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ABSTRACT
Many information retrieval (IR) systems suffer from a radical variance in performance when re-
sponding to users’ queries. Even for systems that succeed very well on average, the quality of results
returned for some of the queries is poor. Thus, it is desirable that IR systems will be able to identify
"difficult" queries so they can be handled properly. Understanding why some queries are inherently
more difficult than others is essential for IR, and a good answer to this important question will help
search engines to reduce the variance in performance, hence better servicing their customer needs.

Estimating the query difficulty is an attempt to quantify the quality of search results retrieved
for a query from a given collection of documents. This book discusses the reasons that cause search
engines to fail for some of the queries, and then reviews recent approaches for estimating query dif-
ficulty in the IR field. It then describes a common methodology for evaluating the prediction quality
of those estimators, and experiments with some of the predictors applied by various IR methods
over several TREC benchmarks. Finally, it discusses potential applications that can utilize query
difficulty estimators by handling each query individually and selectively, based upon its estimated
difficulty.

KEYWORDS
information retrieval, retrieval robustness, query difficulty estimation, performance pre-
diction
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C H A P T E R 1

Introduction - The Robustness
Problem of Information

Retrieval
The exponential growth of digital information that is available on the Web, and on other existing
digital libraries, calls for advanced search tools that will be able to satisfy users who seek for reli-
able knowledge for their information needs. Indeed, many information retrieval (IR) systems have
emerged over the last decades that are able to locate precise information even from collections of
billions of items. Search engine tools have become the leading channels for professionals, as well as
the general public, for accessing information and knowledge for their daily tasks.

However, most IR systems suffer from a radical variance in retrieval performance when re-
sponding to users’ queries, as measured by the quality of returned documents. Even for systems that
succeed very well on average, the quality of results returned for some of the queries is poor.This may
lead to user dissatisfaction since individual users only care about the effectiveness of the system for
their own requests and not about the system’s average performance.

The variability in performance is due to a number of factors. There are factors related to the
query itself, such as term ambiguity. For example, consider the ambiguous query Golf. Without any
context search engines will be unable to identify the desired information need (the sport or the car).
In such cases, poor results are expected as answers related to different meanings of the query are
interleaved. Other factors are related to the discrepancy between the query language and the content
language (also known as the vocabulary mismatch problem) when inconsistency exists between the
way users express their needs and the way the content is described. Other problematical cases are
missing content queries, for which there is no relevant information in the corpus that can satisfy the
information needs.

The experimental results of state-of-the-art IR systems participating in TREC1 show a wide
diversity in performance among queries. Most of the systems, even with high precision on average,
fail to answer some of the queries. For example, consider the TREC query (58) “Hubble Telescope
Achievements”, which was found to be difficult for most TREC participants. For this query, many of
the irrelevant documents retrieved by typical search engines deal with budget constraints, scheduling

1 The Text REtrieval Conference (TREC) is sponsored by the National Institute of Standards and Technology (NIST) and the
U.S. Department of Defense. Its purpose is to support research within the IR community by providing the infrastructure necessary
for large-scale evaluation of text retrieval methodologies.
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Figure 1.1: The variance in performance among queries and systems. Queries are sorted in decreasing
order according to the highest performance (average precision) achieved among all TREC participants
(shown in gray bars). The performance of two different systems per query is shown by the two curves.
Based on (19).

problems, and other issues related to the Hubble telescope project in general; but the gist of that
query, achievements, is lost.

On the other hand, diversity in performance also exists among participating systems who
answer the same query. For some of the queries, some of the systems succeed very well while other
completely fail. This is probably due to system dependent factors such as the specific retrieval
methodology and implementation details. Figure 1.1 shows the high variance in performance (the
average precision, defined in Chapter 2), of two different systems for several TREC queries. Queries
are sorted in decreasing order according to the highest performance among all TREC participants
(shown in gray bars).The performance of two different systems per query is shown by the two curves.
The figure clearly shows the high variability in systems’ performance over the queries, as well as the
high diversity in performance per query among the systems.

The high diversity in performance among queries, as well as among systems, led to a new
research direction termed query performance prediction (QPP) or query difficulty estimation (QDE).
The challenge is to predict in advance the quality of the search results for a given query, retrieved
by a given retrieval system, when no relevance information is given by a human operator. Such a
performance prediction will let IR systems to better serve “difficult” queries and to decrease variability
in performance. If we could determine in advance which retrieval approach would work well for a
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given query, then hopefully, selecting the appropriate retrieval method on a query basis could improve
the retrieval effectiveness significantly.

1.1 REASONS FOR RETRIEVAL FAILURES - THE RIA
WORKSHOP

The Reliable Information Access (RIA) workshop (20) was the first attempt to rigorously investigate
the reasons for performance variability between queries and systems. The goal of the RIA workshop
was to understand the contributions of both system variability factors and query variability factors to
overall retrieval variability. The workshop brought together seven different IR systems and assigned
them to common IR tasks. By performing extensive failure analysis of the retrieval results for 45
TREC topics2, nine failure categories were identified. Table 1.1 presents the failure categories, each
associated with an example topic, as they appear in the workshop summary. Five categories of the
nine relate to the systems’ failure to identify and cover all aspects of the topic. Other categories are
mostly related to failures in query analysis.

One of the RIA workshop’s conclusions was that the root cause of poor performance is likely
to be the same for all systems. It is well known fact that, in general, different retrieval methods are
retrieving different results for the same query, but according to the failure analysis, all systems fail
for the same reasons, for most topics.

Another conclusion was that the systems’ inability to identify all important aspects of the
query would seem to be crucial and one of the main obstacle in successfully handling the information
needs.The failure to emphasize one aspect of a query over another, or the opposite, to emphasize one
aspect and neglect other aspects, accounted for several of the reasons for failure. This type of failure
is demonstrated by the TREC topic “What disasters have occurred in tunnels used for transportation?”.
Exposing the relation between disasters and tunnels, the main aspect to be answered in this query,
is not trivial as text analysis is required for that. Moreover, emphasizing only one of these terms
(for example, due to its relative rarity) will deteriorate performance because each term on its own
does not fully reflect the information need. Similarly, the spotted owl episode which is mentioned in
the example of failure category 5, should be identified as redundant for successful retrieval since the
theme to be answered for this topic is wildlife conservation in other countries (excluding the U.S.).

A surprising result was the finding that the majority of failures could be fixed with traditional
IR techniques such as better relevance feedback mechanism and better query analysis that gives
guidance as to the relative importance of the query terms and their inner relationship. Furthermore,
if a failure is identified, and the reason is explained to the person submitting the query, he may be able
to revise the query so as to alleviate the problem.For example, the query “Hubble telescope achievements”
might be changed to enforce the word “achievements” to appear in the retrieved documents. A simple
query modification such as this can dramatically improve retrieval performance.

2A “topic” in TREC defines a specific information need.The query submitted to the search engine is inferred from the given topic.
Different query formulation rules can be used to construct queries from the topic.
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Table 1.1: RIA Topic Failure Analysis Categorization. From (9).

