possible by maintaining a global data structure
(a priority queue) that holds nodes sorted by distance—this is not possible in MapReduce because
the programming model does not provide support for global data that is mutable and accessible by
the mappers and reducers. These inefficiencies represent the cost of parallelization.

The parallel breadth-first search algorithm is instructive in that it represents the prototypical
structure of a large class of graph algorithms in MapReduce. They share in the following character-
istics:

• The graph structure is represented with adjacency lists, which is part of some larger node
data structure that may contain additional information (variables to store intermediate output,
features of the nodes). In many cases, features are attached to edges as well (e.g., edge weights).

• The MapReduce algorithm maps over the node data structures and performs a computation
that is a function of features of the node, intermediate state attached to each node, and features
of the adjacency list (outgoing edges and their features). In other words, computations can only
involve a node’s internal state and its local graph structure.The results of these computations are
emitted as values, keyed with the node ids of the neighbors (i.e., those nodes on the adjacency
lists). Conceptually, we can think of this as “passing” the results of the computation along
outgoing edges. In the reducer, the algorithm receives all partial results that have the same
destination node, and performs another computation (usually, some form of aggregation).

• In addition to computations, the graph itself is also passed from the mapper to the reducer.
In the reducer, the data structure corresponding to each node is updated and written back to
disk.

• Graph algorithms in MapReduce are generally iterative, where the output of the previous
iteration serves as input to the next iteration. The process is controlled by a non-MapReduce
driver program that checks for termination.

7Unless the algorithm discovers an instance of the situation described in Figure 5.5, in which case, updated distances will propagate
inside the search frontier.

5.3. PAGERANK 95

For parallel breadth-first search, the mapper computation is the current distance plus edge distance
(emitting distances to neighbors), while the reducer computation is the Min function (selecting the
shortest path). As we will see in the next section, the MapReduce algorithm for PageRank works in
much the same way.

5.3 PAGERANK
PageRank [117] is a measure of web page quality based on the structure of the hyperlink graph.
Although it is only one of thousands of features that is taken into account in Google’s search
algorithm, it is perhaps one of the best known and most studied.

A vivid way to illustrate PageRank is to imagine a random web surfer: the surfer visits a
page, randomly clicks a link on that page, and repeats ad infinitum. PageRank is a measure of how
frequently a page would be encountered by our tireless web surfer. More precisely, PageRank is a
probability distribution over nodes in the graph representing the likelihood that a random walk over
the link structure will arrive at a particular node. Nodes that have high in-degrees tend to have high
PageRank values, as well as nodes that are linked to by other nodes with high PageRank values.
This behavior makes intuitive sense: if PageRank is a measure of page quality, we would expect
high-quality pages to contain “endorsements” from many other pages in the form of hyperlinks.
Similarly, if a high-quality page links to another page, then the second page is likely to be high
quality also. PageRank represents one particular approach to inferring the quality of a web page
based on hyperlink structure; two other popular algorithms, not covered here, are SALSA [88] and
HITS [84] (also known as “hubs and authorities”).

The complete formulation of PageRank includes an additional component. As it turns out,
our web surfer doesn’t just randomly click links. Before the surfer decides where to go next, a biased
coin is flipped—heads, the surfer clicks on a random link on the page as usual. Tails, however, the
surfer ignores the links on the page and randomly “jumps” or “teleports” to a completely different
page.

But enough about random web surfing. Formally, the PageRank P of a page n is defined as
follows:

P(n) = α

(
1

|G|

)
+ (1− α)

∑

m∈L(n)

P (m)

C(m)
(5.1)

where |G| is the total number of nodes (pages) in the graph, α is the random jump factor, L(n) is
the set of pages that link to n, and C(m) is the out-degree of node m (the number of links on page
m). The random jump factor α is sometimes called the “teleportation” factor; alternatively, (1− α)

is referred to as the “damping” factor.
Let us break down each component of the formula in detail. First, note that PageRank is

defined recursively—this gives rise to an iterative algorithm we will detail in a bit. A web page n

receives PageRank “contributions” from all pages that link to it, L(n). Let us consider a page m from
the set of pages L(n): a random surfer at m will arrive at n with probability 1/C(m) since a link is

96 5. GRAPH ALGORITHMS

selected at random from all outgoing links. Since the PageRank value of m is the probability that the
random surfer will be at m, the probability of arriving at n from m is P(m)/C(m). To compute the
PageRank of n, we need to sum contributions from all pages that link to n. This is the summation
in the second half of the equation. However, we also need to take into account the random jump:
there is a 1/|G| chance of landing at any particular page, where |G| is the number of nodes in the
graph. Of course, the two contributions need to be combined: with probability α the random surfer
executes a random jump, and with probability 1− α the random surfer follows a hyperlink.

Note that PageRank assumes a community of honest users who are not trying to “game” the
measure.This is, of course, not true in the real world, where an adversarial relationship exists between
search engine companies and a host of other organizations and individuals (marketers, spammers,
activists, etc.) who are trying to manipulate search results—to promote a cause, product, or service, or
in some cases, to trap and intentionally deceive users (see, for example, [12; 63]). A simple example
is a so-called “spider trap”, a infinite chain of pages (e.g., generated by CGI) that all link to a single
page (thereby artificially inflating its PageRank). For this reason, PageRank is only one of thousands
of features used in ranking web pages.

The fact that PageRank is recursively defined translates into an iterative algorithm which is
quite similar in basic structure to parallel breadth-first search. We start by presenting an informal
sketch. At the beginning of each iteration, a node passes its PageRank contributions to other nodes
that it is connected to. Since PageRank is a probability distribution, we can think of this as spreading
probability mass to neighbors via outgoing links. To conclude the iteration, each node sums up all
PageRank contributions that have been passed to it and computes an updated PageRank score. We
can think of this as gathering probability mass passed to a node via its incoming links.This algorithm
iterates until PageRank values don’t change anymore.

Figure 5.7 shows a toy example that illustrates two iterations of the algorithm. As a simplifi-
cation, we ignore the random jump factor for now (i.e., α = 0) and further assume that there are no
dangling nodes (i.e., nodes with no outgoing edges). The algorithm begins by initializing a uniform
distribution of PageRank values across nodes. In the beginning of the first iteration (top, left), partial
PageRank contributions are sent from each node to its neighbors connected via outgoing links. For
example, n1 sends 0.1 PageRank mass to n2 and 0.1 PageRank mass to n4. This makes sense in
terms of the random surfer model: if the surfer is at n1 with a probability of 0.2, then the surfer could
end up either in n2 or n4 with a probability of 0.1 each. The same occurs for all the other nodes in
the graph: note that n5 must split its PageRank mass three ways, since it has three neighbors, and
n4 receives all the mass belonging to n3 because n3 isn’t connected to any other node. The end of
the first iteration is shown in the top right: each node sums up PageRank contributions from its
neighbors. Note that since n1 has only one incoming link, from n3, its updated PageRank value is
smaller than before, i.e., it “passed along” more PageRank mass than it received. The exact same
process repeats, and the second iteration in our toy example is illustrated by the bottom two graphs.
At the beginning of each iteration, the PageRank values of all nodes sum to one. PageRank mass is

5.3. PAGERANK 97

It ti 1
n1 (0.2)

n2 (0.2)

0.1

0.1

0.1 0.1 n1 (0.066)

n2 (0.166)Iteration 1

n3 (0.2)
n5 (0.2)

0.2 0.2

0.066 0.066
0.066

n3 (0.166)
n5 (0.3)

n4 (0.2) n4 (0.3)

n2 (0.166) n2 (0.133)Iteration 2
n1 (0.066)0.033

0.033

0.083 0.083

0 1 0 1
0.1

n1 (0.1)

n (0 3)

n3 (0.166)
n5 (0.3)

0.3 0.166

0.1 0.1

n (0 2)

n3 (0.183)
n5 (0.383)

n4 (0.3) n4 (0.2)

Figure 5.7: PageRank toy example showing two iterations, top and bottom. Left graphs show PageRank
values at the beginning of each iteration and how much PageRank mass is passed to each neighbor. Right
graphs show updated PageRank values at the end of each iteration.

preserved by the algorithm, guaranteeing that we continue to have a valid probability distribution
at the end of each iteration.

Pseudo-code of the MapReduce PageRank algorithm is shown in Figure 5.8; it is simplified
in that we continue to ignore the random jump factor and assume no dangling nodes (complications
that we will return to later). An illustration of the running algorithm is shown in Figure 5.9 for the
first iteration of the toy graph in Figure 5.7. The algorithm maps over the nodes, and for each node
computes how much PageRank mass needs to be distributed to its neighbors (i.e., nodes on the
adjacency list). Each piece of the PageRank mass is emitted as the value, keyed by the node ids of
the neighbors. Conceptually, we can think of this as passing PageRank mass along outgoing edges.

In the shuffle and sort phase, the MapReduce execution framework groups values (piece of
PageRank mass) passed along the graph edges by destination node (i.e., all edges that point to the
same node). In the reducer, PageRank mass contributions from all incoming edges are summed
to arrive at the updated PageRank value for each node. As with the parallel breadth-first search
algorithm, the graph structure itself must be passed from iteration to iteration. Each node data
structure is emitted in the mapper and written back out to disk in the reducer. All PageRank mass

98 5. GRAPH ALGORITHMS

1: class Mapper
2: method Map(nid n, node N)
3: p ← N.PageRank/|N.AdjacencyList|
4: Emit(nid n, N) & Pass along graph structure
5: for all nodeid m ∈ N.AdjacencyList do
6: Emit(nid m, p) & Pass PageRank mass to neighbors

1: class Reducer
2: method Reduce(nid m, [p1, p2, . . .])
3: M ← ∅
4: for all p ∈ counts [p1, p2, . . .] do
5: if IsNode(p) then
6: M ← p & Recover graph structure
7: else
8: s ← s + p & Sum incoming PageRank contributions
9: M.PageRank← s

10: Emit(nid m, node M)

Figure 5.8: Pseudo-code for PageRank in MapReduce (leaving aside dangling nodes and the random
jump factor). In the map phase we evenly divide up each node’s PageRank mass and pass each piece
along outgoing edges to neighbors. In the reduce phase PageRank contributions are summed up at each
destination node. Each MapReduce job corresponds to one iteration of the algorithm.

emitted by the mappers is accounted for in the reducer: since we begin with the sum of PageRank
values across all nodes equal to one, the sum of all the updated PageRank values should remain a
valid probability distribution.

Having discussed the simplified PageRank algorithm in MapReduce, let us now take into
account the random jump factor and dangling nodes: as it turns out both are treated similarly.
Dangling nodes are nodes in the graph that have no outgoing edges, i.e., their adjacency lists are
empty. In the hyperlink graph of the web, these might correspond to pages in a crawl that have not
been downloaded yet. If we simply run the algorithm in Figure 5.8 on graphs with dangling nodes,
the total PageRank mass will not be conserved, since no key-value pairs will be emitted when a
dangling node is encountered in the mappers.

The proper treatment of PageRank mass “lost” at the dangling nodes is to redistribute it across
all nodes in the graph evenly (cf. [22]). There are many ways to determine the missing PageRank
mass. One simple approach is by instrumenting the algorithm in Figure 5.8 with counters: whenever
the mapper processes a node with an empty adjacency list, it keeps track of the node’s PageRank
value in the counter. At the end of the iteration, we can access the counter to find out how much

5.3. PAGERANK 99

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map
n2 n4 n3 n5 n1 n2 n3n4 n5

Map

n2 n4n3 n5n1 n2 n3 n4 n5

Reduce

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Figure 5.9: Illustration of the MapReduce PageRank algorithm corresponding to the first iteration in
Figure 5.7. The size of each box is proportion to its PageRank value. During the map phase, PageRank
mass is distributed evenly to nodes on each node’s adjacency list (shown at the very top). Intermediate
values are keyed by node (shown inside the boxes). In the reduce phase, all partial PageRank contributions
are summed together to arrive at updated values.

PageRank mass was lost at the dangling nodes.8 Another approach is to reserve a special key for
storing PageRank mass from dangling nodes. When the mapper encounters a dangling node, its
PageRank mass is emitted with the special key; the reducer must be modified to contain special logic
for handling the missing PageRank mass. Yet another approach is to write out the missing PageRank
mass as “side data” for each map task (using the in-mapper combining technique for aggregation); a
final pass in the driver program is needed to sum the mass across all map tasks. Either way, we arrive
at the amount of PageRank mass lost at the dangling nodes—this then must be redistribute evenly
across all nodes.

This redistribution process can be accomplished by mapping over all nodes again. At the same
time, we can take into account the random jump factor. For each node, its current PageRank value
p is updated to the final PageRank value p′ according to the following formula:

p′ = α

(
1

|G|

)
+ (1− α)

(
m

|G| + p

)
(5.2)

where m is the missing PageRank mass, and |G| is the number of nodes in the entire graph. We add
the PageRank mass from link traversal (p, computed from before) to the share of the lost PageRank
mass that is distributed to each node (m/|G|). Finally, we take into account the random jump factor:

8In Hadoop, counters are 8-byte integers: a simple workaround is to multiply PageRank values by a large constant, and then cast
as an integer.

100 5. GRAPH ALGORITHMS

with probability α the random surfer arrives via jumping, and with probability 1− α the random
surfer arrives via incoming links. Note that this MapReduce job requires no reducers.

Putting everything together, one iteration of PageRank requires two MapReduce jobs: the
first to distribute PageRank mass along graph edges, and the second to take care of dangling nodes
and the random jump factor. At the end of each iteration, we end up with exactly the same data
structure as the beginning, which is a requirement for the iterative algorithm to work. Also, the
PageRank values of all nodes sum up to one, which ensures a valid probability distribution.

Typically, PageRank is iterated until convergence, i.e., when the PageRank values of nodes
no longer change (within some tolerance, to take into account, for example, floating point precision
errors). Therefore, at the end of each iteration, the PageRank driver program must check to see
if convergence has been reached. Alternative stopping criteria include running a fixed number of
iterations (useful if one wishes to bound algorithm running time) or stopping when the ranks of
PageRank values no longer change. The latter is useful for some applications that only care about
comparing the PageRank of two arbitrary pages and do not need the actual PageRank values. Rank
stability is obtained faster than the actual convergence of values.

In absolute terms, how many iterations are necessary for PageRank to converge? This is a
difficult question to precisely answer since it depends on many factors, but generally, fewer than one
might expect. In the original PageRank paper [117], convergence on a graph with 322 million edges
was reached in 52 iterations (see also Bianchini et al. [22] for additional discussion). On today’s
web, the answer is not very meaningful due to the adversarial nature of web search as previously
discussed—the web is full of spam and populated with sites that are actively trying to “game”
PageRank and related hyperlink-based metrics. As a result, running PageRank in its unmodified
form presented here would yield unexpected and undesirable results. Of course, strategies developed
by web search companies to combat link spam are proprietary (and closely guarded secrets, for
obvious reasons)—but undoubtedly these algorithmic modifications impact convergence behavior.
A full discussion of the escalating “arms race” between search engine companies and those that seek
to promote their sites is beyond the scope of this book.9

5.4 ISSUES WITH GRAPH PROCESSING

The biggest difference between MapReduce graph algorithms and single-machine graph algorithms
is that with the latter, it is usually possible to maintain global data structures in memory for fast,
random access. For example, Dijkstra’s algorithm uses a global priority queue that guides the expan-
sion of nodes. This, of course, is not possible with MapReduce—the programming model does not
provide any built-in mechanism for communicating global state. Since the most natural representa-
tion of large sparse graphs is with adjacency lists, communication can only occur from a node to the

9For the interested reader, the proceedings of a workshop series on Adversarial Information Retrieval (AIRWeb) provide great
starting points into the literature.

5.4. ISSUES WITH GRAPH PROCESSING 101

nodes it links to, or to a node from nodes linked to it—in other words, passing information is only
possible within the local graph structure.10

This restriction gives rise to the structure of many graph algorithms in MapReduce: local
computation is performed on each node, the results of which are “passed” to its neighbors. With
multiple iterations, convergence on the global graph is possible. The passing of partial results along
a graph edge is accomplished by the shuffling and sorting provided by the MapReduce execution
framework. The amount of intermediate data generated is on the order of the number of edges,
which explains why all the algorithms we have discussed assume sparse graphs. For dense graphs,
MapReduce running time would be dominated by copying intermediate data across the network,
which in the worst case is O(n2) in the number of nodes in the graph. Since MapReduce clusters
are designed around commodity networks (e.g., gigabit Ethernet), MapReduce algorithms are often
impractical on large, dense graphs.

Combiners and the in-mapper combining pattern described in Section 3.1 can be used to
decrease the running time of graph iterations. It is straightforward to use combiners for both parallel
breadth-first search and PageRank since Min and sum, used in the two algorithms, respectively, are
both associative and commutative. However, combiners are only effective to the extent that there
are opportunities for partial aggregation—unless there are nodes pointed to by multiple nodes being
processed by an individual map task, combiners are not very useful. This implies that it would be
desirable to partition large graphs into smaller components where there are many intra-component
links and fewer inter-component links. This way, we can arrange the data such that nodes in the
same component are handled by the same map task—thus maximizing opportunities for combiners
to perform local aggregation.

Unfortunately, this sometimes creates a chicken-and-egg problem. It would be desirable to
partition a large graph to facilitate efficient processing by MapReduce. But the graph may be so
large that we can’t partition it except with MapReduce algorithms! Fortunately, in many cases there
are simple solutions around this problem in the form of “cheap” partitioning heuristics based on
reordering the data [106]. For example, in a social network, we might sort nodes representing users
by zip code, as opposed to by last name—based on the observation that friends tend to live close
to each other. Sorting by an even more cohesive property such as school would be even better (if
available): the probability of any two random students from the same school knowing each other is
much higher than two random students from different schools. Another good example is to partition
the web graph by the language of the page (since pages in one language tend to link mostly to other
pages in that language) or by domain name (since inter-domain links are typically much denser than
intra-domain links). Resorting records using MapReduce is both easy to do and a relatively cheap
operation—however, whether the efficiencies gained by this crude form of partitioning are worth
the extra time taken in performing the resort is an empirical question that will depend on the actual
graph structure and algorithm.

10Of course, it is perfectly reasonable to compute derived graph structures in a pre-processing step. For example, if one wishes to
propagate information from a node to all nodes that are within two links, one could process graph G to derive graph G′, where
there would exist a link from node ni to nj if nj was reachable within two link traversals of ni in the original graph G.