Category Topic example
1. General technical failure Identify systematic explorations and scientific
(stemming, tokenization) investigations of Antarctica, current or planned.

(Systems fail to stem “Antarctica” and “Antarctic”
to the same stem (root).)

2. All systems emphasize one aspect; What incidents have there been of stolen or forged art?
missing another required term (All systems missing “art”.)
3. All systems emphasize one aspect; Identify documents discussing the development and
missing another aspect application of spaceborne ocean remote sensing.

(“Ocean” should be emphasized and expanded.)
4. Some systems emphasize one What disasters have occurred in
aspect; some another; need both tunnels used for transportation?

(“Disasters” and “tunnels” should both be emphasized.)
5. All systems emphasize one irrelevant The spotted owl episode in America highlighted U.S.
aspect; missing point of topic efforts to prevent the extinction of wildlife species...

What other countries have begun efforts
to prevent such declines?
(Systems wrongly emphasize “spotted owl’ and “US efforts”.)

6. Need outside expansion of “general” Identify documents that discuss the European
term (e.g., expand Europe to Conventional Arms Cut as it relates to
individual countries) the dismantling of Europe’s arsenal.
7. Need query analysis to How much sugar does Cuba export
determine relationship between and which countries import it?
query terms (Need quantity analysis and relationships between ‘

“Cuba”, “sugar”, and “export”.)
8. Systems missed difficult aspect What are new methods of producing steel?
that would need human help (Need interpretation of “new methods”.)
9. Need proximity relationship What countries are experiencing an increase in tourism?

(Aspects of “increase” and “tourism”
should be close together.)

The goal of performance prediction is first and foremost to identify failure, using some of the
hints identified above, as well as others. A next logical step is to try and identify the cause of failure
and correct it. Nowadays, most query prediction methods focus on identifying failure. It is still an
open challenge to identify the exact failure modes for a given query. If systems could estimate what
failure categories the query may belong to, it is likely that systems could apply specific automated
techniques that correspond to the failure mode in order to improve the system performance.

1.2 INSTABILITY IN RETRIEVAL - THE TREC’S ROBUST
TRACKS

The diversity in performance among topics and systems led to the TREC Robust tracks in the years
2003-2005 (57; 58; 59), which encouraged systems to decrease variance in query performance by
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focusing on poorly performing topics. Systems were challenged by 50 old TREC topics found to be
“difficult” for most systems over the years. A topic is considered difficult in this context when the
median of the average precision scores of all participants for that topic is below a given threshold
(i.e., half of the systems are scored lower than the threshold), but there exists at least one high outlier
score.

Systems were evaluated by new measures (discussed in Chapter 2) that emphasize the systems’
least effective topics, thus encouraging participants to identify difficult topics and to handle them
appropriately. The most useful of these metrics was geometric MAP (GMAP), which uses the
geometric mean instead of the arithmetic mean when averaging precision values. The geometric
mean emphasizes the lowest performing topics (44), and it is thus a useful measure for the system’s
robustness as measured over the set of topics, i.e., the system’s ability to confront difficult queries.

Several approaches to improving the effectiveness of poor topics were tested, including a
selective query processing strategy based on performance prediction, post-retrieval reordering, se-
lective weighting functions and selective query expansion. While each of these techniques can help
some of the queries, none of them was able to show consistent improvement over traditional non-
selective approaches.The leading retrieval methods utilized the web as an external resource to expand
(all) queries (58). Apparently, expanding the query by appropriate terms extracted from an external
collection can increase the effectiveness of many queries, including poorly performing queries.

In the Robust tracks of 2004 and 2005 systems were asked, as a second challenge, to addition-
ally predict their performance (i.e., the average precision) for each of the testing topics. The TREC
topics were then ranked according to their predicted value, and evaluation was done by measuring
the similarity between the predicted performance-based ranking and the actual performance-based
ranking. Prediction methods suggested by the participants varied from analyzing the scores of the
top results, analyzing the frequency distribution of query terms in the collection, and learning a pre-
dictor using old TREC queries as training data. The (poor) prediction results clearly demonstrated
that measuring performance prediction is intrinsically difficult; the measured similarity between
predicted topic ranking and actual topic ranking was low for most runs submitted to the track.
Moreover, fourteen runs had a negative correlation between the predicted and actual topic rankings.

On the positive side, the difficulty in developing a reliable performance prediction methods,
publicized that challenge to the IR community and attracted the attention of many researchers.

In order to get an idea how difficult the performance prediction task is, we can attempt to
assess how difficult this task is for human experts. An experiment in this spirit was conducted in
TREC-6 (60), estimating whether human experts can predict the query difficulty. A group of experts
were asked to classify a set of TREC queries to three degrees of difficulty – easy, middle, hard, based
on the query expression only. These judgments were compared to the “usual” difficulty measure of
a query, the median of the average precision scores, as determined after evaluating the performance
of all participating systems. The Pearson correlation between the expert judgments and the “true”
values was very low (0.26). Moreover, the agreement between experts, as measured by the correlation
between their judgments, was very low too (0.39). The low correlation with the true performance
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patterns, and the lack of agreement among experts, illustrate how difficult this task is and how little
is known about what makes a query difficult.

One of the questions to answer in the Robust track of 2005 was whether queries found to
be difficult in one collection are still considered difficult in another collection. Difficult queries in
the ROBUST collection were tested against another collection (the AQUAINT collection (59)).
The median average precision of all participants over the 50 queries for the ROBUST collection is
0.126 compared to 0.185 for the same queries over the AQUAINT collection. Assuming that the
median score of all participants is a good indication for query difficulty, these results indicate that the
AQUAINT collection is “easier” than the ROBUST collection, at least for the 50 difficult queries
of the Robust track. This might be due to the collection size, due to the fact that there are many
more relevant documents for those queries in AQUAINT, or due to the document features such as
length, structure, and coherence. Carmel et al. (12) examined whether the relative difficulty of the
queries is preserved over the two document sets, by measuring the Pearson correlation between the
median precision scores of the 50 difficult queries as measured over the two datasets. The Pearson
correlation is 0.463, which shows some dependency between the median scores of a topic on both
collections. This suggests that even when results for a query are somewhat easier to find on one
collection than another, the relative difficulty among topics is preserved, at least to some extent.

1.3 ESTIMATING THE QUERY DIFFICULTY
The high variability in query performance, as well as the TREC robust tracks, have driven a new
research direction in the IR field on estimating the quality of the search results, i.e., the query
difficulty, when no relevance feedback is given. Estimating the query difficulty is an attempt to
quantify the quality of results returned by a given system for the query. An example for such a
measure of quality is the average precision (AP) of the query (defined in Chapter 2). Such a query
difficulty estimation is beneficial for many reasons:

1. As feedback to the users: The IR system can provide the users an estimation on the expected
quality of results retrieved for their queries.The users can then rephrase queries that were found
to be “difficult”, or alternatively, resubmit a “difficult” query to alternative search resources.
Additionally, IR systems can improve their interaction with their users through recommending
better terms for query refinement as derived from the analysis of the predicted performance
of the refined queries (31).

2. As feedback to the search engine: The search engine can invoke alternative retrieval strategies
for different queries according to their estimated difficulty. For example, intensive query anal-
ysis procedures that are not feasible for all queries due to time response restrictions, may be
invoked selectively for difficult queries only. Moreover, predicted performance can be used for
parameter tuning in the absence of training data. Given a sample of training queries with pre-
dicted performance, the engine can utilize this data for parameter tuning in order to maximize
its performance.
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3. As feedback to the system administrator: The administrator can identify queries related to
a specific subject that are “difficult” for the search engine and to expand the collection of
documents to better answer poorly covered subjects. Identifying missing content queries is
especially important for commercial search engines which should better identify, as soon as
possible, popular emerging user needs that cannot be answered appropriately due to missing
relevant content.

4. For IR applications: For example, query difficulty estimation can be used by a distributed
search application as a method for merging the results of queries performed distributively over
different datasets by weighing the results from each dataset according to their estimated quality.
Several potential applications that exploit difficulty estimation are discussed in Chapter 8.

Estimating the query difficulty is a significant challenge due to the numerous factors that
impact retrieval performance. As already has been mentioned, there are factors that are related
to the query expression (e.g., ambiguity), to the dataset (e.g., heterogeneity), and to the retrieval
method. In addition, while traditionally IR research mainly focuses on evaluating the relevance of
each document to a query, independently of the other documents, the new performance prediction
approaches attempt to evaluate the quality of the whole result list to the query. This complexity
burdens the prediction task compared to the retrieval task and calls for new prediction methods that
will be able to handle this challenging task.

The notion of query difficulty is usually related to a specific query that is submitted to a
specific retrieval method while searching over specific collection. However, query performance can
vary over different retrieval methods. Similarly, query performance depends on the collection we
search over. Therefore, the “generality” of query difficulty depends on whether this query will be
considered difficult by any retrieval method, over any dataset. This generality is usually measured by
averaging the predicted query performance of several retrieval methods over several collections. For
example, an ambiguous query will probably have high degree of generality as most retrieval methods
are expected to perform poorly over most datasets. In contrast, a missing content query is only
difficult for specific datasets that do not cover the underlying need. Similarly, we can measure the
“difficulty” of a given collection as the average difficulty of a sampled set of queries, while answered
by several different retrieval methods.

1.4 SUMMARY
In this chapter, we introduced the robustness problem of IR and reviewed several reasons that cause
a query to be considered difficult. We described the taxonomy of failure modes suggested in the RIA
workshop and summarized the main results of the TREC Robust tracks. We then discussed several
scenarios where query difficulty estimation can be beneficial. The rest of the lecture is organized as
follows:

In Chapter 2, we review the basic concepts used in the lecture. In Chapters 3,4,5, we present
a new taxonomy for the different types of performance predictors and overview several leading
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prediction methods suggested in recent years. We summarize several experimental studies on the
prediction quality of those query performance predictors over some TREC benchmarks. Chapter 6
discusses how some predictors can be combined together to enhance prediction quality. Chapter 7
provides a general framework for query difficulty. Chapter 8 overviews several IR applications that
utilize existing performance predictors for their task. In addition, we discuss the potential of some
applications to benefit from performance prediction. Finally, Chapter 9 concludes and discusses
open research directions in this emerging field of query performance prediction.
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C H A P T E R 2

Basic Concepts
Predicting the query performance is the task of estimating the expected quality of the search results,
when no relevance information is given. In this chapter, we will define the basic concepts that are
used in the rest of the book.

2.1 THE RETRIEVAL TASK
Given a text query q, a collection of documents D, and a retrieval method π , the retrieval task can
be formalized as follows:

Dq ← π(q, D),

π receives q and D as input and retrieves a ranked list of results Dq ⊆ D. Many retrieval methods
estimate the relevance probability for each document d ∈ D to q and retrieve the documents with
the highest estimation scores, ranked according to these scores. Popular retrieval methods are the
vector space tf-idf based ranking (47), which approximates relevance by the similarity between the
query and a document in the vector space; the probabilistic based OKAPI-BM25 formula (29),
which approximates the document’s relevance probability to the query; and a language-model based
approach (43), which estimates the probability that the query was generated by the document’s
language model.

The retrieval quality is usually evaluated by benchmarks such asTREC collections that provide
a corpus, a set of topics, and the set of the relevant documents per topic (called Qrels for query
relevance set) in the collection. A TREC topic is a statement that describes a specific information
need, including a clear description of the criteria that make a document relevant, while a query that
is inferred from the topic is the actual text given to the search system. The Qrels is a list of relevant
documents to the topic. Given such a benchmark with relevance information, the retrieval quality of
a retrieval method π is measured by standard IR quality measures of π ’s ability to retrieve as many
relevant documents from the Qrels (high recall) and to rank them on top of the ranked list (high
average precision, defined below).

Popular quality measures are the precision at k (P@k) and the (non-interpolated) average
precision (AP) (61).P @k is the fraction of relevant documents in the top-k results.AP is the average
of precisions computed at the point of each of the relevant documents in the ranked sequence:

AP(q) = 1
|Rq |

∑

r∈Rq

P @rank(r),
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where Rq is the set of the relevant documents, r is a single relevant document, and P @rank(r) is the
precision at the rank position of r . In practical terms, Average Precision is usually calculated from
a ranking which is truncated at some rank position (typically 1000 in TREC). In these conditions,
for any r which ranks below this truncation point or not at all (rank(r) > 1000), P @rank(r) is
treated as zero. This is usually a reasonable approximation.

For evaluating systems over many queries, the usual approach is to take the (arithmetic)
mean of average precision values over the queries (MAP). An alternative to the (arithmetic) average
precision is the geometric mean average precision (GMAP). The geometric mean emphasizes the
lowest performing queries (44); therefore, it is more sensitive to the system’s robustness in terms of
performance variability over a set of topics.

2.2 THE PREDICTION TASK
Given the query q and the result list Dq , the prediction task is then to estimate the retrieval quality
of Dq , in satisfying Iq , the information need behind q. In other words, the prediction task is to
predict AP(q) when no relevance information (Rq ) is given. Throughout this lecture, we will focus
on predicting AP(q) at cutoff 1000; other quality measures can be predicted in the same manner.

The performance predictor can be described as a procedure that receives the query q, the result
list Dq , and the entire collection D and returns a prediction to the quality of Dq in satisfying Iq , i.e.,
the expected average precision (AP) for q:

ÂP (q) ← µ(q, Dq, D).

The quality of a performance predictor µ can be measured over the same benchmarks that are
used for retrieval quality estimation.High correlation between the performance prediction values for a
given set of queries, with their actual precision values, reflects the ability of µ to successfully predict
query performance. The prediction quality is measured by the correlation between the predicted
average precision, ÂP (q), to the actual average precision, AP(q), over a given set of testing queries
Q = {q1 . . . qn}:

Quality(µ) = correl
(
[AP(q1) . . . AP (qn)], [ÂP (q1) . . . ÂP (qn)]

)
.

This correlation provides an estimation to prediction accuracy. In the following, we provide an
overview of correlation methods, and the interested reader is referred to statistics textbooks for a
more thorough discussion of these methods.