102 5. GRAPH ALGORITHMS

Finally, there is a practical consideration to keep in mind when implementing graph algorithms
that estimate probability distributions over nodes (such as PageRank). For large graphs, the probabil-
ity of any particular node is often so small that it underflows standard floating point representations.
A very common solution to this problem is to represent probabilities using their logarithms. When
probabilities are stored as logs, the product of two values is simply their sum. However, addition of
probabilities is also necessary, for example, when summing PageRank contribution for a node. This
can be implemented with reasonable precision as follows:

a ⊕ b =
{

b + log(1 + ea−b) a < b

a + log(1 + eb−a) a ≥ b

Furthermore, many math libraries include a log1p function which computes log(1 + x) with higher
precision than the naïve implementation would have when x is very small (as is often the case when
working with probabilities). Its use may further improve the accuracy of implementations that use
log probabilities.

5.5 SUMMARY AND ADDITIONAL READINGS
This chapter covers graph algorithms in MapReduce, discussing in detail parallel breadth-first search
and PageRank. Both are instances of a large class of iterative algorithms that share the following
characteristics:

• The graph structure is represented with adjacency lists.

• Algorithms map over nodes and pass partial results to nodes on their adjacency lists. Partial
results are aggregated for each node in the reducer.

• The graph structure itself is passed from the mapper to the reducer, such that the output is in
the same form as the input.

• Algorithms are iterative and under the control of a non-MapReduce driver program, which
checks for termination at the end of each iteration.

The MapReduce programming model does not provide a mechanism to maintain global data struc-
tures accessible and mutable by all the mappers and reducers.11 One implication of this is that
communication between pairs of arbitrary nodes is difficult to accomplish. Instead, information
typically propagates along graph edges—which gives rise to the structure of algorithms discussed
above.

Additional Readings. The ubiquity of large graphs translates into substantial interest in scalable
graph algorithms using MapReduce in industry, academia, and beyond. There is, of course, much
beyond what has been covered in this chapter. For additional material, we refer readers to the

11However, maintaining globally-synchronized state may be possible with the assistance of other tools (e.g., a distributed database).

5.5. SUMMARY AND ADDITIONAL READINGS 103

following: Kang et al. [80] presented an approach to estimating the diameter of large graphs using
MapReduce and a library for graph mining [81]; Cohen [39] discussed a number of algorithms
for processing undirected graphs, with social network analysis in mind; Rao and Yarowsky [128]
described an implementation of label propagation, a standard algorithm for semi-supervised machine
learning, on graphs derived from textual data; Schatz [132] tackled the problem of DNA sequence
alignment and assembly with graph algorithms in MapReduce. Finally, it is easy to forget that
parallel graph algorithms have been studied by computer scientists for several decades, particular in
the PRAM model [60; 77]. It is not clear, however, to what extent well-known PRAM algorithms
translate naturally into the MapReduce framework.

105

C H A P T E R 6

EM Algorithms for Text
Processing

Until the end of the 1980s, text processing systems tended to rely on large numbers of manually
written rules to analyze, annotate, and transform text input, usually in a deterministic way. This
rule-based approach can be appealing: a system’s behavior can generally be understood and predicted
precisely, and, when errors surface, they can be corrected by writing new rules or refining old ones.
However, rule-based systems suffer from a number of serious problems.They are brittle with respect
to the natural variation found in language, and developing systems that can deal with inputs from
diverse domains is very labor intensive. Furthermore, when these systems fail, they often do so
catastrophically, unable to offer even a “best guess” as to what the desired analysis of the input might
be.

In the last 20 years, the rule-based approach has largely been abandoned in favor of more
data-driven methods, where the “rules” for processing the input are inferred automatically from
large corpora of examples, called training data. The basic strategy of the data-driven approach is
to start with a processing algorithm capable of capturing how any instance of the kinds of inputs
(e.g., sentences or emails) can relate to any instance of the kinds of outputs that the final system
should produce (e.g., the syntactic structure of the sentence or a classification of the email as spam).
At this stage, the system can be thought of as having the potential to produce any output for any
input, but they are not distinguished in any way. Next, a learning algorithm is applied which refines
this process based on the training data—generally attempting to make the model perform as well as
possible at predicting the examples in the training data. The learning process, which often involves
iterative algorithms, typically consists of activities like ranking rules, instantiating the content of rule
templates, or determining parameter settings for a given model. This is known as machine learning,
an active area of research.

Data-driven approaches have turned out to have several benefits over rule-based approaches
to system development. Since data-driven systems can be trained using examples of the kind that
they will eventually be used to process, they tend to deal with the complexities found in real data
more robustly than rule-based systems do. Second, developing training data tends to be far less
expensive than developing rules. For some applications, significant quantities of training data may
even exist for independent reasons (e.g., translations of text into multiple languages are created by
authors wishing to reach an audience speaking different languages, not because they are generating
training data for a data-driven machine translation system). These advantages come at the cost of

106 6. EM ALGORITHMS FOR TEXT PROCESSING

systems that often behave internally quite differently than a human-engineered system. As a result,
correcting errors that the trained system makes can be quite challenging.

Data-driven information processing systems can be constructed using a variety of mathe-
matical techniques, but in this chapter we focus on statistical models, which probabilistically relate
inputs from an input set X (e.g., sentences, documents, etc.), which are always observable, to anno-
tations from a set Y , which is the space of possible annotations or analyses that the system should
predict. This model may take the form of either a joint model Pr(x, y) which assigns a probability
to every pair 〈x, y〉 ∈ X × Y or a conditional model Pr(y|x), which assigns a probability to every
y ∈ Y , given an x ∈ X . For example, to create a statistical spam detection system, we might have
Y = {Spam,NotSpam} and X be the set of all possible email messages. For machine translation,
X might be the set of Arabic sentences and Y the set of English sentences.1

There are three closely related, but distinct, challenges in statistical text processing. The first
is model selection. This entails selecting a representation of a joint or conditional distribution over
the desired X and Y . For a problem where X and Y are very small, one could imagine representing
these probabilities in lookup tables. However, for something like email classification or machine
translation, where the model space is infinite, the probabilities cannot be represented directly, and
must be computed algorithmically. As an example of such models, we introduce hidden Markov
models (HMMs), which define a joint distribution over sequences of inputs and sequences of anno-
tations. The second challenge is parameter estimation or learning, which involves the application of
an optimization algorithm and training criterion to select the parameters of the model to optimize
the model’s performance (with respect to the given training criterion) on the training data.2 The
parameters of a statistical model are the values used to compute the probability of some event de-
scribed by the model. In this chapter we will focus on one particularly simple training criterion for
parameter estimation, maximum likelihood estimation, which says to select the parameters that make
the training data most probable under the model, and one learning algorithm that attempts to meet
this criterion, called expectation maximization (EM). The final challenge for statistical modeling
is the problem of decoding, or, given some x, using the model to select an annotation y. One very
common strategy is to select y according to the following criterion:

y∗ = arg max
y∈Y

Pr(y|x)

In a conditional (or direct) model, this is a straightforward search for the best y under the model. In a
joint model, the search is also straightforward, on account of the definition of conditional probability:

y∗ = arg max
y∈Y

Pr(y|x) = arg max
y∈Y

Pr(x, y)∑
y′ Pr(x, y′)

= arg max
y∈Y

Pr(x, y)

1In this chapter, we will consider discrete models only. They tend to be sufficient for text processing, and their presentation is
simpler than models with continuous densities. It should be kept in mind that the sets X and Y may still be countably infinite.

2We restrict our discussion in this chapter to models with finite numbers of parameters and where the learning process refers to
setting those parameters. Inference in and learning of so-called nonparameteric models, which have an infinite number of parameters
and have become important statistical models for text processing in recent years, is beyond the scope of this chapter.

107

The specific form that the search takes will depend on how the model is represented. Our focus in
this chapter will primarily be on the second problem: learning parameters for models, but we will
touch on the third problem as well.

Machine learning is often categorized as either supervised or unsupervised. Supervised learning
of statistical models simply means that the model parameters are estimated from training data
consisting of pairs of inputs and annotations, that is Z = 〈〈x1, y1〉, 〈x2, y2〉, . . .〉 where 〈xi, yi〉 ∈
X × Y and yi is the gold standard (i.e., correct) annotation of xi . While supervised models often
attain quite good performance, they are often uneconomical to use, since the training data requires
each object that is to be classified (to pick a specific task), xi to be paired with its correct label, yi . In
many cases, these gold standard training labels must be generated by a process of expert annotation,
meaning that each xi must be manually labeled by a trained individual. Even when the annotation
task is quite simple for people to carry out (e.g., in the case of spam detection), the number of potential
examples that could be classified (representing a subset of X , which may of course be infinite in
size) will far exceed the amount of data that can be annotated. As the annotation task becomes more
complicated (e.g., when predicting more complex structures such as sequences of labels or when the
annotation task requires specialized expertise), annotation becomes far more challenging.

Unsupervised learning, on the other hand, requires only that the training data consist of a
representative collection of objects that should be annotated, that is Z = 〈x1, x2, . . .〉where xi ∈ X ,
but without any example annotations. While it may at first seem counterintuitive that meaningful
annotations can be learned without any examples of the desired annotations being given, the learning
criteria and model structure (which crucially define the space of possible annotations Y and the
process by which annotations relate to observable inputs) make it possible to induce annotations
by relying on regularities in the unclassified training instances. While a thorough discussion of
unsupervised learning is beyond the scope of this book, we focus on a particular class of algorithms—
expectation maximization (EM) algorithms—that can be used to learn the parameters of a joint
model Pr(x, y) from incomplete data (i.e., data where some of the variables in the model cannot be
observed; in the case of unsupervised learning, the yi ’s are unobserved). Expectation maximization
algorithms fit naturally into the MapReduce paradigm, and are used to solve a number of problems
of interest in text processing. Furthermore, these algorithms can be quite computationally expensive,
since they generally require repeated evaluations of the training data. MapReduce therefore provides
an opportunity not only to scale to larger amounts of data, but also to improve efficiency bottlenecks
at scales where non-parallel solutions could be utilized.

This chapter is organized as follows. In Section 6.1, we describe maximum likelihood esti-
mation for statistical models, show how this is generalized to models where not all variables are
observable, and then introduce expectation maximization (EM). We describe hidden Markov mod-
els (HMMs) in Section 6.2, a very versatile class of models that uses EM for parameter estimation.
Section 6.3 discusses how EM algorithms can be expressed in MapReduce, and then in Section 6.4
we look at a case study of word alignment for statistical machine translation. Section 6.5 examines

108 6. EM ALGORITHMS FOR TEXT PROCESSING

similar algorithms that are appropriate for supervised learning tasks. This chapter concludes with a
summary and pointers to additional readings.

6.1 EXPECTATION MAXIMIZATION

Expectation maximization (EM) algorithms [49] are a family of iterative optimization algorithms
for learning probability distributions from incomplete data. They are extensively used in statistical
natural language processing where one seeks to infer latent linguistic structure from unannotated text.
To name just a few applications, EM algorithms have been used to find part-of-speech sequences,
constituency and dependency trees, alignments between texts in different languages, alignments
between acoustic signals and their transcriptions, as well as for numerous other clustering and
structure discovery problems.

Expectation maximization generalizes the principle of maximum likelihood estimation to the
case where the values of some variables are unobserved (specifically, those characterizing the latent
structure that is sought).

6.1.1 MAXIMUM LIKELIHOOD ESTIMATION
Maximum likelihood estimation (MLE) is a criterion for fitting the parameters θ of a statistical
model to some given data x. Specifically, it says to select the parameter settings θ∗ such that the
likelihood of observing the training data given the model is maximized:

θ∗ = arg max
θ

Pr(X = x; θ) (6.1)

To illustrate, consider the simple marble game shown in Figure 6.1. In this game, a marble is
released at the position indicated by the black dot, and it bounces down into one of the cups at the
bottom of the board, being diverted to the left or right by the peg (indicated by a triangle) in the
center. Our task is to construct a model that predicts which cup the ball will drop into. A “rule-based”
approach might be to take exact measurements of the board and construct a physical model that we
can use to predict the behavior of the ball. Given sophisticated enough measurements, this could
certainly lead to a very accurate model. However, the construction of this model would be quite time
consuming and difficult.

A statistical approach, on the other hand, might be to assume that the behavior of the marble
in this game can be modeled using a Bernoulli random variable Y with parameter p. That is, the
value of the random variable indicates whether path 0 or 1 is taken. We also define a random variable
X whose value is the label of the cup that the marble ends up in; note that X is deterministically
related to Y , so an observation of X is equivalent to an observation of Y .

To estimate the parameter p of the statistical model of our game, we need some training data,
so we drop 10 marbles into the game which end up in cups x = 〈b, b, b, a, b, b, b, b, b, a〉.

6.1. EXPECTATION MAXIMIZATION 109

a b

0 1

Figure 6.1: A simple marble game where a released marble takes one of two possible paths. This game
can be modeled using a Bernoulli random variable with parameter p, which indicates the probability that
the marble will go to the right when it hits the peg.

What is the maximum likelihood estimate of p given this data? By assuming that our samples
are independent and identically distributed (i.i.d.), we can write the likelihood of our data as follows:3

Pr(x; p) =
10∏

j=1

pδ(xj ,a)(1− p)δ(xj ,b)

= p2 · (1− p)8

Since log is a monotonically increasing function, maximizing log Pr(x; p) will give us the desired
result. We can do this differentiating with respect to p and finding where the resulting expression
equals 0:

d log Pr(x; p)

dp
= 0

d[2 · log p + 8 · log(1− p)]
dp

= 0

2
p
− 8

1− p
= 0

Solving for p yields 0.2, which is the intuitive result. Furthermore, it is straightforward to show that
in N trials where N0 marbles followed path 0 to cup a, and N1 marbles followed path 1 to cup b,
the maximum likelihood estimate of p is N1/(N0 + N1).

While this model only makes use of an approximation of the true physical process at work
when the marble interacts with the game board, it is an empirical question whether the model works
well enough in practice to be useful. Additionally, while a Bernoulli trial is an extreme approxi-
mation of the physical process, if insufficient resources were invested in building a physical model,
3In this equation, δ is the Kroneker delta function which evaluates to 1 where its arguments are equal and 0 otherwise.

110 6. EM ALGORITHMS FOR TEXT PROCESSING

0 1 2 3

a b

0

c

1 2 3

Figure 6.2: A more complicated marble game where the released marble takes one of four possible paths.
We assume that we can only observe which cup the marble ends up in, not the specific path taken.

the approximation may perform better than the more complicated “rule-based” model. This sort
of dynamic is found often in text processing problems: given enough data, astonishingly simple
models can outperform complex knowledge-intensive models that attempt to simulate complicated
processes.

6.1.2 A LATENT VARIABLE MARBLE GAME
To see where latent variables might come into play in modeling, consider a more complicated variant
of our marble game shown in Figure 6.2. This version consists of three pegs that influence the
marble’s path, and the marble may end up in one of three cups. Note that both paths 1 and 2 lead
to cup b.

To construct a statistical model of this game, we again assume that the behavior of a marble
interacting with a peg can be modeled with a Bernoulli random variable.Since there are three pegs,we
have three random variables with parameters θ = 〈p0, p1, p2〉, corresponding to the probabilities
that the marble will go to the right at the top, left, and right pegs. We further define a random
variable X taking on values from {a, b, c} indicating what cup the marble ends in, and Y , taking
on values from {0, 1, 2, 3} indicating which path was taken. Note that the full joint distribution
Pr(X = x, Y = y) is determined by θ .

How should the parameters θ be estimated? If it were possible to observe the paths taken by
marbles as they were dropped into the game, it would be trivial to estimate the parameters for our
model using the maximum likelihood estimator—we would simply need to count the number of
times the marble bounced left or right at each peg. If Nx counts the number of times a marble took
path x in N trials, this is:

p0 = N2 + N3

N
p1 = N1

N0 + N1
p2 = N3

N2 + N3

6.1. EXPECTATION MAXIMIZATION 111

However, we wish to consider the case where the paths taken are unobservable (imagine an opaque
sheet covering the center of the game board), but where we can see what cup a marble ends in. In
other words, we want to consider the case where we have partial data. This is exactly the problem
encountered in unsupervised learning: there is a statistical model describing the relationship between
two sets of variables (X’s and Y ’s), and there is data available from just one of them. Furthermore, such
algorithms are quite useful in text processing, where latent variables may describe latent linguistic
structures of the observed variables, such as parse trees or part-of-speech tags, or alignment structures
relating sets of observed variables (see Section 6.4).

6.1.3 MLE WITH LATENT VARIABLES
Formally, we consider the problem of estimating parameters for statistical models of the form
Pr(X, Y ; θ) which describe not only an observable variable X but a latent, or hidden, variable
Y .

In these models, since only the values of the random variable X are observable, we define our
optimization criterion to be the maximization of the marginal likelihood, that is, summing over all
settings of the latent variable Y , which takes on values from set designated Y :4 Again, we assume
that samples in the training data x are i.i.d.:

Pr(X = x) =
∑

y∈Y
Pr(X = x, Y = y; θ)

For a vector of training observations x = 〈x1, x2, . . . , x'〉, if we assume the samples are i.i.d.:

Pr(x; θ) =
|x|∏

j=1

∑

y∈Y
Pr(X = xj , Y = y; θ)

Thus, the maximum (marginal) likelihood estimate of the model parameters θ∗ given a vector of
i.i.d. observations x becomes:

θ∗ = arg max
θ

|x|∏

j=1

∑

y∈Y
Pr(X = xj , Y = y; θ)

Unfortunately, in many cases, this maximum cannot be computed analytically, but the iterative
hill-climbing approach of expectation maximization can be used instead.

4For this description, we assume that the variables in our model take on discrete values. Not only does this simplify exposition, but
discrete models are widely used in text processing.

112 6. EM ALGORITHMS FOR TEXT PROCESSING

6.1.4 EXPECTATION MAXIMIZATION
Expectation maximization (EM) is an iterative algorithm that finds a successive series of parameter
estimates θ(0), θ(1), . . . that improve the marginal likelihood of the training data. That is, EM
guarantees:

|x|∏

j=1

∑

y∈Y
Pr(X = xj , Y = y; θ(i+1)) ≥

|x|∏

j=1

∑

y∈Y
Pr(X = xj , Y = y; θ(i))

The algorithm starts with some initial set of parameters θ(0) and then updates them using two
steps: expectation (E-step), which computes the posterior distribution over the latent variables given
the observable data x and a set of parameters θ(i),5 and maximization (M-step), which computes
new parameters θ(i+1) maximizing the expected log likelihood of the joint distribution with respect
to the distribution computed in the E-step. The process then repeats with these new parameters.
The algorithm terminates when the likelihood remains unchanged.6 In more detail, the steps are as
follows:

E-step. Compute the posterior probability of each possible hidden variable assignments y ∈ Y
for each x ∈ X and the current parameter settings, weighted by the relative frequency with which x

occurs in x. Call this q(X = x, Y = y; θ(i)) and note that it defines a joint probability distribution
over X × Y in that

∑
(x,y)∈X×Y q(x, y) = 1.

q(x, y; θ(i)) = f (x|x) · Pr(Y = y|X = x; θ(i)) = f (x|x) · Pr(x, y; θ(i))∑
y′ Pr(x, y′; θ(i))

M-step. Compute new parameter settings that maximize the expected log of the probability of
the joint distribution under the q-distribution that was computed in the E-step:

θ(i+1) = arg max
θ ′

Eq(X=x,Y=y;θ(i)) log Pr(X = x, Y = y; θ ′)
= arg max

θ ′

∑

(x,y)∈X×Y
q(X = x, Y = y; θ(i)) · log Pr(X = x, Y = y; θ ′)

We omit the proof that the model with parameters θ(i+1) will have equal or greater marginal
likelihood on the training data than the model with parameters θ(i), but this is provably true [78].