2.2.1 LINEAR CORRELATION
There are several methods for measuring the correlation between two variables, which in our case are
the actual and predicted values of the target variable.The simplest is the linear,or Pearson, correlation.
Given a sample of n actual values of the target variable, y = (y1, . . . , yn), and the corresponding
predicted values, ŷ = (ŷ1, . . . , ŷn), this correlation is defined as:
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Figure 2.1: Examples of low (left) and high (right) correlation between two variables.

ry,̂y =
∑n

i=1 (yi − avg(y)) (ŷi − avg(ŷ))

(n − 1)std(y)std(ŷ)

where avg() denotes the sample mean, and std() denotes the sample standard deviation. The
correlation ry,̂y is a number between −1 and +1, where −1 denotes perfect anti-correlation, 0
denotes statistical independence, and +1 denotes perfect correlation.

Figure 2.1 shows two examples of the correlation between predicted and actual values. The
left figure shows the case where there is no relationship between the variables, and correlation is thus
low, whereas the right figure shows a high degree of correlation.

It is also common to report the square of r (denoted as R2) which compares the variance in
prediction values with the variance of actual data. Known as the coefficient of determination, it is
interpreted as the proportion of variability in the actual values of the target variable that is accounted
for by the variability in prediction values. R2 can be directly computed as follows:

R2 = 1 − SSErr

SST ot
= 1 −

∑n
i=1 (yi − ŷi )

2
∑n

i=1(yi − avg(y))2 .

Linear correlation is closely related to another metric used for evaluating prediction perfor-
mance, known as Root Mean Square Error (RMSE). RMSE is computed as follows:

RMSEy, ŷ =

√√√√ 1
n − 1

n∑

i=1

(yi − ŷi )
2

It can be shown that there is a simple relationship between RMSE and the linear correlation coeffi-
cient: RMSE relates to the square root of SSErr in the R2 equation. It is usually more informative



12 2. BASIC CONCEPTS

to use the linear correlation coefficient because of the intuitive understanding it provides in terms
of the reduction in variance, by normalizing it with the variance of the target variable.

2.2.2 RANK CORRELATION
Linear correlation is easy to measure and is frequently used. However, it also suffers from a significant
drawback: Consider the left-hand side of figure 2.1. If one were to add a small number of points at
(y = 100, ŷ = 100), these would have a relatively large effect on r because of their high values.This
would imply that correlation was high, even though this result is affected from only a few points.

Rank, or Spearman′s-ρ correlation, solves this problem by measuring differences in ranks
rather than actual values. Ranks are the indexes of the variables when they are sorted. Usually,
instead of computing the Pearson correlation between values, the Spearman′s-ρ correlation ρ

between ranks is calculated using the following equation:

ρy,̂y = 1 − 6
∑n

i=1 d2
i

n(n2 − 1)
,

where di is the difference in ranks between yi and ŷi .
A third method for estimating correlation is the Kendall′s-τ rank correlation. Kendall′s-τ

is a function of the minimum number of swaps between neighboring items needed to produce one
rank ordering from the other, i.e., how many neighboring swaps will be needed to convert the rank
ordering of the predicted values to that of the actual values. If the minimum number of swaps needed
is denoted by Q, the formula for deriving the correlation coefficient is:

τ = 1 − 4Q

n(n − 1)

It can be shown that Kendall′s-τ can also be computed from the number of operations required
to bring one list to the order of the other list using the bubble sort algorithm. The advantage of
Kendall′s-τ is that is easy to gain an intuitive understanding of its meaning, through the number
of swapping operations needed.

One of the drawbacks of rank correlation is that while considering the ranking only, the
distance between point values is not taken into account. Therefore, it is common practice to report
both linear and rank correlations as measures for prediction quality.

2.3 PREDICTION ROBUSTNESS
Measuring the correlation between actual performance (AP) and the predicted performance (ÂP )
for a testing query set, as an indication for prediction quality, mostly fits a single system scenario
when we wish to estimate the prediction quality of a given performance predictor. This estimation
enables the comparison between different prediction methods when applied by the same retrieval
system over a fixed set of testing queries and over a fixed dataset. However, the prediction quality
is highly dependent on the retrieval method since the target variable (the actual AP) is dependent
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on the specific retrieval approach. This inherently introduces a difficulty which must be taken into
account. For example, it is easy to build a perfect predictor which always succeeds in predicting the
failure of a retrieval method that only retrieves random documents. Moreover, the prediction quality
also depends on the testing queries and the data collection used for retrieval, as the “difficulty” of
the collection may affect retrieval quality (12).

In order to measure the robustness of a predictor, i.e., how well it performs when applied with
different retrieval methods, or when applied over different queries and datasets, there are two main
approaches. In the first one, the prediction quality is measured and compared over several retrieval
methods, over several collections, and over different testing sets of queries. A robust predictor is
expected to perform well independently of the retrieval method, the collection, and the query set.
Indeed, as we will show in Chapter 4, it is hard to find one predictor that fits all, as most predictors
suffer from low prediction robustness.

An alternative approach is to evaluate the predictor’s robustness independently of a specific
retrieval method. Given many retrieval systems with their search results for a set of testing queries
over a given dataset (this is the usual case in TREC ad-hock tracks), in such a framework a query is
considered difficult if most systems fail to perform well, i.e., to achieve reasonable AP. The common
measure for query difficulty is the median AP of all participating systems. If this median is below a
given threshold, we consider this query as difficult. In such a framework, the prediction robustness
is measured by the predictor ability to identify those poorly performing queries, i.e., to rank the
queries according to their difficulty. Since query difficulty is determined by the performance of all
participants, hence it is independent of a specific retrieval method. The prediction quality is then
measured by the (linear or rank) correlation between the ranking of queries according to their actual
difficulty (the median of participants’ AP) and the ranking based on their predicted difficulty. We
note that this is much more challenging task since the predictor is not exposed to the retrieval
methods used by participants.

2.4 SUMMARY
This chapter covered the main concepts we will use throughout this lecture.We discussed the retrieval
task and the standard methodology used in IR for estimating retrieval performance. We then defined
the prediction task and how prediction quality can be measured. In the following, we survey various
performance prediction methods, of different types, and analyze their prediction ability using those
measures for performance prediction quality.
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C H A P T E R 3

Query Performance Prediction
Methods

The high potential of query performance prediction for IR tasks, and the significant challenge
involved, has led to many research efforts in developing various prediction methods. Existing pre-
diction approaches are roughly categorized to pre-retrieval methods and post-retrieval methods.
Pre-retrieval approaches predict the quality of the search results before the search takes place, thus
only the raw query, and statistics of the query terms gathered at indexing time, can be exploited for
prediction. In contrast, post-retrieval methods can additionally analyze the search results. Figure 3.1
presents a general taxonomy of existing prediction approaches.

Figure 3.1: A general taxonomy of query performance prediction methods.
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Pre-retrieval prediction methods can be classified to linguistic based approaches that apply
morphological, syntactical, and semantical analysis in order to identify lexical difficulty of the query.
In contrast, statistical methods analyze the statistical features of the query terms such as the occur-
rence distribution over the documents in collection, query term co-occurrence statistics, and more.
The advantage of these methods is that the prediction only relies on early analysis of all terms in
the vocabulary, conducted during indexing time. During search, the query performance is predicted
using the statistical features of the query terms determined in advance, an inexpensive process that
can be applied before the search is carried out.

On the other hand, post-retrieval methods analyze the search results, looking for coherency
and robustness of the retrieved documents. We can classify these methods into 1) clarity based
methods that measure the coherency (clarity) of the result set and its separability from the whole
collections of documents, 2) robustness based methods that estimate the robustness of the result set
under different types of perturbations, and 3) score analysis based methods that analyze the score
distribution of results.

Post-retrieval methods are usually more expensive as the search results should be analyzed
after retrieval, a heavy process that demands some content analysis of the documents. However, these
methods are directly applied to the result set thus they are more suitable for identifying inconsistency,
incoherency, and other characteristics that reflect low quality. On-the contrary, pre-retrieval methods
predict the quality of search results with the lack of direct analysis of the documents’ content thus
they may be unaware to some flaws in results. In the following, we describe and compare those
approaches in more details. Chapter 4, and Chapter 5 afterward, describe and compare several pre
and post retrieval methods. Chapter 6 discusses how several prediction methods can be combined
together. Chapter 7 summarizes this part of the book by describing a general model for estimating
query difficulty.
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Pre-Retrieval Prediction
Methods

Pre-retrieval prediction approaches estimate the quality of the search results, before the search takes
place. Thus, only the query terms, associated with some pre-defined statistics gathered for all the
terms in the vocabulary, can be used for prediction. Such methods are easy to compute but are usually
inferior to post-retrieval approaches since they do not take the retrieval method into account. The
(usually short) query alone is often not expressive enough for reliable prediction of the quality of the
search results.

However, the data required by pre-retrieval methods can be calculated during indexing time
and does not require the dynamic computation at search time, as post-retrieval methods do. As such,
pre-retrieval methods, despite their inferiority, provide effective instantiation of query performance
prediction for search applications that must efficiently respond to search requests.

For example, consider the naive pre-retrieval predictor which is based on the query length.
The query length is measured by the number of unique non stop-word terms in the query, assuming
that longer queries are easier to answer. However, He and Ounis (25) showed that in contrast to
the common belief, no correlation exists between query length and query performance. In contrast,
handling long queries is difficult as they usually contain a lot of noise. This noise is in the form
of extraneous terms that the user believes are important, but in fact are confusing to the retrieval
system (4; 32).

Other pre-retrieval methods can be split to linguistic and statistical methods. Linguistic
methods apply natural language processing (NLP) techniques and external linguistic resources to
identify ambiguity and polysemy in the query. Statistical methods analyze the distribution of the
query terms within the collection, looking for deviations in the distribution of the query terms
frequency. In the following, we elaborate on several pre-retrieval prediction methods from these two
categories.

4.1 LINGUISTIC APPROACHES
Linguistic methods analyze the query expression, searching for ambiguity and polysemy as indicators
for query difficulty. Mothe and Tangui (40) extracted 16 different linguistic features of the query,
looking for significant correlations between these features and the system performance. The query
text is analyzed by several linguistic tools such as a morphological analyzer, a shallow parser, and the
Wordnet lexical database (18).
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Term limitations for members of the US Congress
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Figure 4.1: Syntactic parse tree of the TREC topic 158: “Term limitations for members of the US congress”.
NP denotes Noun Phrase, and PP is for Prepositional Phrase.The syntactic depth of this tree is 5, and the
Syntactic links span is equal to 10/7 = 1.43. For example, the determiner ‘the’ is related to ‘congress’ and
not ‘US.’ Therefore, this particular link covers a distance of 2 words. Based on Mothe and Tangui (40).

The features extracted from the query included morphological features such as the average
number of morphemes per query word. A morpheme is a primary linguistic unit that has semantic
meaning, and words with many morphemes are known to be more difficult to match with morpho-
logically similar words. Other morphological features used were the number of proper nouns in the
query and, similarly, the number of acronyms, numeral values, unknown tokens, etc.

Syntactical features of the query were extracted by a shallow parser. The parser analyzes the
query raw text to construct a parse tree that identifies syntactic relations between the words based
on grammatical rules. Features extracted from the parse tree include the depth of the tree, which is
a measure of syntactic complexity, and the syntactic link span which relates to the average distance
between query words in the tree. Figure 4.1 displays the syntactic tree for TREC topic 158: “Term
limitations for members of the US congress”.

Another linguistic feature studied by Mothe and Tanguy was the polysemy value which is the
average number of synsets per word in the WordNet dictionary. A synset is a set of synonyms defined
by Wordnet, and a word can belong to several different synsets. This value roughly corresponds to
the different semantic meanings a given word can have.

The main (negative) result of that study was that most linguistic features do not correlate well
with the system performance. Only the syntactic links span and the polysemy value were shown to
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have some (low) correlation. Similar negative results were reported by Hauff (21) who tested the
“average semantic distance” of the query terms for performance prediction. The semantic distance
between two terms is the minimal path length between the two corresponding synsets of these terms
in the WordNet taxonomy, and the average semantic distance is the average distance between all pairs
of query terms. The prediction quality was low, and it varied over the benchmarks used for testing.
This is quite surprising as intuitively poor performance can be expected for ambiguous queries.
Apparently, term ambiguity should be rather measured using corpus-based approaches, since a term
that might be ambiguous with respect to the general vocabulary, may have only a single interpretation
in the corpus. Though, the existing (even low) correlation indicates a potential of a link between
linguistic characteristics of the query text and the query difficulty.

4.2 STATISTICAL APPROACHES
Statistical pre-retrieval predictors for query difficulty were studied extensively (25; 27; 68; 23) and a
comprehensive evaluation of their performance can be found in (21).

4.2.1 DEFINITIONS
Most of the statistical-based prediction methods are based on analyzing the distribution of the query
term frequencies within the collection. Two term statistics that are frequently used are the inverse
document frequency (idf) and the inverse collection term frequency (ictf) (34) of the query terms.
Both statistics are popular measures for the relative importance of the query terms and are usually
measured by the following formulas:

idf (t) = log
(

N

Nt

)

where N is the number of documents in the collection and Nt is the number of documents containing
the term t . Similarly, the inverse collection term frequency is measure by

ictf (t) = log
( |D|

tf (t, D)

)

where |D| is the number of all terms in collection D, and tf (t, D) is the term frequency (number
of occurrences) of term t in D.

Several pre-retrieval predictors are based on estimation of the probability of selecting a query
term from the query and from the collection. These probabilities are usually approximated by max-
imum likelihood estimation

Pr(t |q)
def= tf (t, q)

|q|
where tf (t, q) is the term frequency of term t in query q, and |q| is the number of terms in q.