Before continuing, we note that the effective application of expectation maximization re-
quires that both the E-step and the M-step consist of tractable computations. Specifically, summing

5The term ‘expectation’ is used since the values computed in terms of the posterior distribution Pr(y|x; θ(i)) that are required to
solve the M-step have the form of an expectation (with respect to this distribution).

6The final solution is only guaranteed to be a local maximum, but if the model is fully convex, it will also be the global maximum.

6.1. EXPECTATION MAXIMIZATION 113

over the space of hidden variable assignments must not be intractable. Depending on the indepen-
dence assumptions made in the model, this may be achieved through techniques such as dynamic
programming. However, some models may require intractable computations.

6.1.5 AN EM EXAMPLE
Let’s look at how to estimate the parameters from our latent variable marble game from Section 6.1.2
using EM. We assume training data x consisting of N = |x| observations of X with Na , Nb, and
Nc indicating the number of marbles ending in cups a, b, and c. We start with some parameters
θ(0) = 〈p(0)

0 , p
(0)
1 , p

(0)
2 〉 that have been randomly initialized to values between 0 and 1.

E-step. We need to compute the distribution q(X = x, Y = y; θ(i)), as defined above. We first
note that the relative frequency f (x|x) is:

f (x|x) = Nx

N

Next, we observe that Pr(Y = 0|X = a) = 1 and Pr(Y = 3|X = c) = 1 since cups a and c fully
determine the value of the path variable Y . The posterior probability of paths 1 and 2 are only
non-zero when X is b:

Pr(1|b; θ(i)) = (1− p
(i)
0)p

(i)
1

(1− p
(i)
0)p

(i)
1 + p

(i)
0 (1− p

(i)
2)

Pr(2|b; θ(i)) = p
(i)
0 (1− p

(i)
2)

(1− p
(i)
0)p

(i)
1 + p

(i)
0 (1− p

(i)
2)

Except for the four cases just described, Pr(Y = y|X = x) is zero for all other values of x and y

(regardless of the value of the parameters).

M-step. We now need to maximize the expectation of log Pr(X, Y ; θ ′) (which will be a function
in terms of the three parameter variables) under the q-distribution we computed in the E step. The
non-zero terms in the expectation are as follows:

x y q(X = x, Y = y; θ(i)) log Pr(X = x, Y = y; θ ′)
a 0 Na/N log(1− p′0) + log(1− p′1)
b 1 Nb/N · Pr(1|b; θ(i)) log(1− p′0) + log p′1
b 2 Nb/N · Pr(2|b; θ(i)) log p′0 + log(1− p′2)
c 3 Nc/N log p′0 + log p′2

Multiplying across each row and adding from top to bottom yields the expectation we wish to
maximize. Each parameter can be optimized independently using differentiation. The resulting
optimal values are expressed in terms of the counts in x and θ(i):

p0 = Pr(2|b; θ(i)) · Nb + Nc

N
p1 = Pr(1|b; θ(i)) · Nb

Na + Pr(1|b; θ(i)) · Nb
p2 = Nc

Pr(2|b; θ(i)) · Nb + Nc

114 6. EM ALGORITHMS FOR TEXT PROCESSING

It is worth noting that the form of these expressions is quite similar to the fully observed maximum
likelihood estimate. However, rather than depending on exact path counts, the statistics used are the
expected path counts, given x and parameters θ(i).

Typically, the values computed at the end of the M-step would serve as new parameters for
another iteration of EM. However, the example we have presented here is quite simple and the
model converges to a global optimum after a single iteration. For most models, EM requires several
iterations to converge, and it may not find a global optimum. And since EM only finds a locally
optimal solution, the final parameter values depend on the values chose for θ(0).

6.2 HIDDEN MARKOV MODELS

To give a more substantial and useful example of models whose parameters may be estimated using
EM, we turn to hidden Markov models (HMMs). HMMs are models of data that are ordered
sequentially (temporally, from left to right, etc.), such as words in a sentence, base pairs in a gene,
or letters in a word. These simple but powerful models have been used in applications as diverse as
speech recognition [78], information extraction [139], gene finding [143], part-of-speech tagging
[44], stock market forecasting [70], text retrieval [108], and word alignment of parallel (translated)
texts [150] (more in Section 6.4).

In an HMM, the data being modeled is posited to have been generated from an underlying
Markov process, which is a stochastic process consisting of a finite set of states where the probability
of entering a state at time t + 1 depends only on the state of the process at time t [130]. Alternatively,
one can view a Markov process as a probabilistic variant of a finite state machine, where transitions
are taken probabilistically. As another point of comparison, the PageRank algorithm considered
in the previous chapter (Section 5.3) can be understood as a Markov process: the probability of
following any link on a particular page is independent of the path taken to reach that page. The
states of this Markov process are, however, not directly observable (i.e., hidden). Instead, at each
time step, an observable token (e.g., a word, base pair, or letter) is emitted according to a probability
distribution conditioned on the identity of the state that the underlying process is in.

A hidden Markov model M is defined as a tuple 〈S,O, θ〉. S is a finite set of states, which
generate symbols from a finite observation vocabulary O. Following convention, we assume that
variables q, r , and s refer to states in S , and o refers to symbols in the observation vocabulary O.
This model is parameterized by the tuple θ = 〈A, B, π〉 consisting of an |S| ×| S| matrix A of
transition probabilities, where Aq(r) gives the probability of transitioning from state q to state r ; an
|S| ×| O| matrix B of emission probabilities, where Bq(o) gives the probability that symbol o will be
emitted from state q; and an |S|-dimensional vector π , where πq is the probability that the process
starts in state q.7 These matrices may be dense, but for many applications sparse parameterizations

7This is only one possible definition of an HMM, but it is one that is useful for many text processing problems. In alternative
definitions, initial and final states may be handled differently, observations may be emitted during the transition between states,
or continuous-valued observations may be emitted (for example, from a Gaussian distribution).

6.2. HIDDEN MARKOV MODELS 115

are useful. We further stipulate that Aq(r) ≥ 0, Bq(o) ≥ 0, and πq ≥ 0 for all q, r , and o, as well as
that:

∑

r∈S
Aq(r) = 1 ∀q

∑

o∈O
Bq(o) = 1 ∀q

∑

q∈S
πq = 1

A sequence of observations of length τ is generated as follows:

Step 0: let t = 1 and select an initial state q according to the distribution π .

Step 1: an observation symbol from O is emitted according to the distribution Bq .

Step 2: a new q is drawn according to the distribution Aq .

Step 3: t is incremented, and if t ≤ τ , the process repeats from Step 1.

Since all events generated by this process are conditionally independent, the joint probability of this
sequence of observations and the state sequence used to generate it is the product of the individual
event probabilities.

Figure 6.3 shows a simple example of a hidden Markov model for part-of-speech tagging,
which is the task of assigning to each word in an input sentence its grammatical category (one of
the first steps in analyzing textual content). States S = {det, adj, nn, v } correspond to the parts
of speech (determiner, adjective, noun, and verb), and observations O = {the, a, green, . . .} are a
subset of English words.This example illustrates a key intuition behind many applications of HMMs:
states correspond to equivalence classes or clustering of observations, and a single observation type
may associated with several clusters (in this example, the word wash can be generated by an nn or
v, since wash can either be a noun or a verb).

6.2.1 THREE QUESTIONS FOR HIDDEN MARKOV MODELS
There are three fundamental questions associated with hidden Markov models:8

1. Given a model M = 〈S,O, θ〉, and an observation sequence of symbols from O, x =
〈x1, x2, . . . , xτ 〉, what is the probability that M generated the data (summing over all possible
state sequences, Y)?

Pr(x) =
∑

y∈Y
Pr(x, y; θ)

2. Given a model M = 〈S,O, θ〉 and an observation sequence x,what is the most likely sequence
of states that generated the data?

y∗ = arg max
y∈Y

Pr(x, y; θ)

8The organization of this section is based in part on ideas from Lawrence Rabiner’s HMM tutorial [125].

116 6. EM ALGORITHMS FOR TEXT PROCESSING

0 0 0 0.5

0.3 0.2 0.1 0.2

0.7 0.7 0.4 0.2

0 0.1 0.5 0.1

DET

ADJ

NN

V

DET

the

a

0.7

0.3

ADJ

green

big

old

might

0.1

0.4

0.4

NN

book

plants

people

person

John

wash

0.3

0.2

0.2

0.1

V

might

wash

washes

loves

reads

books

0.2

0.3

0.2

 0.01

DET ADJ NN V

DET

ADJ

NN

V

Transition probabilities:

Emission probabilities:

0.1

0.190.1

Example outputs:
John might wash

the big green person loves old plants

NN V V

DET ADJ ADJ NN V ADJ NN

plants washes books books books

NN V V NN V

Initial probabilities:

DET ADJ NN V

0.5 0.30.1 0.1

0.1

0.1

Figure 6.3: An example HMM that relates part-of-speech tags to vocabulary items in an English-like
language. Possible (probability > 0) transitions for the Markov process are shown graphically. In the
example outputs, the state sequences corresponding to the emissions are written beneath the emitted
symbols.

6.2. HIDDEN MARKOV MODELS 117

3. Given a set of states S , an observation vocabulary O, and a series of ' i.i.d. observation se-
quences 〈x1, x2, . . . , x'〉, what are the parameters θ = 〈A, B, π〉 that maximize the likelihood
of the training data?

θ∗ = arg max
θ

'∏

i=1

∑

y∈Y
Pr(xi , y; θ)

Using our definition of an HMM, the answers to the first two questions are in principle quite
trivial to compute: by iterating over all state sequences Y , the probability that each generated x can
be computed by looking up and multiplying the relevant probabilities in A, B, and π , and then
summing the result or taking the maximum. And, as we hinted at in the previous section, the third
question can be answered using EM. Unfortunately, even with all the distributed computing power
MapReduce makes available, we will quickly run into trouble if we try to use this naïve strategy since
there are |S|τ distinct state sequences of length τ , making exhaustive enumeration computationally
intractable. Fortunately, because the underlying model behaves exactly the same whenever it is in
some state, regardless of how it got to that state, we can use dynamic programming algorithms to
answer all of the above questions without summing over exponentially many sequences.

6.2.2 THE FORWARD ALGORITHM
Given some observation sequence, for example x = 〈John, might, wash〉, Question 1 asks what is
the probability that this sequence was generated by an HMM M = 〈S,O, θ〉. For the purposes of
illustration, we assume that M is defined as shown in Figure 6.3.

There are two ways to compute the probability of x having been generated by M. The first
is to compute the sum over the joint probability of x and every possible labeling y′ ∈ {〈 det ,
det, det〉, 〈det , det, nn〉, 〈det, det, v〉, . . .}. As indicated above, this is not feasible for most
sequences, since the set of possible labels is exponential in the length of x. The second, fortunately,
is much more efficient.

We can make use of what is known as the forward algorithm to compute the desired probability
in polynomial time. We assume a model M = 〈S,O, θ〉 as defined above. This algorithm works by
recursively computing the answer to a related question: what is the probability that the process is in
state q at time t and has generated 〈x1, x2, . . . , xt 〉? Call this probability αt (q). Thus, αt (q) is a two
dimensional matrix (of size |x| ×| S|), called a trellis. It is easy to see that the values of α1(q) can be
computed as the product of two independent probabilities: the probability of starting in state q and
the probability of state q generating x1:

α1(q) = πq · Bq(x1)

From this, it’s not hard to see that the values of α2(r) for every r can be computed in terms of the
|S| values in α1(·) and the observation x2:

118 6. EM ALGORITHMS FOR TEXT PROCESSING

α2(r) = Br(x2) ·
∑

q∈S
α1(q) · Aq(r)

This works because there are |S| different ways to get to state r at time t = 2: starting from state
1, 2, . . . , |S| and transitioning to state r . Furthermore, because the behavior of a Markov process is
determined only by the state it is in at some time (not by how it got to that state), αt (r) can always
be computed in terms of the |S| values in αt−1(·) and the observation xt :

αt (r) = Br(xt) ·
∑

q∈S
αt−1(q) · Aq(r)

We have now shown how to compute the probability of being in any state q at any time t , having
generated 〈x1, x2, . . . , xt 〉, with the forward algorithm. The probability of the full sequence is the
probability of being in time |x| and in any state, so the answer to Question 1 can be computed simply
by summing over α values at time |x| for all states:

Pr(x; θ) =
∑

q∈S
α|x|(q)

In summary, there are two ways of computing the probability that a sequence of observations x
was generated by M: exhaustive enumeration with summing and the forward algorithm. Figure 6.4
illustrates the two possibilities. The upper panel shows the naïve exhaustive approach, enumerating
all 43 possible labels y′ of x and computing their joint probability Pr(x, y′). Summing over all y′,
the marginal probability of x is found to be 0.00018. The lower panel shows the forward trellis,
consisting of 4× 3 cells. Summing over the final column also yields 0.00018, the same result.

6.2.3 THE VITERBI ALGORITHM
Given an observation sequence x, the second question we might want to ask of M is: what is the most
likely sequence of states that generated the observations? As with the previous question, the naïve
approach to solving this problem is to enumerate all possible labels and find the one with the highest
joint probability. Continuing with the example observation sequence x = 〈John, might, wash〉,
examining the chart of probabilities in the upper panel of Figure 6.4 shows that y∗ = 〈nn, v, v〉 is
the most likely sequence of states under our example HMM.

However, a more efficient answer to Question 2 can be computed using the same intuition
in the forward algorithm: determine the best state sequence for a short sequence and extend this to
easily compute the best sequence for longer ones. This is known as the Viterbi algorithm. We define
γt (q), the Viterbi probability, to be the most probable sequence of states ending in state q at time t

and generating observations 〈x1, x2, . . . , xt 〉. Since we wish to be able to reconstruct the sequence

6.2. HIDDEN MARKOV MODELS 119

John might wash

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

DET

ADJ

ADJ

ADJ

ADJ

NN

NN

NN

NN

V

V

V

V

DET

ADJ

NN

V

DET

ADJ

NN

V

DET

ADJ

NN

V

DET

ADJ

NN

V

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

John might wash

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

ADJ

DET

DET

DET

DET

ADJ

ADJ

ADJ

ADJ

NN

NN

NN

NN

V

V

V

V

DET

ADJ

NN

V

DET

ADJ

NN

V

DET

ADJ

NN

V

DET

ADJ

NN

V

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

John might wash

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

DET

DET

DET

DET

ADJ

ADJ

ADJ

ADJ

NN

NN

NN

NN

V

V

V

V

DET

ADJ

NN

V

DET

ADJ

NN

V

DET

ADJ

NN

V

DET

ADJ

NN

V

0.0

0.0

0.0

0.0

0.0

0.0

0.000021

0.000009

0.0

0.0

0.0

0.0

0.0

0.0

0.00006

0.00009

John might wash

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

DET

DET

DET

DET

ADJ

ADJ

ADJ

ADJ

NN

NN

NN

NN

V

V

V

V

DET

ADJ

NN

V

DET

ADJ

NN

V

DET

ADJ

NN

V

DET

ADJ

NN

V

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

p(x,y)p(x,y) p(x,y) p(x,y)

0.0

John might wash

DET

ADJ

V

NN

0.0 0.0

0.0

0.03

0.0

0.0003

0.0

0.003

0.0

0.000081

0.000099

Pr(x) =
∑

y∈Y
Pr(x,y; θ) = 0.00018

Pr(x) =
∑

q∈S
α3(q) = 0.00018

α1 α2 α3

Figure 6.4: Computing the probability of the sequence 〈John, might, wash〉 under the HMM given in
Figure 6.3 by explicitly summing over all possible sequence labels (upper panel) and using the forward
algorithm (lower panel).

120 6. EM ALGORITHMS FOR TEXT PROCESSING

of states, we define bpt (q), the “backpointer”, to be the state used in this sequence at time t − 1.The
base case for the recursion is as follows (the state index of −1 is used as a placeholder since there is
no previous best state at time t = 1):

γ1(q) = πq · Bq(x1)

bp1(q) = −1

The recursion is similar to that of the forward algorithm, except rather than summing over previous
states, the maximum value of all possible trajectories into state r at time t is computed. Note that
the backpointer simply records the index of the originating state—a separate computation is not
necessary.

γt (r) = max
q∈S

γt−1(q) · Aq(r) · Br(xt)

bpt (r) = arg max
q∈S

γt−1(q) · Aq(r) · Br(xt)

To compute the best sequence of states, y∗, the state with the highest probability path at time |x| is
selected, and then the backpointers are followed, recursively, to construct the rest of the sequence:

y∗|x| = arg max
q∈S

γ|x|(q)

y∗t−1 = bpt (yt)

Figure 6.5 illustrates a Viterbi trellis, including backpointers that have been used to compute the
most likely state sequence.

6.2.4 PARAMETER ESTIMATION FOR HMMS
We now turn to Question 3: given a set of states S and observation vocabulary O,what are the param-
eters θ∗ = 〈A, B, π〉 that maximize the likelihood of a set of training examples, 〈x1, x2, . . . , x'〉?9

Since our model is constructed in terms of variables whose values we cannot observe (the state
sequence) in the training data, we may train it to optimize the marginal likelihood (summing over
all state sequences) of x using EM. Deriving the EM update equations requires only the application
of the techniques presented earlier in this chapter and some differential calculus. However, since
the formalism is cumbersome, we will skip a detailed derivation, but readers interested in more
information can find it in the relevant citations [78; 125].

In order to make the update equations as intuitive as possible, consider a fully observable
HMM, that is, one where both the emissions and the state sequence are observable in all ' training
instances. In this case, a training instance can be depicted as shown in Figure 6.6. When this is the
9Since an HMM models sequences, training data consist of a collection of example sequences.

6.2. HIDDEN MARKOV MODELS 121

0.0

John might wash

DET

ADJ

V

NN

0.0 0.0

0.0

0.03

0.0

0.0003

0.0

0.003

0.0

0.00006

0.00009

γ1 γ2 γ3

Figure 6.5: Computing the most likely state sequence that generated 〈John, might, wash〉 under the
HMM given in Figure 6.3 using the Viterbi algorithm. The most likely state sequence is highlighted in
bold and could be recovered programmatically by following backpointers from the maximal probability
cell in the last column to the first column (thicker arrows).