Similarly, the probability of selecting a term from the collection is approximated by

Pr(t |D)
def= tf (t, D)

|D| .
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Statistical predictors can be categorized into four main categories, according to the query
characteristics which they try to estimate: 1) specificity of the query, i.e., how specific the query
expression is; 2) similarity of the query to the collection; 3) coherence of the query term distribution;
and 4) the relationship strength between the query terms. In the following, we describe these four
categories.

4.2.2 SPECIFICITY
The specificity of the query is reflected by the query terms’ distribution over the collection. In
general, a query composed of common non-specific terms is deemed to be more difficult to answer.
For example, consider the TREC topic 531 “who and whom”. Such a query is composed of only
frequent non-specific terms thus finding relevant documents for it is hard.

The query scope (QS) predictor, suggested by He and Ounis (25), measures the percentage of
documents containing at least one of the query terms in the collection. High query scope indicates
many candidates for retrieval thus separating relevant results from non-relevant results might be
more difficult. Note that the query scope of the “who and whom” query is expected to be very high.
The query scope has marginal prediction quality for short queries only, while for long queries its
quality drops significantly (25)1.

Several pre-retrieval predictors were suggested based on the query term statistics, assuming
that the distribution of those values is an intrinsic feature that affects the retrieval performance.
The avgIDF and the avgICTF predictors measure the average of the idf and ictf values of the
query terms (42). The assumption is that queries with high average value, i.e., queries composed of
infrequent terms, are easier to satisfy. Other variants measure the maximal value among the query
terms, (maxIDF, maxICTF ). The varIDF, varICTF predictors measure the variance of those values,
assuming that low variance reflects the non-existence of dominant terms in the query, and therefore
may affect the quality of results. These predictors indeed show some correlation with the system
performance (25; 42).

Inspired by the post-retrieval Clarity predictor, which will be introduced in Chapter 5, the
simplified clarity score (SCS(q)) (25) measures the Kullback-Leibler divergence of the (simplified)
query language model from the collection language model, as an indication for query specificity.

The KL-divergence between the query q and the collection D is computed as follows:

SCS(q) =
∑

t∈q

P r(t |q) log
(

Pr(t |q)

P r(t |D)

)
.

It is easy to show that SCS is strongly related to the avgICT F predictor (21), assuming
each term appears only once in the query (a reasonable assumption for short queries). In such a
case, SCS(q) = log 1

|q| + avgICT F(q). Thus, SCS measures the specificity of the query while
also taking into account the query length.
1 Note that for calculating the query-scope, the dynamic (query dependent) set of documents that contain at least one of the query
terms should be enumerated – a process that requires some level of retrieval. Therefore, QS cannot be considered as a “pure”
pre-retrieval predictor.
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The average based predictors have an intrinsic advantage since they normalize the prediction
value by the number of query terms, thus they are more robust to query length and are more plausible
to compare the performance of queries of varying lengths. As we will see in the following, some
measures for prediction quality are sensitive to the query length, therefore, are non-robust while
measured over different sets of queries.

4.2.3 SIMILARITY
Alternative pre-retrieval predictors measure the similarity between the query and the collection.The
main argument behind this approach is that queries that are similar to the collection are easier to
answer since high similarity potentially indicates the existence of many relevant documents to the
query.

Zhao et al. (68) measure the vector-space based query similarity to the collection, while
considering the collection as a one large document composed of concatenation of all the documents.
The collection query similarity of a query term is defined as follows:

SCQ(t) = (1 + log(tf (t, D))) · idf (t)

Three predictors that are based on this measure were suggested and evaluated by the same au-
thors (68). The sumSCQ predictor sums the SCQ values for all query terms. The maxSCQ returns
the maximum collection query similarity over all query terms, maxSCQ(q) = maxt∈q SCQ(t),
while avgSCQ returns the average over query terms, avgSCQ(q) = 1

|q|
∑

t∈q SCQ(t). In some
experiments on TREC benchmarks (68), the query similarity based predictors perform reasonably
well, compared to other pre-retrieval predictors.

4.2.4 COHERENCY
He et al. (27) investigated the potential of query-coherence-based measures to predict query difficulty.
The query coherence with this respect is related to the inter-similarity of documents containing the
query terms. The new-class of pre-retrieval predictors that measure coherency rely on heavy analysis
during indexing time, in order to be exploited during search. Each term in the index vocabulary is
associated with a coherence score, CS(t), which reflects the average pairwise similarity between all
pairs of documents in Dt , the set of documents containing t :

CS(t) =
∑

(di ,dj )∈Dt
sim(di, dj )

|Dt |(|Dt | − 1)
,

where sim(di, dj ) is the cosine similarity between the two vector-space representations of the doc-
uments. The query coherence score is the average coherence scores of its terms.

The coherence predictor, also computed at indexing time, requires a great amount of com-
putation in order to construct a pointwise similarity matrix for all pair of documents in the in-
dex. An alternative less expensive approach, suggested by Zhao et al. (68), measures V AR(t), the
variance of the term weights over the documents containing it in the collection. The weight of
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a term that occurs in a document is determined by the specific retrieval approach. For example,
w(t, d) = log(1+tf (t,d))·idf (t)

|d| (10), is a popular tf-idf based ranking implementation.
Intuitively, if the variance of the term weight distribution over Dt is low, then the retrieval

system will be less able to differentiate between highly relevant and less relevant documents, and the
query is, therefore, likely to be more difficult. Note that the term variance V ar(t) can be computed
at indexing time thus the summation, the maximum, or the average values of the query terms can
be calculated prior to the retrieval process. maxVAR and avgVAR are the maximum value and the
average value of V ar(t) over all query terms, respectively. These predictors outperformed the CS

predictor in a comparison study performed over several TREC benchmarks (23).

4.2.5 TERM RELATEDNESS
Term relatedness based predictors explore term co-occurrence statistics. They predict good perfor-
mance if the query terms co-occur frequently in the collection, assuming all query terms are related
to the same topic. For example, the query “high blood pressure” is expected to be “easy” as evidently
the query terms frequently co-occur in the corpus.

The pointwise mutual information (PMI) is a popular measure of co-occurrence statistics of
two terms in the collection,

PMI (t1, t2) = log
Pr(t1, t2|D)

P r(t1|D)P r(t2|D)
,

where Pr(t1, t2|D) is the probability of the two terms to co-occur in the corpus, which can be
approximated by maximum likelihood estimation. Such an estimation requires efficient tools for
gathering collocation statistics from the corpus, to allow dynamic usage at query run-time.

The predictors avgPMI(q) and maxPMI(q) (21) measure the average and the maximum PMI
over all pairs of terms in the query, respectively. Note that high average PMI value indicates a query
with strongly related terms. Such a query will probably be best served by retrieval methods that
consider term proximity (38).

4.3 EVALUATING PRE-RETRIEVAL METHODS
Many works evaluated the prediction quality of pre-retrieval prediction methods (25; 42; 68; 27; 23);
however, each study employed its own search engine over different datasets and queries, thus results
cannot be compared on the same scale.