John might wash

DET

ADJ

V

NN

Figure 6.6: A “fully observable” HMM training instance.The output sequence is at the top of the figure,
and the corresponding states and transitions are shown in the trellis below.

case, such as when we have a corpus of sentences in which all words have already been tagged with
their parts of speech, the maximum likelihood estimate for the parameters can be computed in terms
of the counts of the number of times the process transitions from state q to state r in all training
instances, T (q → r); the number of times that state q emits symbol o, O(q ↑ o); and the number
of times the process starts in state q, I (q). In this example, the process starts in state nn; there is
one nn→ v transition and one v → v transition. The nn state emits John in the first time step,
and v state emits might and wash in the second and third time steps, respectively. We also define
N(q) to be the number of times the process enters state q. The maximum likelihood estimates of
the parameters in the fully observable case are:

122 6. EM ALGORITHMS FOR TEXT PROCESSING

πq = I (q)

' = ∑
r I (r)

Aq(r) = T (q → r)

N(q) = ∑
r ′ T (q → r ′)

Bq(o) = O(q ↑ o)

N(q) = ∑
o′ O(q ↑ o′)

(6.2)

For example, to compute the emission parameters from state nn, we simply need to keep track of
the number of times the process is in state nn and what symbol it generated at each of these times.
Transition probabilities are computed similarly: to compute, for example, the distribution Adet(·),
that is, the probabilities of transitioning away from state det, we count the number of times the
process is in state det, and keep track of what state the process transitioned into at the next time
step. This counting and normalizing be accomplished using the exact same counting and relative
frequency algorithms that we described in Section 3.3. Thus, in the fully observable case, parameter
estimation is not a new algorithm at all, but one we have seen before.

How should the model parameters be estimated when the state sequence is not provided? It
turns out that the update equations have the satisfying form where the optimal parameter values
for iteration i + 1 are expressed in terms of the expectations of the counts referenced in the fully
observed case, according to the posterior distribution over the latent variables given the observations
x and the parameters θ(i):

πq = E[I (q)]
'

Aq(r) = E[T (q → r)]
E[N(q)] Bq(o) = E[O(q ↑ o)]

E[N(q)] (6.3)

Because of the independence assumptions made in the HMM, the update equations consist of
2 · |S| + 1 independent optimization problems, just as was the case with the ‘observable’ HMM.
Solving for the initial state distribution, π , is one problem; there are |S| solving for the transition
distributions Aq(·) from each state q; and |S| solving for the emissions distributions Bq(·) from
each state q. Furthermore, we note that the following must hold:

E[N(q)] =
∑

r∈S
E[T (q → r)] =

∑

o∈O
E[O(q ↑ o)]

As a result, the optimization problems (i.e., Equations 6.2) require completely independent sets of
statistics, which we will utilize later to facilitate efficient parallelization in MapReduce.

How can the expectations in Equation 6.3 be understood? In the fully observed training case,
between every time step, there is exactly one transition taken and the source and destination states
are observable. By progressing through the Markov chain, we can let each transition count as ‘1’, and
we can accumulate the total number of times each kind of transition was taken (by each kind, we
simply mean the number of times that one state follows another, for example, the number of times
nn follows det). These statistics can then in turn be used to compute the MLE for an ‘observable’
HMM, as described above. However, when the transition sequence is not observable (as is most
often the case), we can instead imagine that at each time step, every possible transition (there are
|S|2 of them, and typically |S| is quite small) is taken, with a particular probability. The probability
used is the posterior probability of the transition, given the model and an observation sequence (we

6.2. HIDDEN MARKOV MODELS 123

describe how to compute this value below). By summing over all the time steps in the training data,
and using this probability as the ‘count’ (rather than ‘1’ as in the observable case), we compute the
expected count of the number of times a particular transition was taken, given the training sequence.
Furthermore, since the training instances are statistically independent, the value of the expectations
can be computed by processing each training instance independently and summing the results.

Similarly for the necessary emission counts (the number of times each symbol in O was
generated by each state in S), we assume that any state could have generated the observation. We
must therefore compute the probability of being in every state at each time point, which is then the
size of the emission ‘count’. By summing over all time steps we compute the expected count of the
number of times that a particular state generated a particular symbol.These two sets of expectations,
which are written formally here, are sufficient to execute the M-step.

E[O(q ↑ o)] =
|x|∑

i=1

Pr(yi = q|x; θ) · δ(xi, o) (6.4)

E[T (q → r)] =
|x|−1∑

i=1

Pr(yi = q, yi+1 = r|x; θ) (6.5)

Posterior probabilities. The expectations necessary for computing the M-step in HMM training
are sums of probabilities that a particular transition is taken, given an observation sequence, and
that some state emits some observation symbol, given an observation sequence.These are referred to
as posterior probabilities, indicating that they are the probability of some event whose distribution
we have a prior belief about, after addition evidence has been taken into consideration (here, the
model parameters characterize our prior beliefs, and the observation sequence is the evidence).
Both posterior probabilities can be computed by combining the forward probabilities, αt (·), which
give the probability of reaching some state at time t , by any path, and generating the observations
〈x1, x2, . . . , xt 〉, with backward probabilities, βt (·), which give the probability of starting in some
state at time t and generating the rest of the sequence 〈xt+1, xt+2, . . . , x|x|〉, using any sequence of
states to do so.The algorithm for computing the backward probabilities is given a bit later. Once the
forward and backward probabilities have been computed, the state transition posterior probabilities
and the emission posterior probabilities can be written as follows:

Pr(yi = q|x; θ) = αi(q) · βi(q) (6.6)
Pr(yi = q, yi+1 = r|x; θ) = αi(q) · Aq(r) · Br(xi+1) · βi+1(r) (6.7)

Equation 6.6 is the probability of being in state q at time i, given x, and the correctness of the
expression should be clear from the definitions of forward and backward probabilities. The intuition
for Equation 6.7, the probability of taking a particular transition at a particular time, is also not
complicated. It is the product of four conditionally independent probabilities: the probability of

124 6. EM ALGORITHMS FOR TEXT PROCESSING

a b c b

S1

S2

S3

!2(2) "3(2)

b

Figure 6.7: Using forward and backward probabilities to compute the posterior probability of the dashed
transition, given the observation sequence a b b c b. The shaded area on the left corresponds to the
forward probability α2(s2), and the shaded area on the right corresponds to the backward probability
β3(s2).

getting to state q at time i (having generated the first part of the sequence), the probability of taking
transition q → r (which is specified in the parameters, θ), the probability of generating observation
xi+1 from state r (also specified in θ), and the probability of generating the rest of the sequence,
along any path. A visualization of the quantities used in computing this probability is shown in
Figure 6.7. In this illustration, we assume an HMM with S = {s1, s2, s3} and O = {a, b, c}.

The backward algorithm. Like the forward and Viterbi algorithms introduced above to answer
Questions 1 and 2, the backward algorithm uses dynamic programming to incrementally compute
βt (·). Its base case starts at time |x|, and is defined as follows:

β|x|(q) = 1

To understand the intuition of the base case, keep in mind that since the backward probabilities
βt (·) are the probability of generating the remainder of the sequence after time t (as well as being
in some state), and since there is nothing left to generate after time |x|, the probability must be 1.
The recursion is defined as follows:

βt (q) =
∑

r∈S
βt+1(r) · Aq(r) · Br(xt+1)

6.3. EM IN MAPREDUCE 125

Unlike the forward and Viterbi algorithms, the backward algorithm is computed from right to left
and makes no reference to the start probabilities, π .

6.2.5 FORWARD-BACKWARD TRAINING: SUMMARY
In the preceding section, we showed how to compute all quantities needed to find the parameter
settings θ(i+1) using EM training with a hidden Markov model M = 〈S,O, θ(i)〉. To recap: each
training instance x is processed independently, using the parameter settings of the current iteration,
θ(i). For each x in the training data, the forward and backward probabilities are computed using the
algorithms given above (for this reason, this training algorithm is often referred to as the forward-
backward algorithm). The forward and backward probabilities are in turn used to compute the
expected number of times the underlying Markov process enters into each state, the number of
times each state generates each output symbol type, and the number of times each state transitions
into each other state. These expectations are summed over all training instances, completing the
E-step. The M-step involves normalizing the expected counts computed in the E-step using the
calculations in Equation 6.3, which yields θ(i+1). The process then repeats from the E-step using
the new parameters. The number of iterations required for convergence depends on the quality of
the initial parameters, and the complexity of the model. For some applications, only a handful of
iterations are necessary, whereas for others, hundreds may be required.

Finally, a few practical considerations: HMMs have a non-convex likelihood surface (meaning
that it has the equivalent of many hills and valleys in the number of dimensions corresponding to
the number of parameters in the model). EM training is only guaranteed to find a local maximum,
and the quality of the learned model may vary considerably, depending on the initial parameters
that are used. Strategies for optimal selection of initial parameters depend on the phenomena being
modeled. Additionally, if some parameter is assigned a probability of 0 (either as an initial value or
during one of the M-step parameter updates), EM will never change this in future iterations. This
can be useful, since it provides a way of constraining the structures of the Markov model; however,
one must be aware of this behavior.

Another pitfall to avoid when implementing HMMs is arithmetic underflow.HMMs typically
define a massive number of sequences, and so the probability of any one of them is often vanishingly
small—so small that they often underflow standard floating point representations. A very common
solution to this problem is to represent probabilities using their logarithms.Note that expected counts
do not typically have this problem and can be represented using normal floating point numbers. See
Section 5.4 for additional discussion on working with log probabilities.

6.3 EM IN MAPREDUCE

Expectation maximization algorithms fit quite naturally into the MapReduce programming model.
Although the model being optimized determines the details of the required computations, Map-
Reduce implementations of EM algorithms share a number of characteristics:

126 6. EM ALGORITHMS FOR TEXT PROCESSING

• Each iteration of EM is one MapReduce job.

• A controlling process (i.e., driver program) spawns the MapReduce jobs and keeps track of
the number of iterations and convergence criteria.

• Model parameters θ(i), which are static for the duration of the MapReduce job, are loaded by
each mapper from HDFS or other data provider (e.g., a distributed key-value store).

• Mappers map over independent training instances, computing partial latent variable posteriors
(or summary statistics, such as expected counts).

• Reducers sum together the required training statistics and solve one or more of the M-step
optimization problems.

• Combiners, which sum together the training statistics, are often quite effective at reducing the
amount of data that must be shuffled across the network.

The degree of parallelization that can be attained depends on the statistical independence assumed
in the model and in the derived quantities required to solve the optimization problems in the M-step.
Since parameters are estimated from a collection of samples that are assumed to be i.i.d., the E-step
can generally be parallelized effectively since every training instance can be processed independently
of the others. In the limit, in fact, each independent training instance could be processed by a separate
mapper!10

Reducers, however, must aggregate the statistics necessary to solve the optimization problems
as required by the model. The degree to which these may be solved independently depends on the
structure of the model, and this constrains the number of reducers that may be used. Fortunately,
many common models (such as HMMs) require solving several independent optimization problems
in the M-step. In this situation, a number of reducers may be run in parallel. Still, it is possible that in
the worst case, the M-step optimization problem will not decompose into independent subproblems,
making it necessary to use a single reducer.

6.3.1 HMM TRAINING IN MAPREDUCE
As we would expect, the training of hidden Markov models parallelizes well in MapReduce. The
process can be summarized as follows: in each iteration, mappers process training instances, emitting
expected event counts computed using the forward-backward algorithm introduced in Section 6.2.4.
Reducers aggregate the expected counts, completing the E-step, and then generate parameter esti-
mates for the next iteration using the updates given in Equation 6.3.

This parallelization strategy is effective for several reasons. First, the majority of the com-
putational effort in HMM training is the running of the forward and backward algorithms. Since
there is no limit on the number of mappers that may be run, the full computational resources of a

10Although the wisdom of doing this is questionable, given that the startup costs associated with individual map tasks in Hadoop
may be considerable.

6.3. EM IN MAPREDUCE 127

cluster may be brought to bear to solve this problem. Second, since the M-step of an HMM training
iteration with |S| states in the model consists of 2 · |S| + 1 independent optimization problems that
require non-overlapping sets of statistics, this may be exploited with as many as 2 · |S| + 1 reducers
running in parallel. While the optimization problem is computationally trivial, being able to reduce
in parallel helps avoid the data bottleneck that would limit performance if only a single reducer were
used.

The statistics that are required to solve the M-step optimization problem are quite similar to
the relative frequency estimation example discussed in Section 3.3; however, rather than counts of
observed events, we aggregate expected counts of events. As a result of the similarity, we can employ
the stripes representation for aggregating sets of related values, as described in Section 3.2. A pairs
approach that requires less memory at the cost of slower performance is also feasible.

HMM training mapper. The pseudo-code for the HMM training mapper is given in Figure 6.8.
The input consists of key-value pairs with a unique id as the key and a training instance (e.g., a
sentence) as the value. For each training instance, 2n + 1 stripes are emitted with unique keys,
and every training instance emits the same set of keys. Each unique key corresponds to one of the
independent optimization problems that will be solved in the M-step. The outputs are:

1. the probabilities that the unobserved Markov process begins in each state q, with a unique key
designating that the values are initial state counts;

2. the expected number of times that state q generated each emission symbol o (the set of emission
symbols included will be just those found in each training instance x), with a key indicating
that the associated value is a set of emission counts from state q; and

3. the expected number of times state q transitions to each state r , with a key indicating that the
associated value is a set of transition counts from state q.

HMM training reducer. The reducer for one iteration of HMM training, shown together with
an optional combiner in Figure 6.9, aggregates the count collections associated with each key by
summing them. When the values for each key have been completely aggregated, the associative array
contains all of the statistics necessary to compute a subset of the parameters for the next EM iteration.
The optimal parameter settings for the following iteration are computed simply by computing the
relative frequency of each event with respect to its expected count at the current iteration. The new
computed parameters are emitted from the reducer and written to HDFS. Note that they will be
spread across 2 · |S| + 1 keys, representing initial state probabilities π , transition probabilities Aq

for each state q, and emission probabilities Bq for each state q.

128 6. EM ALGORITHMS FOR TEXT PROCESSING

1: class Mapper
2: method Initialize(integer iteration)
3: 〈S,O〉 ←ReadModel
4: θ ← 〈A, B, π〉 ←ReadModelParams(iteration)

5: method Map(sample id, sequence x)
6: α ←Forward(x, θ) & cf. Section 6.2.2
7: β ←Backward(x, θ) & cf. Section 6.2.4
8: I ← new AssociativeArray & Initial state expectations
9: for all q ∈ S do & Loop over states

10: I {q} ← α1(q) · β1(q)

11: O ← new AssociativeArray of AssociativeArray & Emissions
12: for t = 1 to |x| do & Loop over observations
13: for all q ∈ S do & Loop over states
14: O{q}{xt } ← O{q}{xt } + αt (q) · βt (q)

15: t ← t + 1
16: T ← new AssociativeArray of AssociativeArray &Transitions
17: for t = 1 to |x| − 1 do & Loop over observations
18: for all q ∈ S do & Loop over states
19: for all r ∈ S do & Loop over states
20: T {q}{r} ← T {q}{r} + αt (q) · Aq(r) · Br(xt+1) · βt+1(r)

21: t ← t + 1
22: Emit(string ‘initial ’, stripe I)

23: for all q ∈ S do & Loop over states
24: Emit(string ‘emit from ’ + q, stripe O{q})
25: Emit(string ‘transit from ’ + q, stripe T {q})

Figure 6.8: Mapper pseudo-code for training hidden Markov models using EM.The mappers map over
training instances (i.e., sequences of observations xi) and generate the expected counts of initial states,
emissions, and transitions taken to generate the sequence.

6.3. EM IN MAPREDUCE 129

1: class Combiner
2: method Combine(string t, stripes [C1, C2, . . .])
3: Cf ← new AssociativeArray
4: for all stripe C ∈ stripes [C1, C2, . . .] do
5: Sum(Cf , C)

6: Emit(string t, stripe Cf)

1: class Reducer
2: method Reduce(string t, stripes [C1, C2, . . .])
3: Cf ← new AssociativeArray
4: for all stripe C ∈ stripes [C1, C2, . . .] do
5: Sum(Cf , C)

6: z ← 0
7: for all 〈k, v〉 ∈ Cf do
8: z ← z + v

9: Pf ← new AssociativeArray & Final parameters vector
10: for all 〈k, v〉 ∈ Cf do
11: Pf {k} ← v/z

12: Emit(string t, stripe Pf)

Figure 6.9: Combiner and reducer pseudo-code for training hidden Markov models using EM. The
HMMs considered in this book are fully parameterized by multinomial distributions, so reducers do not
require special logic to handle different types of model parameters (since they are all of the same type).

130 6. EM ALGORITHMS FOR TEXT PROCESSING

6.4 CASE STUDY: WORD ALIGNMENT FOR STATISTICAL
MACHINE TRANSLATION

To illustrate the real-world benefits of expectation maximization algorithms using MapReduce, we
turn to the problem of word alignment, which is an important task in statistical machine translation
that is typically solved using models whose parameters are learned with EM.

We begin by giving a brief introduction to statistical machine translation and the phrase-based
translation approach; for a more comprehensive introduction, refer to [85; 97]. Fully automated
translation has been studied since the earliest days of electronic computers. After successes with
code-breaking during World War II, there was considerable optimism that translation of human
languages would be another soluble problem. In the early years, work on translation was dominated
by manual attempts to encode linguistic knowledge into computers—another instance of the ‘rule-
based’ approach we described in the introduction to this chapter. These early attempts failed to
live up to the admittedly overly optimistic expectations. For a number of years, the idea of fully
automated translation was viewed with skepticism. Not only was constructing a translation system
labor intensive, but translation pairs had to be developed independently, meaning that improvements
in a Russian-English translation system could not, for the most part, be leveraged to improve a
French-English system.

After languishing for a number of years, the field was reinvigorated in the late 1980s when
researchers at IBM pioneered the development of statistical machine translation (SMT), which took
a data-driven approach to solving the problem of machine translation, attempting to improve both
the quality of translation while reducing the cost of developing systems [29]. The core idea of SMT
is to equip the computer to learn how to translate, using example translations which are produced
for other purposes, and modeling the process as a statistical process with some parameters θ relating
strings in a source language (typically denoted as f) to strings in a target language (typically denoted
as e):

e∗ = arg max
e

Pr(e|f; θ)

With the statistical approach, translation systems can be developed cheaply and quickly for
any language pair, as long as there is sufficient training data available. Furthermore, improvements
in learning algorithms and statistical modeling can yield benefits in many translation pairs at once,
rather than being specific to individual language pairs. Thus, SMT, like many other topics we are
considering in this book, is an attempt to leverage the vast quantities of textual data that is available
to solve problems that would otherwise require considerable manual effort to encode specialized
knowledge.Since the advent of statistical approaches to translation, the field has grown tremendously
and numerous statistical models of translation have been developed, with many incorporating quite
specialized knowledge about the behavior of natural language as biases in their learning algorithms.

6.4. CASE STUDY: WORD ALIGNMENT FOR STATISTICAL MACHINE TRANSLATION 131

6.4.1 STATISTICAL PHRASE-BASED TRANSLATION
One approach to statistical translation that is simple yet powerful is called phrase-based translation
[86]. We provide a rough outline of the process since it is representative of most state-of-the-
art statistical translation systems, such as the one used inside Google Translate.11 Phrase-based
translation works by learning how strings of words, called phrases, translate between languages.12

Example phrase pairs for Spanish-English translation might include 〈los estudiantes, the students〉,
〈los estudiantes, some students〉, and 〈soy, i am〉. From a few hundred thousand sentences of example
translations, many millions of such phrase pairs may be automatically learned.

The starting point is typically a parallel corpus (also called bitext), which contains pairs of
sentences in two languages that are translations of each other. Parallel corpora are frequently gener-
ated as the by-product of an organization’s effort to disseminate information in multiple languages,
for example, proceedings of the Canadian Parliament in French and English, and text generated by
the United Nations in many different languages. The parallel corpus is then annotated with word
alignments, which indicate which words in one language correspond to words in the other. By using
these word alignments as a skeleton, phrases can be extracted from the sentence that is likely to
preserve the meaning relationships represented by the word alignment. While an explanation of the
process is not necessary here, we mention it as a motivation for learning word alignments, which we
show below how to compute with EM. After phrase extraction, each phrase pair is associated with
a number of scores which, taken together, are used to compute the phrase translation probability, a
conditional probability that reflects how likely the source phrase translates into the target phrase.
We briefly note that although EM could be utilized to learn the phrase translation probabilities, this
is not typically done in practice since the maximum likelihood solution turns out to be quite bad for
this problem. The collection of phrase pairs and their scores are referred to as the translation model.
In addition to the translation model, phrase-based translation depends on a language model, which
gives the probability of a string in the target language. The translation model attempts to preserve
the meaning of the source language during the translation process, while the language model en-
sures that the output is fluent and grammatical in the target language. The phrase-based translation
process is summarized in Figure 6.10.

A language model gives the probability that a string of words w = 〈w1, w2, . . . , wn〉, written
as wn

1 for short, is a string in the target language. By the chain rule of probability, we get:

Pr(wn
1) = Pr(w1) Pr(w2|w1) Pr(w3|w2

1) . . . Pr(wn|wn−1
1) =

n∏

k=1

Pr(wk|wk−1
1) (6.8)

Due to the extremely large number of parameters involved in estimating such a model directly, it is
customary to make the Markov assumption, that the sequence histories only depend on prior local

11http://translate.google.com
12Phrases are simply sequences of words; they are not required to correspond to the definition of a phrase in any linguistic theory.

132 6. EM ALGORITHMS FOR TEXT PROCESSING

Word Alignment Phrase Extraction
Training Data

i saw the small table
vi la mesa pequeña

(vi, i saw)
(la mesa pequeña, the small table)

Parallel Sentences

he sat at the table
the service was good

Target-Language Text

Translation ModelLanguage
Model

Target Language Text

Decoder

Foreign Input Sentence English Output Sentence

maria no daba una bofetada a la bruja verde mary did not slap the green witch

Figure 6.10: The standard phrase-based machine translation architecture. The translation model is
constructed with phrases extracted from a word-aligned parallel corpus.The language model is estimated
from a monolingual corpus. Both serve as input to the decoder, which performs the actual translation.

Maria no dio una bofetada a la bruja verde

Mary t i l t th it hMary not

did not

no

give a slap to the witch green

slap

a slap

to the

green witchby

did not give to

the

the witchslap the witchslap

Figure 6.11: Translation coverage of the sentence Maria no dio una bofetada a la bruja verde by a phrase-
based model. The best possible translation path is indicated with a dashed line.

6.4. CASE STUDY: WORD ALIGNMENT FOR STATISTICAL MACHINE TRANSLATION 133

context. That is, an n-gram language model is equivalent to a (n− 1)th-order Markov model. Thus,
we can approximate P(wk|wk−1

1) as follows:

bigrams: P(wk|wk−1
1) ≈ P(wk|wk−1) (6.9)

trigrams: P(wk|wk−1
1) ≈ P(wk|wk−1wk−2) (6.10)

n-grams: P(wk|wk−1
1) ≈ P(wk|wk−1

k−n+1) (6.11)

The probabilities used in computing Pr(wn
1) based on an n-gram language model are generally

estimated from a monolingual corpus of target language text. Since only target language text is
necessary (without any additional annotation), language modeling has been well served by large-
data approaches that take advantage of the vast quantities of text available on the web.

To translate an input sentence f, the phrase-based decoder creates a matrix of all translation
possibilities of all substrings in the input string, as an example illustrates in Figure 6.11. A sequence
of phrase pairs is selected such that each word in f is translated exactly once.13 The decoder seeks
to find the translation that maximizes the product of the translation probabilities of the phrases
used and the language model probability of the resulting string in the target language. Because the
phrase translation probabilities are independent of each other and the Markov assumption made
in the language model, this may be done efficiently using dynamic programming. For a detailed
introduction to phrase-based decoding, we refer the reader to a recent textbook by Koehn [85].

6.4.2 BRIEF DIGRESSION: LANGUAGE MODELING WITH MAPREDUCE
Statistical machine translation provides the context for a brief digression on distributed parameter
estimation for language models using MapReduce, and provides another example illustrating the
effectiveness of data-driven approaches in general. We briefly touched upon this work in Chapter 1.
Even after making the Markov assumption, training n-gram language models still requires estimating
an enormous number of parameters:potentially V n,whereV is the number of words in the vocabulary.
For higher-order models (e.g., 5-grams) used in real-world applications, the number of parameters
can easily exceed the number of words from which to estimate those parameters. In fact,most n-grams
will never be observed in a corpus, no matter how large. To cope with this sparseness, researchers
have developed a number of smoothing techniques [102], which all share the basic idea of moving
probability mass from observed to unseen events in a principled manner. For many applications, a
state-of-the-art approach is known as Kneser-Ney smoothing [35].

In 2007, Brants et al. [25] reported experimental results that answered an interesting question:
given the availability of large corpora (i.e., the web), could a simpler smoothing strategy, applied to
more text, beat Kneser-Ney in a machine translation task? It should come as no surprise that the
answer is yes. Brants et al. introduced a technique known as “stupid backoff ” that was exceedingly
simple and so naïve that the resulting model didn’t even define a valid probability distribution (it

13The phrases may not necessarily be selected in a strict left-to-right order. Being able to vary the order of the phrases used is
necessary since languages may express the same ideas using different word orders.

134 6. EM ALGORITHMS FOR TEXT PROCESSING

assigned arbitrary scores as opposed to probabilities).The simplicity, however, afforded an extremely
scalable implementations in MapReduce. With smaller corpora, stupid backoff didn’t work as well as
Kneser-Ney in generating accurate and fluent translations. However, as the amount of data increased,
the gap between stupid backoff and Kneser-Ney narrowed,and eventually disappeared with sufficient
data. Furthermore, with stupid backoff it was possible to train a language model on more data than
was feasible with Kneser-Ney smoothing. Applying this language model to a machine translation
task yielded better results than a (smaller) language model trained with Kneser-Ney smoothing.

The role of the language model in statistical machine translation is to select fluent,grammatical
translations from a large hypothesis space: the more training data a language model has access to, the
better its description of relevant language phenomena and hence its ability to select good translations.
Once again, large data triumphs! For more information about estimating language models using
MapReduce, we refer the reader to a forthcoming book from Morgan & Claypool [26].

6.4.3 WORD ALIGNMENT
Word alignments, which are necessary for building phrase-based translation models (as well as many
other more sophisticated translation models), can be learned automatically using EM. In this section,
we introduce a popular alignment model based on HMMs.

In the statistical model of word alignment considered here, the observable variables are the
words in the source and target sentences (conventionally written using the variables f and e, respec-
tively), and their alignment is the latent variable. To make this model tractable, it is assumed that
words are translated independently of one another, which means that the model’s parameters include
the probability of any word in the source language translating to any word in the target language.
While this independence assumption is problematic in many ways, it results in a simple model
structure that admits efficient inference yet produces reasonable alignments. Alignment models that
make this assumption generate a string e in the target language by selecting words in the source
language according to a lexical translation distribution.The indices of the words in f used to generate
each word in e are stored in an alignment variable, a.14 This means that the variable ai indicates the
source word position of the ith target word generated, and |a| = |e|. Using these assumptions, the
probability of an alignment and translation can be written as follows:

Pr(e, a|f) = Pr(a|f, e)︸ ︷︷ ︸
Alignment probability

×
|e|∏

i=1

Pr(ei |fai)

︸ ︷︷ ︸
Lexical probability

Since we have parallel corpora consisting of only 〈f, e〉 pairs, we can learn the parameters for this
model using EM and treating a as a latent variable.However, to combat data sparsity in the alignment

14In the original presentation of statistical lexical translation models, a special null word is added to the source sentences, which
permits words to be inserted ‘out of nowhere’. Since this does not change any of the important details of training, we omit it from
our presentation for simplicity.

6.4. CASE STUDY: WORD ALIGNMENT FOR STATISTICAL MACHINE TRANSLATION 135

probability, we must make some further simplifying assumptions. By letting the probability of an
alignment depend only on the position of the previous aligned word we capture a valuable insight
(namely, words that are nearby in the source language will tend to be nearby in the target language),
and our model acquires the structure of an HMM [150]:

Pr(e, a|f) =
|e|∏

i=1

Pr(ai |ai−1)

︸ ︷︷ ︸
Transition probability

×
|e|∏

i=1

Pr(ei |fai)

︸ ︷︷ ︸
Emission probability

This model can be trained using the forward-backward algorithm described in the previous section,
summing over all settings of a, and the best alignment for a sentence pair can be found using the
Viterbi algorithm.

To properly initialize this HMM, it is conventional to further simplify the alignment proba-
bility model, and use this simpler model to learn initial lexical translation (emission) parameters for
the HMM. The favored simplification is to assert that all alignments are uniformly probable:

Pr(e, a|f) = 1
|f||e| ×

|e|∏

i=1

Pr(ei |fai)

This model is known as IBM Model 1. It is attractive for initialization because it is convex everywhere,
and therefore EM will learn the same solution regardless of initialization. Finally, while the forward-
backward algorithm could be used to compute the expected counts necessary for training this model
by setting Aq(r) to be a constant value for all q and r , the uniformity assumption means that the
expected emission counts can be estimated in time O(|e| · |f|), rather than time O(|e| · |f|2) required
by the forward-backward algorithm.

6.4.4 EXPERIMENTS
How well does a MapReduce word aligner for statistical machine translation perform? We describe
previously published results [54] that compared a Java-based Hadoop implementation against a
highly optimized word aligner called Giza++ [112], which was written in C++ and designed to run
efficiently on a single core. We compared the training time of Giza++ and our aligner on a Hadoop
cluster with 19 slave nodes, each with two single-core processors and two disks (38 cores total).

Figure 6.12 shows the performance of Giza++ in terms of the running time of a single EM
iteration for both Model 1 and the HMM alignment model as a function of the number of training
pairs.Both axes in the figure are on a log scale, but the ticks on they-axis are aligned with ‘meaningful’
time intervals rather than exact orders of magnitude.There are three things to note.First, the running
time scales linearly with the size of the training data. Second, the HMM is a constant factor slower
than Model 1. Third, the alignment process is quite slow as the size of the training data grows—

136 6. EM ALGORITHMS FOR TEXT PROCESSING

at one million sentences, a single iteration takes over three hours to complete! Five iterations are
generally necessary to train the models, which means that full training takes the better part of a day.

In Figure 6.13 we plot the running time of our MapReduce implementation running on the
38-core cluster described above. For reference, we plot points indicating what 1/38 of the running
time of the Giza++ iterations would be at each data size, which gives a rough indication of what an
‘ideal’ parallelization could achieve, assuming that there was no overhead associated with distributing
computation across these machines.Three things may be observed in the results. First, as the amount
of data increases, the relative cost of the overhead associated with distributing data, marshaling and
aggregating counts, decreases. At one million sentence pairs of training data, the HMM alignment
iterations begin to approach optimal runtime efficiency. Second, Model 1, which we observe is
light on computation, does not approach the theoretical performance of an ideal parallelization,
and in fact, has almost the same running time as the HMM alignment algorithm. We conclude
that the overhead associated with distributing and aggregating data is significant compared to the
Model 1 computations, although a comparison with Figure 6.12 indicates that the MapReduce
implementation is still substantially faster than the single core implementation, at least once a
certain training data size is reached. Finally, we note that, in comparison to the running times of
the single-core implementation, at large data sizes, there is a significant advantage to using the
distributed implementation, even of Model 1.

Although these results do confound several variables (Java vs.C++ performance,memory usage
patterns), it is reasonable to expect that the confounds would tend to make the single-core system’s
performance appear relatively better than the MapReduce system (which is, of course, the opposite
pattern from what we actually observe). Furthermore, these results show that when computation is
distributed over a cluster of many machines, even an unsophisticated implementation of the HMM
aligner could compete favorably with a highly optimized single-core system whose performance is
well-known to many people in the MT research community.

Why are these results important? Perhaps the most significant reason is that the quantity of
parallel data that is available to train statistical machine translation models is ever increasing, and as is
the case with so many problems we have encountered, more data lead to improvements in translation
quality [54]. Recently, a corpus of one billion words of French-English data was mined automatically
from the web and released publicly [33].15 Single-core solutions to model construction simply
cannot keep pace with the amount of translated data that is constantly being produced. Fortunately,
several independent researchers have shown that existing modeling algorithms can be expressed
naturally and effectively using MapReduce, which means that we can take advantage of this data.
Furthermore, the results presented here show that even at data sizes that may be tractable on single
machines, significant performance improvements are attainable using MapReduce implementations.
This improvement reduces experimental turnaround times, which allows researchers to more quickly
explore the solution space—which will, we hope, lead to rapid new developments in statistical
machine translation.

15http://www.statmt.org/wmt10/translation-task.html

http://www.statmt.org/wmt10/translation-task.html

6.4. CASE STUDY: WORD ALIGNMENT FOR STATISTICAL MACHINE TRANSLATION 137

3 s

10 s

30 s

90 s

5 min

20 min

60 min

3 hrs

 10000 100000 1e+06

A
ve

ra
ge

 it
er

at
io

n
la

te
nc

y
(s

ec
on

ds
)

Corpus size (sentences)

Model 1
HMM

Figure 6.12: Running times of Giza++ (baseline single-core system) for Model 1 and HMM training
iterations at various corpus sizes.

3 s

10 s

30 s

90 s

5 min

20 min

60 min

3 hrs

 10000 100000 1e+06

Ti
m

e
(s

ec
on

ds
)

Corpus size (sentences)

Optimal Model 1 (Giza/38)
Optimal HMM (Giza/38)

MapReduce Model 1 (38 M/R)
MapReduce HMM (38 M/R)

Figure 6.13: Running times of our MapReduce implementation of Model 1 and HMM training itera-
tions at various corpus sizes. For reference, 1/38 running times of the Giza++ models are shown.

138 6. EM ALGORITHMS FOR TEXT PROCESSING

For the reader interested in statistical machine translation, there is an open source Hadoop-
based MapReduce implementation of a training pipeline for phrase-based translation that includes
word alignment, phrase extraction, and phrase scoring [56].

6.5 EM-LIKE ALGORITHMS

This chapter has focused on expectation maximization algorithms and their implementation in the
MapReduce programming framework. These important algorithms are indispensable for learning
models with latent structure from unannotated data, and they can be implemented quite naturally
in MapReduce. We now explore some related learning algorithms that are similar to EM but can be
used to solve more general problems, and discuss their implementation.

In this section we focus on gradient-based optimization, which refers to a class of techniques
used to optimize any objective function, provided it is differentiable with respect to the parameters
being optimized. Gradient-based optimization is particularly useful in the learning of maximum
entropy (maxent) models [110] and conditional random fields (CRF) [87] that have an exponential
form and are trained to maximize conditional likelihood. In addition to being widely used supervised
classification models in text processing (meaning that during training, both the data and their
annotations must be observable), their gradients take the form of expectations. As a result, some of
the previously introduced techniques are also applicable for optimizing these models.

6.5.1 GRADIENT-BASED OPTIMIZATION AND LOG-LINEAR MODELS
Gradient-based optimization refers to a class of iterative optimization algorithms that use the deriva-
tives of a function to find the parameters that yield a minimal or maximal value of that function.
Obviously, these algorithms are only applicable in cases where a useful objective exists, is differen-
tiable, and its derivatives can be efficiently evaluated. Fortunately, this is the case for many important
problems of interest in text processing. For the purposes of this discussion, we will give examples in
terms of minimizing functions.

Assume that we have some real-valued function F(θ) where θ is a k-dimensional vector and
that F is differentiable with respect to θ . Its gradient is defined as:

∇F(θ) =
〈
∂F

∂θ1
(θ),

∂F

∂θ2
(θ), . . . ,

∂F

∂θk
(θ)

〉

The gradient has two crucial properties that are exploited in gradient-based optimization. First, the
gradient ∇F is a vector field that points in the direction of the greatest increase of F and whose
magnitude indicates the rate of increase. Second, if θ∗ is a (local) minimum of F, then the following
is true:

∇F(θ∗) = 0

6.5. EM-LIKE ALGORITHMS 139

An extremely simple gradient-based minimization algorithm produces a series of parameter
estimates θ(1), θ (2), . . . by starting with some initial parameter settings θ(1) and updating parameters
through successive iterations according to the following rule:

θ(i+1) = θ(i) − η(i)∇F(θ(i)) (6.12)

The parameter η(i) > 0 is a learning rate which indicates how quickly the algorithm moves along
the gradient during iteration i. Provided this value is small enough that F decreases, this strategy
will find a local minimum of F . However, while simple, this update strategy may converge slowly,
and proper selection of η is non-trivial. More sophisticated algorithms perform updates that are
informed by approximations of the second derivative, which are estimated by successive evaluations
of ∇F(θ), and can converge much more rapidly [96].

Gradient-based optimization in MapReduce. Gradient-based optimization algorithms can of-
ten be implemented effectively in MapReduce. Like EM, where the structure of the model deter-
mines the specifics of the realization, the details of the function being optimized determines how
it should best be implemented, and not every function optimization problem will be a good fit for
MapReduce. Nevertheless, MapReduce implementations of gradient-based optimization tend to
have the following characteristics:

• Each optimization iteration is one MapReduce job.