Lately, Hauff (21) compared the prediction quality of various pre-retrieval methods over
several TREC collections and topics, using the same retrieval method, thus all prediction results are
comparable.The retrieval method used by all predictors was the query likelihood language model with
Dirichlet smoothing (67), as provided by the open-source Lemur toolkit (www.lemurproject.org). In
all experiments, the retrieval parameters were fixed to the same values, so prediction quality of the
different predictors could be compared2.
2Hauff (21) also experimented with several other retrieval methods.
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Table 4.1 shows the attributes of the TREC collections used in this study, and the set of
TREC topics the predictors were tested on.The ROBUST collection is a collection of news articles.
WT10G is a collection of web pages, and GOV2 is a collection of pages extracted from some .gov
domains. For all collections, queries were derived from the TREC topic titles.These collections were
previously used by most query-performance-prediction studies (64; 12; 70; 56; 69; 16; 48).

Table 4.1: Attributes of the TREC collections used for prediction quality es-
timation (21).
Collection Data Number of TREC topic Avg. number of relevant

source documents numbers docs per topic
ROBUST Disk 4&5-CR 528,155 301-450 69
WT10G WT10g 1,692,095 451-550 61
GOV2 GOV2 25,205,179 701-850 181

The query performance prediction methods compared were the following:

1. Average inverse document frequency of query terms (avgIDF ) (25)

2. Simplified Clarity score (SCS) (25)

3. Maximum (over query terms) of Collection query similarity (maxSCQ) (68)

4. Maximum variance of the query term weights distribution (maxVAR) (68)

5. Average pointwise mutual information (avgPMI ) (21)

Tables 4.2 and 4.3 show the linear and the rank correlation of actual AP and predicted AP, for those
predictors, over the queries test sets.

Table 4.2: Comparison of various pre-retrieval prediction methods using Pearson corre-
lation. The results of the top two predictors, for each query set column, are boldfaced.
From (21).

ROBUST WT10G GOV2
301-350 351-400 401-450 451-500 501-550 701-750 751-800 801-850

avgIDF 0.591 0.374 0.576 0.153 0.221 0.393 0.315 0.172
SCS 0.578 0.319 0.518 0.087 0.189 0.325 0.278 0.096
maxSCQ 0.122 0.507 0.524 0.429 0.393 0.473 0.371 0.306
maxVAR 0.369 0.445 0.764 0.381 0.533 0.435 0.434 0.345
avgPMI 0.316 0.376 0.438 0.288 0.235 0.431 0.456 0.037

The correlation results reveal that maxVAR and maxSCQ dominant the rest of predictors,
and they are most stable over the collections and query sets. The prediction quality of maxSCQ
is comparable to maxVAR; however, its performance significantly drops for one of the queries sets
(301-350), thus it is less robust. Another interesting observation is that prediction is harder on the
Web collections (WT10G and GOV2) compared to the news collection, probably due to higher
heterogeneity of the data.
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Table 4.3: Comparison of various pre-retrieval prediction methods using Kendall′s-τ
correlation. The results of the top two predictors, for each query set column, are boldfaced.
From (21).

ROBUST WT10G GOV2
301-350 351-400 401-450 451-500 501-550 701-750 751-800 801-850

avgIDF 0.314 0.271 0.313 0.249 0.187 0.277 0.253 0.160
SCS 0.286 0.227 0.277 0.174 0.136 0.211 0.240 0.095
maxSCQ 0.181 0.422 0.474 0.435 0.270 0.331 0.291 0.209
maxVAR 0.353 0.434 0.494 0.339 0.327 0.288 0.318 0.243
avgPMI 0.176 0.290 0.232 0.208 0.212 0.301 0.314 0.034

4.4 SUMMARY
In this chapter, we covered leading pre-retrieval performance prediction methods that measure
linguistic and statistical features of the query in order to identify hidden attributes that may affect
the quality of search results. Despite the inferiority of the pre-retrieval prediction approaches, which
are not exposed to the actual search results, the experimental results over several TREC benchmarks
reveal that some of these predictors perform reasonably well, and as we shall see in the next chapter,
their prediction quality is comparable to that of more complex post-retrieval prediction methods.
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C H A P T E R 5

Post-Retrieval Prediction
Methods

So far, we have discussed pre-retrieval prediction methods that only consider the query for prediction,
by analyzing the query statistical and linguistic characteristics. In contrast, post-retrieval methods
analyze the search results, that is, the list of documents most highly ranked in response to the
query. Therefore, post-retrieval methods are usually more complex as the top-results are retrieved
and analyzed. Moreover, in contrast to pre-retrieval methods, the prediction quality of post-retrieval
methods strongly depends on the retrieval process, as different results are expected for the same
query when using different retrieval methods.

However, if we ignore the search results as pre-retrieval methods do, we risk missing important
aspects of the query difficulty as reflected by the results exposed to the users. In extreme cases, pre-
retrieval methods might wrongly judge a query as “easy”, even in cases that the retrieved results
are totally irrelevant, due to flaws or failures in the retrieval process. Moreover, query independent
factors such as document (static) scores (authority, freshness, etc), have strong effect on the ranking
of search results but can hardly be predicted a priori. In addition, the coherence of the search results,
i.e., how focused they are on aspects related to the query, is not captured by the query text and is
hard to predict without a deep analysis of the result list.

Furthermore, as the complexity of retrieval methods increases, the quality of search results
is affected by many more factors that are query-independent. Modern search engines consider
personalization and geospatial aspects of the searcher, the diversity of results, trends as reflected by
query log analysis, and many other factors. Such considerations cannot be predicted by analyzing
the query only; however, they strongly affect the search results.

Therefore, post-retrieval prediction methods are still considered attractive and dominant,
despite their higher complexity, and retain most of the attention of the IR community. New methods
are still proposed and on-going comprehensive research on post-retrieval methods is still being
published in leading conferences and journals.

Post-retrieval methods can be categorized into three main paradigms. Clarity based methods
directly measure the “focus” (clarity) of the search results with respect to the corpus. Robustness-
based methods evaluate how robust the results are to perturbations in the query, the result list, and the
retrieval method. Score distribution based methods analyze the score distribution of the search result
as an indicator of query difficulty. The following sections discuss these three prominent paradigms.
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5.1 CLARITY
The Clarity approach for performance prediction (14) is based on measuring the “coherence” (clarity)
of the result-list with respect to the corpus. We expect good results to be focused on the query’s topic;
thus, a shared vocabulary of words related to the topic is expected to be found in those results.

According to the Clarity approach, “coherence” is the extent to which top results use the
same language. Specifically, Clarity considers the discrepancy between the likelihood of words most
frequently used in retrieved documents to their likelihood in the whole corpus. The conjecture is
that a common language of the retrieved documents, which is distinct from general language of the
whole corpus is an indication for good results. In contrast, in an unfocused set of results, the language
of retrieved documents tends to be more similar to the general language, and retrieval is expected to
be less effective.

5.1.1 DEFINITION
Let q, d, and D denote a query, a document and a collection of documents, respectively. Let Dq ⊆ D

denotes the result set for q. The Clarity measure applied by Cronen-Townsend et al. (14) is based
on measuring the KL-divergence between the language model of the result set, Pr(·|Dq), and the
language model of the entire collection, Pr(·|D), as given by Equation 5.1.