• The objective should decompose linearly across training instances. This implies that the gra-
dient also decomposes linearly, and therefore mappers can process input data in parallel. The
values they emit are pairs 〈F(θ),∇F(θ)〉, which are linear components of the objective and
gradient.

• Evaluations of the function and its gradient are often computationally expensive because they
require processing lots of data. This make parallelization with MapReduce worthwhile.

• Whether more than one reducer can run in parallel depends on the specific optimization
algorithm being used. Some, like the trivial algorithm of Equation 6.12 treat the dimensions
of θ independently, whereas many are sensitive to global properties of ∇F(θ). In the latter
case, parallelization across multiple reducers is non-trivial.

• Reducer(s) sum the component objective/gradient pairs, compute the total objective and gra-
dient, run the optimization algorithm, and emit θ(i+1).

• Many optimization algorithms are stateful and must persist their state between optimization
iterations. This may either be emitted together with θ(i+1) or written to the distributed file
system as a side effect of the reducer. Such external side effects must be handled carefully; refer
to Section 2.2 for a discussion.

140 6. EM ALGORITHMS FOR TEXT PROCESSING

Parameter learning for log-linear models. Gradient-based optimization techniques can be quite
effectively used to learn the parameters of probabilistic models with a log-linear parameterization
[100]. While a comprehensive introduction to these models is beyond the scope of this book, such
models are used extensively in text processing applications, and their training using gradient-based
optimization, which may otherwise be computationally expensive, can be implemented effectively
using MapReduce. We therefore include a brief summary.

Log-linear models are particularly useful for supervised learning (unlike the unsupervised
models learned with EM), where an annotation y ∈ Y is available for every x ∈ X in the training
data. In this case, it is possible to directly model the conditional distribution of label given input:

Pr(y|x; θ) = exp
∑

i θi · Hi(x, y)∑
y′ exp

∑
i θi · Hi(x, y′)

In this expression, Hi are real-valued functions sensitive to features of the input and labeling. The
parameters of the model is selected so as to minimize the negative conditional log likelihood of a
set of training instances 〈〈x, y〉1, 〈x, y〉2, . . .〉, which we assume to be i.i.d.:

F(θ) =
∑

〈x,y〉
− log Pr(y|x; θ) (6.13)

θ∗ = arg min
θ

F (θ) (6.14)

As Equation 6.13 makes clear, the objective decomposes linearly across training instances, meaning
it can be optimized quite well in MapReduce. The gradient derivative of F with respect to θi can
be shown to have the following form [141]:16

∂F

∂θi
(θ) =

∑

〈x,y〉

[
Hi(x, y)− EPr(y′|x;θ)[Hi(x, y′)]

]

The expectation in the second part of the gradient’s expression can be computed using a variety
of techniques. However, as we saw with EM, when very large event spaces are being modeled, as
is the case with sequence labeling, enumerating all possible values y can become computationally
intractable. And, as was the case with HMMs, independence assumptions can be used to enable
efficient computation using dynamic programming. In fact, the forward-backward algorithm intro-
duced in Section 6.2.4 can, with only minimal modification, be used to compute the expectation
EPr(y′|x;θ)[Hi(x, y′)] needed in CRF sequence models, as long as the feature functions respect the
same Markov assumption that is made in HMMs. For more information about inference in CRFs
using the forward-backward algorithm, we refer the reader to Sha et al. [140].

As we saw in the previous section, MapReduce offers significant speedups when training
iterations require running the forward-backward algorithm. The same pattern of results holds when
training linear CRFs.

16This assumes that when 〈x, y〉 is present the model is fully observed (i.e., there are no additional latent variables).

6.6. SUMMARY AND ADDITIONAL READINGS 141

6.6 SUMMARY AND ADDITIONAL READINGS
This chapter focused on learning the parameters of statistical models from data, using expectation
maximization algorithms or gradient-based optimization techniques. We focused especially on EM
algorithms for three reasons. First, these algorithms can be expressed naturally in the MapReduce
programming model, making them a good example of how to express a commonly used algorithm in
this new framework. Second, many models, such as the widely used hidden Markov model (HMM)
trained using EM, make independence assumptions that permit an high degree of parallelism in both
the E- and M-steps. Thus, they are particularly well positioned to take advantage of large clusters.
Finally, EM algorithms are unsupervised learning algorithms, which means that they have access to
far more training data than comparable supervised approaches.This is quite important. In Chapter 1,
when we hailed large data as the “rising tide that lifts all boats” to yield more effective algorithms,
we were mostly referring to unsupervised approaches, given that the manual effort required to
generate annotated data remains a bottleneck in many supervised approaches. Data acquisition for
unsupervised algorithms is often as simple as crawling specific web sources, given the enormous
quantities of data available “for free”. This, combined with the ability of MapReduce to process
large datasets in parallel, provides researchers with an effective strategy for developing increasingly
effective applications.

Since EM algorithms are relatively computationally expensive, even for small amounts of
data, this led us to consider how related supervised learning models (which typically have much less
training data available), can also be implemented in MapReduce. The discussion demonstrates that
not only does MapReduce provide a means for coping with ever-increasing amounts of data, but it is
also useful for parallelizing expensive computations. Although MapReduce has been designed with
mostly data-intensive applications in mind, the ability to leverage clusters of commodity hardware
to parallelize computationally expensive algorithms is an important use case.

Additional Readings. Because of its ability to leverage large amounts of training data, machine
learning is an attractive problem for MapReduce and an area of active research. Chu et al. [37]
presented general formulations of a variety of machine learning problems, focusing on a normal
form for expressing a variety of machine learning algorithms in MapReduce. The Apache Mahout
project is an open-source implementation of these and other learning algorithms,17 and it is also
the subject of a forthcoming book [116]. Issues associated with a MapReduce implementation of
latent Dirichlet allocation (LDA), which is another important unsupervised learning technique, with
certain similarities to EM, have been explored by Wang et al. [151].

17http://lucene.apache.org/mahout/

143

C H A P T E R 7

Closing Remarks
The need to process enormous quantities of data has never been greater. Not only are terabyte-
and petabyte-scale datasets rapidly becoming commonplace, but there is consensus that great value
lies buried in them, waiting to be unlocked by the right computational tools. In the commercial
sphere, business intelligence—driven by the ability to gather data from a dizzying array of sources—
promises to help organizations better understand their customers and the marketplace, hopefully
leading to better business decisions and competitive advantages. For engineers building information
processing tools and applications, larger datasets lead to more effective algorithms for a wide range
of tasks, from machine translation to spam detection. In the natural and physical sciences, the ability
to analyze massive amounts of data may provide the key to unlocking the secrets of the cosmos or
the mysteries of life.

In the preceding chapters, we have shown how MapReduce can be exploited to solve a variety
of problems related to text processing at scales that would have been unthinkable a few years ago.
However,no tool—no matter how powerful or flexible—can be perfectly adapted to every task, so it is
only fair to discuss the limitations of the MapReduce programming model and survey alternatives.
Section 7.1 covers online learning algorithms and Monte Carlo simulations, which are examples of
algorithms that require maintaining global state. As we have seen, this is difficult to accomplish
in MapReduce. Section 7.2 discusses alternative programming models, and the book concludes in
Section 7.3.

7.1 LIMITATIONS OF MAPREDUCE

As we have seen throughout this book, solutions to many interesting problems in text processing
do not require global synchronization. As a result, they can be expressed naturally in MapReduce,
since map and reduce tasks run independently and in isolation. However, there are many examples
of algorithms that depend crucially on the existence of shared global state during processing, making
them difficult to implement in MapReduce (since the single opportunity for global synchronization
in MapReduce is the barrier between the map and reduce phases of processing).

The first example is online learning. Recall from Chapter 6 the concept of learning as the
setting of parameters in a statistical model. Both EM and the gradient-based learning algorithms
we described are instances of what are known as batch learning algorithms. This simply means that
the full “batch” of training data is processed before any updates to the model parameters are made.
On one hand, this is quite reasonable: updates are not made until the full evidence of the training
data has been weighed against the model. An earlier update would seem, in some sense, to be hasty.

144 7. CLOSING REMARKS

However, it is generally the case that more frequent updates can lead to more rapid convergence
of the model (in terms of number of training instances processed), even if those updates are made
by considering less data [24]. Thinking in terms of gradient optimization (see Section 6.5), online
learning algorithms can be understood as computing an approximation of the true gradient, using
only a few training instances. Although only an approximation, the gradient computed from a small
subset of training instances is often quite reasonable, and the aggregate behavior of multiple updates
tends to even out errors that are made. In the limit, updates can be made after every training instance.

Unfortunately, implementing online learning algorithms in MapReduce is problematic. The
model parameters in a learning algorithm can be viewed as shared global state, which must be
updated as the model is evaluated against training data. All processes performing the evaluation
(presumably the mappers) must have access to this state. In a batch learner, where updates occur
in one or more reducers (or, alternatively, in the driver code), synchronization of this resource is
enforced by the MapReduce framework. However, with online learning, these updates must occur
after processing smaller numbers of instances. This means that the framework must be altered to
support faster processing of smaller datasets, which goes against the design choices of most existing
MapReduce implementations. Since MapReduce was specifically optimized for batch operations
over large amounts of data, such a style of computation would likely result in inefficient use of
resources. In Hadoop, for example, map and reduce tasks have considerable startup costs. This is
acceptable because in most circumstances, this cost is amortized over the processing of many key-
value pairs. However, for small datasets, these high startup costs become intolerable. An alternative
is to abandon shared global state and run independent instances of the training algorithm in parallel
(on different portions of the data). A final solution is then arrived at by merging individual results.
Experiments, however, show that the merged solution is inferior to the output of running the training
algorithm on the entire dataset [52].

A related difficulty occurs when running what are called Monte Carlo simulations, which are
used to perform inference in probabilistic models where evaluating or representing the model exactly
is impossible. The basic idea is quite simple: samples are drawn from the random variables in the
model to simulate its behavior, and then simple frequency statistics are computed over the samples.
This sort of inference is particularly useful when dealing with so-called nonparametric models, which
are models whose structure is not specified in advance, but is rather inferred from training data.
For an illustration, imagine learning a hidden Markov model, but inferring the number of states,
rather than having them specified. Being able to parallelize Monte Carlo simulations would be
tremendously valuable, particularly for unsupervised learning applications where they have been
found to be far more effective than EM-based learning (which requires specifying the model).
Although recent work [10] has shown that the delays in synchronizing sample statistics due to
parallel implementations do not necessarily damage the inference, MapReduce offers no natural
mechanism for managing the global shared state that would be required for such an implementation.

The problem of global state is sufficiently pervasive that there has been substantial work on
solutions. One approach is to build a distributed datastore capable of maintaining the global state.

7.2. ALTERNATIVE COMPUTING PARADIGMS 145

However, such a system would need to be highly scalable to be used in conjunction with MapReduce.
Google’s Bigtable [34], which is a sparse, distributed, persistent multidimensional sorted map built
on top of GFS, fits the bill, and has been used in exactly this manner. Amazon’s Dynamo [48], which
is a distributed key-value store (with a very different architecture), might also be useful in this respect,
although it wasn’t originally designed with such an application in mind. Unfortunately, it is unclear
if the open-source implementations of these two systems (HBase and Cassandra, respectively) are
sufficiently mature to handle the low-latency and high-throughput demands of maintaining global
state in the context of massively distributed processing (but recent benchmarks are encouraging [40]).

7.2 ALTERNATIVE COMPUTING PARADIGMS
Streaming algorithms [3] represent an alternative programming model for dealing with large volumes
of data with limited computational and storage resources.This model assumes that data are presented
to the algorithm as one or more streams of inputs that are processed in order, and only once.The model
is agnostic with respect to the source of these streams, which could be files in a distributed file system,
but more interestingly, data from an “external” source or some other data gathering device. Stream
processing is very attractive for working with time-series data (news feeds, tweets, sensor readings,
etc.), which is difficult in MapReduce (once again, given its batch-oriented design). Furthermore,
since streaming algorithms are comparatively simple (because there is only so much that can be
done with a particular training instance), they can often take advantage of modern GPUs, which
have a large number of (relatively simple) functional units [104]. In the context of text processing,
streaming algorithms have been applied to language modeling [90], translation modeling [89], and
detecting the first mention of news event in a stream [121].

The idea of stream processing has been generalized in the Dryad framework as arbitrary
dataflow graphs [75; 159]. A Dryad job is a directed acyclic graph where each vertex represents
developer-specified computations and edges represent data channels that capture dependencies.The
dataflow graph is a logical computation graph that is automatically mapped onto physical resources
by the framework. At runtime, channels are used to transport partial results between vertices, and
can be realized using files, TCP pipes, or shared memory.

Another system worth mentioning is Pregel [98], which implements a programming model
inspired by Valiant’s Bulk Synchronous Parallel (BSP) model [148]. Pregel was specifically designed
for large-scale graph algorithms, but unfortunately there are few published details at present. How-
ever, a longer description is anticipated in a forthcoming paper [99].

What is the significance of these developments? The power of MapReduce derives from
providing an abstraction that allows developers to harness the power of large clusters. As anyone
who has taken an introductory computer science course would know,abstractions manage complexity
by hiding details and presenting well-defined behaviors to users of those abstractions. This process
makes certain tasks easier, but others more difficult, if not impossible. MapReduce is certainly no
exception to this generalization, and one of the goals of this book has been to give the reader a
better understanding of what’s easy to do in MapReduce and what its limitations are. But of course,

146 7. CLOSING REMARKS

this begs the obvious question: What other abstractions are available in the massively distributed
datacenter environment? Are there more appropriate computational models that would allow us to
tackle classes of problems that are difficult for MapReduce?

Dryad and Pregel are alternative answers to these questions. They share in providing an ab-
straction for large-scale distributed computations, separating the what from the how of computation
and isolating the developer from the details of concurrent programming.They differ, however, in how
distributed computations are conceptualized: functional-style programming, arbitrary dataflows, or
BSP. These conceptions represent different trade offs between simplicity and expressivity: for exam-
ple, Dryad is more flexible than MapReduce, and in fact, MapReduce can be trivially implemented
in Dryad. However, it remains unclear, at least at present, which approach is more appropriate for
different classes of applications. Looking forward, we can certainly expect the development of new
models and a better understanding of existing ones. MapReduce is not the end, and perhaps not
even the best. It is merely the first of many approaches to harness large-scaled distributed computing
resources.

Even within the Hadoop/MapReduce ecosystem, we have already observed the development
of alternative approaches for expressing distributed computations. For example, there is a proposal to
add a third merge phase after map and reduce to better support relational operations [36]. Pig [114],
which was inspired by Google’s Sawzall [122], can be described as a data analytics platform that
provides a lightweight scripting language for manipulating large datasets. Although Pig scripts (in a
language called Pig Latin) are ultimately converted into Hadoop jobs by Pig’s execution engine, con-
structs in the language allow developers to specify data transformations (filtering, joining, grouping,
etc.) at a much higher level.Similarly,Hive [68], another open-source project, provides an abstraction
on top of Hadoop that allows users to issue SQL queries against large relational datasets stored in
HDFS. Hive queries (in HiveQL) “compile down” to Hadoop jobs by the Hive query engine.There-
fore, the system provides a data analysis tool for users who are already comfortable with relational
databases, while simultaneously taking advantage of Hadoop’s data processing capabilities.

7.3 MAPREDUCE AND BEYOND

The capabilities necessary to tackle large-data problems are already within reach by many and will
continue to become more accessible over time. By scaling “out” with commodity servers, we have
been able to economically bring large clusters of machines to bear on problems of interest. But
this has only been possible with corresponding innovations in software and how computations are
organized on a massive scale. Important ideas include: moving processing to the data, as opposed to
the other way around; also, emphasizing throughput over latency for batch tasks by sequential scans
through data, avoiding random seeks. Most important of all, however, is the development of new
abstractions that hide system-level details from the application developer. These abstractions are
at the level of entire datacenters, and provide a model using which programmers can reason about
computations at a massive scale without being distracted by fine-grained concurrency management,

7.3. MAPREDUCE AND BEYOND 147

fault tolerance, error recovery, and a host of other issues in distributed computing. This, in turn,
paves the way for innovations in scalable algorithms that can run on petabyte-scale datasets.

None of these points are new or particularly earth shattering—computer scientists have known
about these principles for decades. However, MapReduce is unique in that, for the first time, all these
ideas came together and were demonstrated on practical problems at scales unseen before, both in
terms of computational resources and the impact on the daily lives of millions. The engineers at
Google deserve a tremendous amount of credit for that, and also for sharing their insights with
the rest of the world. Furthermore, the engineers and executives at Yahoo deserve a lot of credit
for starting the open-source Hadoop project, which has made MapReduce accessible to everyone
and created the vibrant software ecosystem that flourishes today. Add to that the advent of utility
computing, which eliminates capital investments associated with cluster infrastructure, large-data
processing capabilities are now available “to the masses” with a relatively low barrier to entry.

The golden age of massively distributed computing is finally upon us.

149

Bibliography

[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and Alexander
Rasin. HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for
analytical workloads. In Proceedings of the 35th International Conference on Very Large Data
Base (VLDB 2009), pages 922–933, Lyon, France, 2009. 59

[2] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews
of Modern Physics, 74:47–97, 2002. DOI: 10.1103/RevModPhys.74.47 92

[3] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the 28th Annual ACM Symposium onTheory of Computing
(STOC ’96), pages 20–29, Philadelphia, Pennsylvania, 1996. DOI: 10.1145/237814.237823
145

[4] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Hellerstein, and
Russell C. Sears. BOOM: Data-centric programming in the datacenter. Technical Report
UCB/EECS-2009-98, Electrical Engineering and Computer Sciences, University of Cali-
fornia at Berkeley, 2009. 32

[5] Gene Amdahl. Validity of the single processor approach to achieving large-scale computing
capabilities. In Proceedings of the AFIPS Spring Joint Computer Conference, pages 483–485,
1967. DOI: 10.1145/1465482.1465560 17

[6] Rajagopal Ananthanarayanan, Karan Gupta, Prashant Pandey, Himabindu Pucha, Prasenjit
Sarkar, Mansi Shah, and Renu Tewari. Cloud analytics: Do we really need to reinvent the
storage stack? In Proceedings of the 2009 Workshop on Hot Topics in Cloud Computing (HotCloud
09), San Diego, California, 2009. 29

[7] Thomas Anderson, Michael Dahlin, Jeanna Neefe, David Patterson, Drew Roselli, and Ran-
dolph Wang. Serverless network file systems. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP 1995), pages 109–126, Copper Mountain Resort, Col-
orado, 1995. DOI: 10.1145/224056.224066 29

[8] Vo Ngoc Anh and Alistair Moffat. Inverted index compression using word-aligned binary
codes. Information Retrieval, 8(1):151–166, 2005.
DOI: 10.1023/B:INRT.0000048490.99518.5c 76

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1145/237814.237823
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/224056.224066
http://dx.doi.org/10.1023/B:INRT.0000048490.99518.5c

150 7. CLOSING REMARKS

[9] Michael Armbrust,Armando Fox,Rean Griffith,Anthony D.Joseph,Randy H.Katz,Andrew
Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.
Above the clouds: A Berkeley view of cloud computing. Technical Report UCB/EECS-2009-
28, Electrical Engineering and Computer Sciences, University of California at Berkeley, 2009.
6

[10] Arthur Asuncion, Padhraic Smyth, and Max Welling. Asynchronous distributed learning of
topic models. In Advances in Neural Information Processing Systems 21 (NIPS 2008), pages
81–88, Vancouver, British Columbia, Canada, 2008. 144

[11] Ricardo Baeza-Yates, Carlos Castillo, Flavio Junqueira, Vassilis Plachouras, and Fabrizio
Silvestri. Challenges on distributed web retrieval. In Proceedings of the IEEE 23rd Inter-
national Conference on Data Engineering (ICDE 2007), pages 6–20, Istanbul, Turkey, 2007.
DOI: 10.1109/ICDE.2007.367846 83

[12] Ricardo Baeza-Yates, Carlos Castillo, and Vicente López. PageRank increase under dif-
ferent collusion topologies. In Proceedings of the First International Workshop on Adversarial
Information Retrieval on the Web (AIRWeb 2005), pages 17–24, Chiba, Japan, 2005. 96

[13] Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdock, Vassilis Pla-
chouras, and Fabrizio Silvestri. The impact of caching on search engines. In Proceedings
of the 30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2007), pages 183–190, Amsterdam, The Netherlands, 2007.
DOI: 10.1145/1277741.1277775 82

[14] Michele Banko and Eric Brill. Scaling to very very large corpora for natural language disam-
biguation. In Proceedings of the 39th Annual Meeting of the Association for Computational Lin-
guistics (ACL 2001), pages 26–33, Toulouse, France, 2001. DOI: 10.3115/1073012.1073017
4

[15] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP 2003), pages 164–177, Bolton
Landing, New York, 2003. DOI: 10.1145/945445.945462 6

[16] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a planet: The Google
cluster architecture. IEEE Micro, 23(2):22–28, 2003. DOI: 10.1109/MM.2003.1196112 82

[17] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing. Computer,
40(12):33–37, 2007. DOI: 10.1109/MC.2007.443 9

[18] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines. Morgan & Claypool Publishers, 2009.
DOI: 10.2200/S00193ED1V01Y200905CAC006 8, 9, 10, 14

http://dx.doi.org/10.1109/ICDE.2007.367846
http://dx.doi.org/10.1145/1277741.1277775
http://dx.doi.org/10.3115/1073012.1073017
http://dx.doi.org/10.1145/945445.945462
http://dx.doi.org/10.1109/MM.2003.1196112
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006

7.3. MAPREDUCE AND BEYOND 151

[19] Jacek Becla, Andrew Hanushevsky, Sergei Nikolaev, Ghaleb Abdulla, Alex Szalay, Maria
Nieto-Santisteban, Ani Thakar, and Jim Gray. Designing a multi-petabyte database for
LSST. SLAC Publications SLAC-PUB-12292, Stanford Linear Accelerator Center, May
2006. 2

[20] Jacek Becla and Daniel L. Wang. Lessons learned from managing a petabyte. In Proceedings
of the Second Biennial Conference on Innovative Data Systems Research (CIDR 2005), Asilomar,
California, 2005. 2

[21] Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science, 323(5919):1297–
1298, 2009. 2

[22] Monica Bianchini, Marco Gori, and Franco Scarselli. Inside PageRank. ACM Transactions
on Internet Technology, 5(1):92–128, 2005. DOI: 10.1145/1052934.1052938 98, 100

[23] Jorge Luis Borges. Collected Fictions (translated by Andrew Hurley). Penguin, 1999. 5

[24] Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von Luxburg, editors,
Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 3176,
pages 146–168. Springer Verlag, Berlin, 2004. DOI: 10.1007/b100712 144

[25] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large language
models in machine translation. In Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, pages 858–867,
Prague, Czech Republic, 2007. 4, 5, 133

[26] Thorsten Brants and Peng Xu. Distributed Language Models. Morgan & Claypool Publishers,
2010. 134

[27] Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais, and Andrew Ng. Data-intensive
question answering. In Proceedings of the Tenth Text REtrieval Conference (TREC 2001),
pages 393–400, Gaithersburg, Maryland, 2001. 4

[28] Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition. Addison-Wesley, Reading, Massachusetts, 1995. 12

[29] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer.
The mathematics of statistical machine translation: Parameter estimation. Computational
Linguistics, 19(2):263–311, 1993. 130

[30] Stefan Büttcher, Charles L. A. Clarke, and Gordon V. Cormack. Information Retrieval:
Implementing and Evaluating Search Engines. MIT Press, Cambridge, Massachusetts, 2010.
78, 83

http://dx.doi.org/10.1145/1052934.1052938
http://dx.doi.org/10.1007/b100712

152 7. CLOSING REMARKS

[31] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.
Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation Computer Systems, 25(6):599–616, 2009.
DOI: 10.1016/j.future.2008.12.001 6

[32] Luis-Felipe Cabrera and Darrell D. E. Long. Swift: Using distributed disk striping to provide
high I/O data rates. Computer Systems, 4(4):405–436, 1991. 29

[33] Chris Callison-Burch, Philipp Koehn, Christof Monz, and Josh Schroeder. Findings of the
2009 workshop on statistical machine translation. In Proceedings of the Fourth Workshop on
Statistical Machine Translation (StatMT ’09), pages 1–28, Athens, Greece, 2009. 136

[34] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael
Burrows,Tushar Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A distributed storage
system for structured data. In Proceedings of the 7th Symposium on Operating System Design
and Implementation (OSDI 2006), pages 205–218, Seattle, Washington, 2006. 24, 145

[35] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th Annual Meeting of the Association
for Computational Linguistics (ACL 1996), pages 310–318, Santa Cruz, California, 1996.
DOI: 10.3115/981863.981904 5, 133

[36] Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-Reduce-Merge:
Simplified relational data processing on large clusters. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, pages 1029–1040, Beijing, China,
2007. DOI: 10.1145/1247480.1247602 146

[37] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Ng, and
Kunle Olukotun. Map-Reduce for machine learning on multicore. In Advances in Neural
Information Processing Systems 19 (NIPS 2006), pages 281–288, Vancouver, British Columbia,
Canada, 2006. 141

[38] Kenneth W. Church and Patrick Hanks. Word association norms, mutual information, and
lexicography. Computational Linguistics, 16(1):22–29, 1990. 48

[39] Jonathan Cohen. Graph twiddling in a MapReduce world. Computing in Science and Engi-
neering, 11(4):29–41, 2009. DOI: 10.1109/MCSE.2009.120 103

[40] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the First ACM Symposium
on Cloud Computing (ACM SOCC 2010), Indianapolis, Indiana, 2010. 145

[41] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, Massachusetts, 1990. 88

http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.3115/981863.981904
http://dx.doi.org/10.1145/1247480.1247602
http://dx.doi.org/10.1109/MCSE.2009.120

7.3. MAPREDUCE AND BEYOND 153

[42] W. Bruce Croft, Donald Meztler, and Trevor Strohman. Search Engines: Information Retrieval
in Practice. Addison-Wesley, Reading, Massachusetts, 2009. 83

[43] David Culler,Richard Karp,David Patterson,Abhijit Sahay,Klaus Erik Schauser,Eunice San-
tos, Ramesh Subramonian, and Thorsten von Eicken. LogP:Towards a realistic model of par-
allel computation. ACM SIGPLAN Notices, 28(7):1–12, 1993. DOI: 10.1145/173284.155333
15

[44] Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A practical part-of-speech
tagger. In Proceedings of the Third Conference on Applied Natural Language Processing, pages
133–140, Trento, Italy, 1992. DOI: 10.3115/974499.974523 114

[45] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters.
In Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI
2004), pages 137–150, San Francisco, California, 2004. 1, 24, 25

[46] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008. DOI: 10.1145/1327452.1327492 2

[47] Jeffrey Dean and Sanjay Ghemawat. MapReduce: A flexible data processing tool. Commu-
nications of the ACM, 53(1):72–77, 2010. DOI: 10.1145/1629175.1629198 59

[48] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swami Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-
namo: Amazon’s highly available key-value store. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles (SOSP 2007), pages 205–220, Stevenson, Washington, 2007.
145

[49] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38, 1977. 108

[50] David J. DeWitt and Jim Gray. Parallel database systems: The future of high
performance database systems. Communications of the ACM, 35(6):85–98, 1992.
DOI: 10.1145/129888.129894 12

[51] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael R. Stonebraker,
and David Wood. Implementation techniques for main memory database systems. ACM
SIGMOD Record, 14(2):1–8, 1984. DOI: 10.1145/971697.602261 63

[52] Mark Dredze, Alex Kulesza, and Koby Crammer. Multi-domain learning by
confidence-weighted parameter combination. Machine Learning, 79:123–149, 2010.
DOI: 10.1007/s10994-009-5148-0 144

http://dx.doi.org/10.1145/173284.155333
http://dx.doi.org/10.3115/974499.974523
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1629175.1629198
http://dx.doi.org/10.1145/129888.129894
http://dx.doi.org/10.1145/971697.602261
http://dx.doi.org/10.1007/s10994-009-5148-0

154 7. CLOSING REMARKS

[53] Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin, and Andrew Ng. Web question
answering: Is more always better? In Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2002), pages 291–
298, Tampere, Finland, 2002. DOI: 10.1145/564376.564428 4

[54] Chris Dyer, Aaron Cordova, Alex Mont, and Jimmy Lin. Fast, easy, and cheap: Construction
of statistical machine translation models with MapReduce. In Proceedings of theThird Workshop
on Statistical Machine Translation at ACL 2008, pages 199–207, Columbus, Ohio, 2008. 47,
135, 136

[55] John R. Firth. A synopsis of linguistic theory 1930–55. In Studies in Linguistic Analysis,
Special Volume of the Philological Society, pages 1–32. Blackwell, Oxford, 1957. 48

[56] Qin Gao and Stephan Vogel. Training phrase-based machine translation models on the
cloud: Open source machine translation toolkit Chaski. The Prague Bulletin of Mathematical
Linguistics, 93:37–46, 2010. DOI: 10.2478/v10108-010-0004-8 138

[57] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP 2003), pages
29–43, Bolton Landing, New York, 2003. DOI: 10.1145/945445.945450 29

[58] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the feasibility of consis-
tent, available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59, 2002.
DOI: 10.1145/564585.564601 32

[59] Michelle Girvan and Mark E. J. Newman. Community structure in social and biolog-
ical networks. Proceedings of the National Academy of Science, 99(12):7821–7826, 2002.
DOI: 10.1073/pnas.122653799 85

[60] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to Parallel
Computing. Addison-Wesley, Reading, Massachusetts, 2003. 14, 103

[61] Mark S. Granovetter. The strength of weak ties. The American Journal of Sociology, 78(6):1360–
1380, 1973. DOI: 10.1086/225469 92

[62] Mark S. Granovetter. The strength of weak ties: A network theory revisited. Sociological
Theory, 1:201–233, 1983. DOI: 10.2307/202051 92

[63] Zoltán Gyöngyi and Hector Garcia-Molina. Web spam taxonomy. In Proceedings of the First
International Workshop on Adversarial Information Retrieval on the Web (AIRWeb 2005), pages
39–47, Chiba, Japan, 2005. 96

[64] Per Hage and Frank Harary. Island Networks: Communication, Kinship, and Classification
Structures in Oceania. Cambridge University Press, Cambridge, England, 1996. 86

http://dx.doi.org/10.1145/564376.564428
http://dx.doi.org/10.2478/v10108-010-0004-8
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1086/225469
http://dx.doi.org/10.2307/202051

7.3. MAPREDUCE AND BEYOND 155

[65] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effectiveness of data.
Communications of the ACM, 24(2):8–12, 2009. DOI: 10.1109/MIS.2009.36 5

[66] James Hamilton. On designing and deploying Internet-scale services. In Proceedings of the
21st Large Installation System Administration Conference (LISA ’07), pages 233–244, Dallas,
Texas, 2007. 10

[67] James Hamilton. Cooperative Expendable Micro-Slice Servers (CEMS): Low cost, low
power servers for Internet-scale services. In Proceedings of the Fourth Biennial Conference on
Innovative Data Systems Research (CIDR 2009), Asilomar, California, 2009. 9, 10

[68] Jeff Hammerbacher. Information platforms and the rise of the data scientist. In Toby Segaran
and Jeff Hammerbacher,editors,Beautiful Data,pages 73–84.O’Reilly,Sebastopol,California,
2009. 6, 59, 146

[69] Zelig S. Harris. Mathematical Structures of Language. Wiley, New York, 1968. 48

[70] Md. Rafiul Hassan and Baikunth Nath. Stock market forecasting using hidden Markov
models: A new approach. In Proceedings of the 5th International Conference on Intelli-
gent Systems Design and Applications (ISDA ’05), pages 192–196, Wroclaw, Poland, 2005.
DOI: 10.1109/ISDA.2005.85 114

[71] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang. Mars:
A MapReduce framework on graphics processors. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques (PACT 2008), pages 260–269,
Toronto, Ontario, Canada, 2008. DOI: 10.1145/1454115.1454152 20

[72] Tony Hey, Stewart Tansley, and Kristin Tolle. The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research, Redmond, Washington, 2009. 3

[73] Tony Hey, Stewart Tansley, and Kristin Tolle. Jim Gray on eScience: A transformed scientific
method. In Tony Hey, Stewart Tansley, and Kristin Tolle, editors, The Fourth Paradigm:
Data-Intensive Scientific Discovery. Microsoft Research, Redmond, Washington, 2009. 3

[74] John Howard, Michael Kazar, Sherri Menees, David Nichols, Mahadev Satyanarayanan,
Robert Sidebotham, and Michael West. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems, 6(1):51–81, 1988. DOI: 10.1145/35037.35059 29

[75] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Dis-
tributed data-parallel programs from sequential building blocks. In Proceedings of the ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007 (EuroSys 2007), pages 59–72,
Lisbon, Portugal, 2007. DOI: 10.1145/1272998.1273005 145

[76] Adam Jacobs. The pathologies of big data. ACM Queue, 7(6), 2009.
DOI: 10.1145/1563821.1563874 11

http://dx.doi.org/10.1109/MIS.2009.36
http://dx.doi.org/10.1109/ISDA.2005.85
http://dx.doi.org/10.1145/1454115.1454152
http://dx.doi.org/10.1145/35037.35059
http://dx.doi.org/10.1145/1272998.1273005
http://dx.doi.org/10.1145/1563821.1563874

156 7. CLOSING REMARKS

[77] Joseph JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Massachusetts,
1992. 14, 103

[78] Frederick Jelinek. Statistical methods for speech recognition. MIT Press, Cambridge, Mas-
sachusetts, 1997. 112, 114, 120

[79] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Pearson, Upper Saddle
River, New Jersey, 2009. 5

[80] U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, and Jure Leskovec.
HADI: Fast diameter estimation and mining in massive graphs with Hadoop. Technical
Report CMU-ML-08-117, School of Computer Science, Carnegie Mellon University, 2008.
103

[81] U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS: A peta-scale
graph mining system—implementation and observations. In Proceedings of the 2009 Ninth
IEEE International Conference on Data Mining (ICDM 2009), pages 229–238, Miami, Floria,
2009. DOI: 10.1109/ICDM.2009.14 103

[82] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for Map-
Reduce. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2010), Austin, Texas, 2010. 15

[83] Aaron Kimball, Sierra Michels-Slettvet, and Christophe Bisciglia. Cluster computing
for Web-scale data processing. In Proceedings of the 39th ACM Technical Symposium
on Computer Science Education (SIGCSE 2008), pages 116–120, Portland, Oregon, 2008.
DOI: 10.1145/1352135.1352177 71

[84] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999. DOI: 10.1145/324133.324140 65, 95

[85] Philipp Koehn. Statistical Machine Translation. Cambridge University Press, Cambridge,
England, 2010. 130, 133

[86] Philipp Koehn, Franz J. Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of the 2003 Human Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics (HLT/NAACL 2003), pages 48–54, Edmonton,
Alberta, Canada, 2003. DOI: 10.3115/1073445.1073462 131

[87] John D.Lafferty,Andrew McCallum,and Fernando Pereira. Conditional random fields:Prob-
abilistic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML ’01), pages 282–289, San Francisco,
California, 2001. 138

http://dx.doi.org/10.1109/ICDM.2009.14
http://dx.doi.org/10.1145/1352135.1352177
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.3115/1073445.1073462

7.3. MAPREDUCE AND BEYOND 157

[88] Ronny Lempel and Shlomo Moran. SALSA: The Stochastic Approach for Link-
Structure Analysis. ACM Transactions on Information Systems, 19(2):131–160, 2001.
DOI: 10.1145/382979.383041 65, 95

[89] Abby Levenberg, Chris Callison-Burch, and Miles Osborne. Stream-based translation mod-
els for statistical machine translation. In Proceedings of the 11th Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL HLT 2010), Los
Angeles, California, 2010. 145

[90] Abby Levenberg and Miles Osborne. Stream-based randomised language models for SMT.
In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing,
pages 756–764, Singapore, 2009. 145

[91] Adam Leventhal. Triple-parity RAID and beyond. ACM Queue, 7(11), 2009.
DOI: 10.1145/1661785.1670144 2

[92] Jimmy Lin. An exploration of the principles underlying redundancy-based factoid
question answering. ACM Transactions on Information Systems, 27(2):1–55, 2007.
DOI: 10.1145/1229179.1229180 4

[93] Jimmy Lin. Exploring large-data issues in the curriculum: A case study with MapReduce. In
Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08)
at ACL 2008, pages 54–61, Columbus, Ohio, 2008. 71

[94] Jimmy Lin. Scalable language processing algorithms for the masses:A case study in computing
word co-occurrence matrices with MapReduce. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2008), pages 419–428, Honolulu,
Hawaii, 2008. 47, 51

[95] Jimmy Lin, Anand Bahety, Shravya Konda, and Samantha Mahindrakar. Low-latency, high-
throughput access to static global resources within the Hadoop framework. Technical Report
HCIL-2009-01, University of Maryland, College Park, Maryland, January 2009. 63

[96] Dong C. Liu, Jorge Nocedal, Dong C. Liu, and Jorge Nocedal. On the limited memory
BFGS method for large scale optimization. Mathematical Programming B, 45(3):503–528,
1989. DOI: 10.1007/BF01589116 139

[97] Adam Lopez. Statistical machine translation. ACM Computing Surveys, 40(3):1–49, 2008.
DOI: 10.1145/1380584.1380586 130

[98] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In
Proceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC 2009),
page 6, Calgary, Alberta, Canada, 2009. DOI: 10.1145/1583991.1584010 86, 145

http://dx.doi.org/10.1145/382979.383041
http://dx.doi.org/10.1145/1661785.1670144
http://dx.doi.org/10.1145/1229179.1229180
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1145/1380584.1380586
http://dx.doi.org/10.1145/1583991.1584010

158 7. CLOSING REMARKS

[99] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
Indianapolis, Indiana, 2010. DOI: 10.1145/1582716.1582723 86, 145

[100] Robert Malouf. A comparison of algorithms for maximum entropy parameter estimation.
In Proceedings of the Sixth Conference on Natural Language Learning (CoNLL-2002), pages
49–55, Taipei, Taiwan, 2002. DOI: 10.3115/1118853.1118871 140

[101] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. An Introduction to
Information Retrieval. Cambridge University Press, Cambridge, England, 2008. 42, 83

[102] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, Massachusetts, 1999. 5, 133

[103] Elaine R. Mardis. The impact of next-generation sequencing technology on genetics. Trends
in Genetics, 24(3):133–141, 2008. DOI: 10.1016/j.tig.2007.12.007 2

[104] Michael D. McCool. Scalable programming models for massively multicore processors.
Proceedings of the IEEE, 96(5):816–831, 2008. DOI: 10.1109/JPROC.2008.917731 13, 145

[105] Marshall K. McKusick and Sean Quinlan. GFS: Evolution on fast-forward. ACM Queue,
7(7), 2009. DOI: 10.1145/1594204.1594206 32

[106] John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving memory hierarchy
performance for irregular applications using data and computation reorderings. International
Journal of Parallel Programming, 29(3):217–247, 2001. DOI: 10.1023/A:1011119519789 101

[107] Donald Metzler, Jasmine Novak, Hang Cui, and Srihari Reddy. Building enriched document
representations using aggregated anchor text. In Proceedings of the 32nd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2009),
pages 219–226, 2009. DOI: 10.1145/1571941.1571981 68, 88

[108] David R. H. Miller,Tim Leek, and Richard M. Schwartz. A hidden Markov model informa-
tion retrieval system. In Proceedings of the 22nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 1999), pages 214–221, Berkeley,
California, 1999. DOI: 10.1145/312624.312680 114

[109] Alistair Moffat, William Webber, and Justin Zobel. Load balancing for term-distributed
parallel retrieval. In Proceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2006), pages 348–355, Seattle,
Washington, 2006. DOI: 10.1145/1148170.1148232 82

http://dx.doi.org/10.1145/1582716.1582723
http://dx.doi.org/10.3115/1118853.1118871
http://dx.doi.org/10.1016/j.tig.2007.12.007
http://dx.doi.org/10.1109/JPROC.2008.917731
http://dx.doi.org/10.1145/1594204.1594206
http://dx.doi.org/10.1023/A:1011119519789
http://dx.doi.org/10.1145/1571941.1571981
http://dx.doi.org/10.1145/312624.312680
http://dx.doi.org/10.1145/1148170.1148232

7.3. MAPREDUCE AND BEYOND 159

[110] Kamal Nigam, John Lafferty, and Andrew McCallum. Using maximum entropy for text
classification. In Proceedings of the IJCAI-99 Workshop on Machine Learning for Information
Filtering, pages 61–67, Stockholm, Sweden, 1999. 138

[111] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia
Youseff, and Dmitrii Zagorodnov. The Eucalyptus open-source cloud-computing system. In
Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
pages 124–131, Washington, D.C., 2009. DOI: 10.1109/CCGRID.2009.93 7

[112] Franz J. Och and Hermann Ney. A systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51, 2003. DOI: 10.1162/089120103321337421
135

[113] Christopher Olston and Marc Najork. Web crawling. Foundations and Trends in Information
Retrieval, 4(3):175–246, 2010. DOI: 10.1561/1500000017 67

[114] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins.
Pig Latin: A not-so-foreign language for data processing. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, pages 1099–1110, Vancouver,
British Columbia, Canada, 2008. DOI: 10.1145/1376616.1376726 59, 146

[115] Kunle Olukotun and Lance Hammond. The future of microprocessors. ACM Queue, 3(7):27–
34, 2005. DOI: 10.1145/1095408.1095418 13

[116] Sean Owen and Robin Anil. Mahout in Action. Manning Publications Co., Greenwich,
Connecticut, 2010. 141

[117] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation
ranking: Bringing order to the Web. Stanford Digital Library Working Paper SIDL-WP-
1999-0120, Stanford University, 1999. 65, 95, 100

[118] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and Trends
in Information Retrieval, 2(1–2):1–135, 2008. DOI: 10.1561/1500000011 3

[119] David A. Patterson. The data center is the computer. Communications of the ACM, 52(1):105,
2008. 14

[120] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel
Madden, and Michael Stonebraker. A comparison of approaches to large-scale data analysis.
In Proceedings of the 35th ACM SIGMOD International Conference on Management of Data,
pages 165–178, Providence, Rhode Island, 2009. DOI: 10.1145/1559845.1559865 59

[121] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Streaming first story detection with
application to Twitter. In Proceedings of the 11th Annual Conference of the North American

http://dx.doi.org/10.1109/CCGRID.2009.93
http://dx.doi.org/10.1162/089120103321337421
http://dx.doi.org/10.1561/1500000017
http://dx.doi.org/10.1145/1376616.1376726
http://dx.doi.org/10.1145/1095408.1095418
http://dx.doi.org/10.1561/1500000011
http://dx.doi.org/10.1145/1559845.1559865

160 7. CLOSING REMARKS

Chapter of the Association for Computational Linguistics (NAACL HLT 2010), Los Angeles,
California, 2010. 145

[122] Rob Pike,Sean Dorward,Robert Griesemer, and Sean Quinlan. Interpreting the data: Parallel
analysis with Sawzall. Scientific Programming Journal, 13(4):277–298, 2005. 146

[123] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure trends in a large
disk drive population. In Proceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST 2007), San Jose, California, 2008. 10, 26

[124] Xiaoguang Qi and Brian D. Davison. Web page classification: Features and algorithms. ACM
Computing Surveys, 41(2), 2009. DOI: 10.1145/1459352.1459357 82

[125] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. In Readings in Speech Recognition, pages 267–296. Morgan Kaufmann
Publishers, San Francisco, California, 1990. DOI: 10.1109/5.18626 115, 120

[126] M. Mustafa Rafique, Benjamin Rose, Ali R. Butt, and Dimitrios S. Nikolopoulos. Supporting
MapReduce on large-scale asymmetric multi-core clusters. ACM Operating Systems Review,
43(2):25–34, 2009. DOI: 10.1145/1531793.1531800 20

[127] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. Evaluating MapReduce for multi-core and multiprocessor systems. In Proceedings
of the 13th International Symposium on High-Performance Computer Architecture (HPCA 2007),
pages 205–218, Phoenix, Arizona, 2007. DOI: 10.1109/HPCA.2007.346181 20

[128] Delip Rao and David Yarowsky. Ranking and semi-supervised classification on large scale
graphs using Map-Reduce. In Proceedings of the ACL/IJCNLP 2009 Workshop on Graph-Based
Methods for Natural Language Processing (TextGraphs-4), Singapore, 2009. 103

[129] Michael A. Rappa. The utility business model and the future of computing services. IBM
Systems Journal, 34(1):32–42, 2004. DOI: 10.1147/sj.431.0032 6

[130] Sheldon M. Ross. Stochastic processes. Wiley, New York, 1996. 114

[131] Thomas Sandholm and Kevin Lai. MapReduce optimization using regulated dynamic pri-
oritization. In Proceedings of the Eleventh International Joint Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’09),pages 299–310,Seattle,Washington,2009.
DOI: 10.1145/1555349.1555384 25

[132] Michael Schatz. High Performance Computing for DNA Sequence Alignment and Assembly. PhD
thesis, University of Maryland, College Park, 2010. 103

[133] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large computing
clusters. In Proceedings of the First USENIX Conference on File and Storage Technologies, pages
231–244, Monterey, California, 2002. 29

http://dx.doi.org/10.1145/1459352.1459357
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1145/1531793.1531800
http://dx.doi.org/10.1109/HPCA.2007.346181
http://dx.doi.org/10.1147/sj.431.0032
http://dx.doi.org/10.1145/1555349.1555384

7.3. MAPREDUCE AND BEYOND 161

[134] Donovan A. Schneider and David J. DeWitt. A performance evaluation of four parallel join
algorithms in a shared-nothing multiprocessor environment. In Proceedings of the 1989 ACM
SIGMOD International Conference on Management of Data, pages 110–121, Portland, Oregon,
1989. DOI: 10.1145/67544.66937 60

[135] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors in the wild:
A large-scale field study. In Proceedings of the Eleventh International Joint Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’09), pages 193–204, Seattle,
Washington, 2009. DOI: 10.1145/1555349.1555372 10, 26

[136] Hinrich Schütze. Automatic word sense discrimination. Computational Linguistics, 24(1):97–
123, 1998. 48

[137] Hinrich Schütze and Jan O. Pedersen. A cooccurrence-based thesaurus and two applica-
tions to information retrieval. Information Processing and Management, 33(3):307–318, 1998.
DOI: 10.1016/S0306-4573(96)00068-4 48

[138] Satoshi Sekine and Elisabete Ranchhod. Named Entities: Recognition, Classification and Use.
John Benjamins, Amsterdam, The Netherlands, 2009. 3

[139] Kristie Seymore, Andrew Mccallum, and Ronald Rosenfeld. Learning hidden Markov model
structure for information extraction. In Proceedings of the AAAI-99 Workshop on Machine
Learning for Information Extraction, pages 37–42, Orlando, Florida, 1999. 114

[140] Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proceed-
ings of the 2003 Human Language Technology Conference of the North American Chapter of the
Association for Computational Linguistics (HLT/NAACL 2003), pages 134–141, Edmonton,
Alberta, Canada, 2003. DOI: 10.3115/1073445.1073473 140

[141] Noah Smith. Log-linear models. http://www.cs.cmu.edu/˜nasmith/papers/smith.
tut04.pdf, 2004. 140

[142] Christopher Southan and Graham Cameron. Beyond the tsunami: Developing the infras-
tructure to deal with life sciences data. In Tony Hey, Stewart Tansley, and Kristin Tolle,
editors, The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Red-
mond, Washington, 2009. 2

[143] Mario Stanke and Stephan Waack. Gene prediction with a hidden Markov model
and a new intron submodel. Bioinformatics, 19 Suppl 2:ii215–225, October 2003.
DOI: 10.1093/bioinformatics/btg1080 114

[144] Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik Paulson, Andrew
Pavlo, and Alexander Rasin. MapReduce and parallel DBMSs: Friends or foes? Communi-
cations of the ACM, 53(1):64–71, 2010. DOI: 10.1145/1629175.1629197 59

http://dx.doi.org/10.1145/67544.66937
http://dx.doi.org/10.1145/1555349.1555372
http://dx.doi.org/10.1016/S0306-4573(96)00068-4
http://dx.doi.org/10.3115/1073445.1073473
http://www.cs.cmu.edu/~nasmith/papers/smith.tut04.pdf
http://www.cs.cmu.edu/~nasmith/papers/smith.tut04.pdf
http://dx.doi.org/10.1093/bioinformatics/btg1080
http://dx.doi.org/10.1145/1629175.1629197

162 7. CLOSING REMARKS

[145] Alexander S. Szalay, Peter Z. Kunszt, Ani Thakar, Jim Gray, Don Slutz, and Robert J. Brunner.
Designing and mining multi-terabyte astronomy archives: The Sloan Digital Sky Survey.
SIGMOD Record, 29(2):451–462, 2000. DOI: 10.1145/335191.335439 2

[146] Wittawat Tantisiriroj, Swapnil Patil, and Garth Gibson. Data-intensive file systems for
Internet services: A rose by any other name…. Technical Report CMU-PDL-08-114,Parallel
Data Laboratory, Carnegie Mellon University, 2008. 29

[147] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A scalable
distributed file system. In Proceedings of the 16th ACM Symposium on Operating Systems Princi-
ples (SOSP 1997), pages 224–237, Saint-Malo, France, 1997. DOI: 10.1145/268998.266694
29

[148] Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990. DOI: 10.1145/79173.79181 13, 14, 15, 86, 145

[149] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in the
clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication Review,
39(1):50–55, 2009. DOI: 10.1145/1496091.1496100 6

[150] Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment
in statistical translation. In Proceedings of the 16th International Conference on Com-
putational Linguistics (COLING 1996), pages 836–841, Copenhagen, Denmark, 1996.
DOI: 10.3115/993268.993313 114, 135

[151] Yi Wang, Hongjie Bai, Matt Stanton,Wen-Yen Chen, and Edward Y. Chang. PLDA: Parallel
latent Dirichlet allocation for large-scale applications. In Proceedings of the Fifth International
Conference on Algorithmic Aspects in Information and Management (AAIM 2009), pages 301–
314, San Francisco, California, 2009. DOI: 10.1007/978-3-642-02158-9_26 141

[152] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998. DOI: 10.1038/30918 92

[153] Xingzhi Wen and Uzi Vishkin. FPGA-based prototype of a PRAM-On-Chip processor.
In Proceedings of the 5th Conference on Computing Frontiers, pages 55–66, Ischia, Italy, 2008.
DOI: 10.1145/1366230.1366240 14

[154] Tom White. Hadoop: The Definitive Guide. O’Reilly, Sebastopol, California, 2009. 15, 23

[155] Eugene Wigner. The unreasonable effectiveness of mathematics in the natu-
ral sciences. Communications in Pure and Applied Mathematics, 13(1):1–14, 1960.
DOI: 10.1002/cpa.3160130102 5

http://dx.doi.org/10.1145/335191.335439
http://dx.doi.org/10.1145/268998.266694
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1145/1496091.1496100
http://dx.doi.org/10.3115/993268.993313
http://dx.doi.org/10.1007/978-3-642-02158-9_26
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1145/1366230.1366240
http://dx.doi.org/10.1002/cpa.3160130102

7.3. MAPREDUCE AND BEYOND 163

[156] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kaufmann Publishing, San Francisco, California,
1999. DOI: 10.1023/A:1011472308196 69, 77, 78, 83

[157] Jinxi Xu and W. Bruce Croft. Corpus-based stemming using cooccurrence of word variants.
ACM Transactions on Information Systems, 16(1):61–81, 1998. DOI: 10.1145/267954.267957
48

[158] Rui Xu and Donald Wunsch II. Survey of clustering algorithms. IEEE Transactions on Neural
Networks, 16(3):645–678, 2005. DOI: 10.1109/TNN.2005.845141 86

[159] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Kumar
Gunda, and Jon Currey. DryadLINQ: A system for general-purpose distributed data-parallel
computing using a high-level language. In Proceedings of the 8th Symposium on Operating
System Design and Implementation (OSDI 2008), pages 1–14, San Diego, California, 2008.
145

[160] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker,
and Ion Stoica. Job scheduling for multi-user MapReduce clusters. Technical Report
UCB/EECS-2009-55, Electrical Engineering and Computer Sciences, University of Cal-
ifornia at Berkeley, 2009. 25

[161] Matei Zaharia, Andy Konwinski, Anthony D.Joseph, Randy Katz, and Ion Stoica. Improving
MapReduce performance in heterogeneous environments. In Proceedings of the 8th Sympo-
sium on Operating System Design and Implementation (OSDI 2008), pages 29–42, San Diego,
California, 2008. 25

[162] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM Computing
Surveys, 38(6):1–56, 2006. 78, 83

http://dx.doi.org/10.1023/A:1011472308196
http://dx.doi.org/10.1145/267954.267957
http://dx.doi.org/10.1109/TNN.2005.845141

165

Authors’ Biographies

JIMMY LIN
Jimmy Lin is an Associate Professor in the iSchool (College of Information Studies) at the Uni-
versity of Maryland, College Park. He directs the recently-formed Cloud Computing Center, an
interdisciplinary group that explores the many aspects of cloud computing as it impacts technol-
ogy, people, and society. Lin’s research lies at the intersection of natural language processing and
information retrieval, with a recent emphasis on scalable algorithms and large-data processing. He
received his Ph.D. from MIT in Electrical Engineering and Computer Science in 2004.

CHRIS DYER
Chris Dyer is graduating with a Ph.D. in Linguistics from the University of Maryland, College
Park in June, 2010 and will be joining the Language Technologies Institute at Carnegie Mellon
University as a postdoctoral researcher. His research interests include statistical machine translation
and machine learning, and he has served as a reviewer for numerous conferences and journals in the
areas of natural language processing and computational linguistics. He first became acquainted with
MapReduce in 2007 using Hadoop, version 0.13.0, and gained further experience with MapReduce
during an internship with Google Research in 2008.

	Acknowledgments
	Introduction
	Computing in the Clouds
	Big Ideas
	Why Is This Different?
	What This Book Is Not

	MapReduce Basics
	Functional Programming Roots
	Mappers and Reducers
	The Execution Framework
	Partitioners and Combiners
	The Distributed File System
	Hadoop Cluster Architecture
	Summary

	MapReduce Algorithm Design
	Local Aggregation
	Combiners and In-Mapper Combining
	Algorithmic Correctness with Local Aggregation

	Pairs and Stripes
	Computing Relative Frequencies
	Secondary Sorting
	Relational Joins
	Reduce-Side Join
	Map-Side Join
	Memory-Backed Join

	Summary

	Inverted Indexing for Text Retrieval
	Web Crawling
	Inverted Indexes
	Inverted Indexing: Baseline Implementation
	Inverted Indexing: Revised Implementation
	Index Compression
	Byte-Aligned and Word-Aligned Codes
	Bit-Aligned Codes
	Postings Compression

	What About Retrieval?
	Summary and Additional Readings

	Graph Algorithms
	Graph Representations
	Parallel Breadth-First Search
	PageRank
	Issues with Graph Processing
	Summary and Additional Readings

	EM Algorithms for Text Processing
	Expectation Maximization
	Maximum Likelihood Estimation
	A Latent Variable Marble Game
	MLE with Latent Variables
	Expectation Maximization
	An EM Example

	Hidden Markov Models
	Three Questions for Hidden Markov Models
	The Forward Algorithm
	The Viterbi Algorithm
	Parameter Estimation for HMMs
	Forward-Backward Training: Summary

	EM in MapReduce
	HMM Training in MapReduce

	Case Study: Word Alignment for Statistical Machine Translation
	Statistical Phrase-Based Translation
	Brief Digression: Language Modeling with MapReduce
	Word Alignment
	Experiments

	EM-Like Algorithms
	Gradient-Based Optimization and Log-Linear Models

	Summary and Additional Readings

	Closing Remarks
	Limitations of MapReduce
	Alternative Computing Paradigms
	MapReduce and Beyond

	Bibliography
	Authors' Biographies