Clarity(q) = KLdiv(P r(·|Dq)||Pr(·|D)) =
∑

t∈V (D)

P r(t |Dq) log
Pr(t |Dq)

P r(t |D)
(5.1)

where V (D) is the vocabulary (the set of unique terms) of the collection.
Clarity(q) measures the divergence between two language models: Pr(·|Dq), which is the

probability distribution over the terms in the result set Dq ; and Pr(·|D), which is the probability
distribution over the terms in the collection D. We describe the language modeling approach used
by Cronen-Townsend et al. (14) to infer those distributions from the raw data.

The language model induced from the corpus is estimated directly, based on the maximum
likelihood estimation (MLE), using the relative frequency of the term occurrences in the collection,

Pr(t |D)
def= tf (t,D)

|D| .
The language model induced from the result set is computed by summing over all documents

in the list:
Pr(t |Dq)

def=
∑

d∈Dq

P r(t |d)P r(d|q).

The probability of term t in document d is estimated by the relative frequency of t in d, smoothed
by a linear combination with its collection relative frequency:

Pr(t |d)
def= λ

tf (t, d)

|d| + (1 − λ)P r(t |D)
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where λ might be a free parameter ( Jelinek-Mercer smoothing) or document dependent (Dirichlet
smoothing: λ = |d|

µ+|d| , where µ is a free parameter (35)).
The probability of a document given the query Pr(d|q) is obtained by Bayesian inversion,

with uniform prior probabilities for documents in Dq and zero prior probability for all documents
not in Dq ,

Pr(d|q)
def= Pr(q|d)P r(d)∑

d ′∈Dq
P r(q|d ′)P r(d ′)

∝ Pr(q|d);

Pr(q|d), the likelihood of a query given a document, is estimated using the query-likelihood based
(unigram) language modeling approach (50)

Pr(q|d)
def=

∏

t∈q

P r(t |d).

The efficiency of Clarity score computation by Equation 5.1 is dominated by the estimation
of the language model of the result set, since the collection’s language model can be precomputed
at indexing time. The main difficulty is the requirement to sum over all documents in the result
set. This sum can be approximated by considering only top documents in the list or by sampling
techniques. In the original work of Cronen-Townsend et al. (14), the language model of the result set
was estimated by Monte-Carlo sampling from the result set until a limit of 500 unique documents
is reached. In a later work of the same authors (15), the top 500 documents in the result set were
analyzed, following the observation that Pr(d|q) falls off sharply below this cutoff.The sensitivity of
Clarity, as well as other post-retrieval predictors, to the number of top results used for performance
prediction is further discussed in Section 5.5.

5.1.2 EXAMPLES
The following example was first given in (14). Consider the following two TREC queries, “What
adjustments should be made once federal action occurs?”, and “Show me any predictions for changes in the
prime lending rate and any changes made in the prime lending rates”. These queries happen to be two
query variants for TREC topic 56 from the TREC-9 query track (8). In this track, each topic was
presented by two variant queries; one (less coherent) query is formulated based on the topic only, and
one (more coherent) query that is formulated based on the topic and some given relevant documents.
In the example above, the first query is the topic-based query which is expected to be less coherent
than the second one which was formulated after considering some relevant documents to the topic.

The Clarity of the two query variants is plotted in Figure 5.1. The Clarity score of the top
40 contributing terms, sorted in descending order of contribution to the query accumulated Clarity
score. In this representation, the Clarity score is the total area under the graph, leading to a Clarity
score of 2.85 for the first (coherent) query and 0.37 for the second (less coherent) query.The contrast
between the high-Clarity query and the low-Clarity query is clear.

Another instructive illustration for the Clarity prediction power was given in (21). Figure 5.2
shows the Clarity scores of some TREC topics for three different result sets. For each topic, the
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Figure 5.1: Clear (A) versus vague (B) query.The horizontal axis denotes the most significant contribut-
ing terms and the vertical axis the contribution of each term to the clarity score. Based on (14).

figure plots the Clarity score of 1) the set of relevant documents, 2) a sampled set of non-relevant
documents1, and 3) a random sample of documents from the collection. As expected, the Clarity
score of the relevant set is higher, in general, than the scores of the non-relevant and the random
sets. It is interesting to note that the Clarity score of the non-relevant document set is usually higher
than the score of the random set, as the latter one should be low (by definition).

5.1.3 OTHER CLARITY MEASURES
The Clarity measure was the first predictor proposed for query difficulty and can still be considered
as state-of-the-art. Inspired by the success of the Clarity score, different forms of Clarity estimation
were proposed. Amati et al. (1) applied a similar approach by measuring the divergence between
query terms’ frequency in the result list and that in the entire corpus, following the divergence
from randomness framework. The Jensen-Shannon divergence ( JSD) between the result set and the
entire corpus has also been shown to indicate query difficulty (12). The JSD is a symmetrized
and smoothed version of the Kullback-Leibler divergence. Carmel et al. (12) validated that query
difficulty is correlated with the JSD distances between the query q, the relevant documents set, Rq ,
and the collection D. In the absence of knowledge about Rq , this set can be approximated by finding
a document subset from the result set Dq , that leads to a shorter distance to the query. The distances
are then combined to provide a prediction of query difficulty.

Cronen-Townsend et al. (15), in a later work, applied a weighted KL-divergence measure
which considers the document ranking while constructing the language model of the result set.
A variant of Clarity which utilizes only documents containing all query terms and ignores high-

1The Qrels sets in TREC contain many documents that were retrieved by participants, but they were judged as non-relevant to the
topic. Therefore, these non-relevant documents exhibit some similarity to the query. The non-relevant set was created by random
sampling from those documents.
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Figure 5.2: The Clarity score of some TREC topics for 1) a set of relevant documents, 2) a sampled set
of non-relevant documents, and 3) a random sample of documents. Based on (21).

frequency terms in the language models was proposed for improving Clarity estimation on the
Web (24).

5.2 ROBUSTNESS

An alternative effective performance-prediction paradigm is based on estimating the robustness
of the result set. Robustness can be measured with respect to perturbations in the query, in the
documents, and in the retrieval method. Intuitively, the more robust the result list is, the less difficult
the query. In the following, we cover these three types of robustness.

5.2.1 QUERY PERTURBATION
Methods based on query perturbation measure the robustness of the result list to small modifications
of the query. When small changes to the query result in large changes to the search results, our
confidence in the correctness of these results is diminished.

Zhou and Croft (71) proposed a framework for measuring query robustness, named Query
Feedback (QF), which models retrieval as a communication channel problem. The input is the query,
the channel is the search system, and the set of results is the noisy output of the channel. From the
list of results a new query is generated, based on the terms with maximum contribution to the Clarity
score, and then a second list of results is retrieved for that query. The overlap between the two lists
is used as a robustness score. When the overlap between the two result sets is lower, the noise in the
communication channel in higher; hence, the query is more difficult.
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The assumption behind the QF predictor is that the language model induced from the result
set is an approximation of the “true” query language model that generates both the original query
and results.Therefore, we anticipate that the results for a query that is based on that language model
will be similar to the original results, and dissimilarity may indicate query difficulty.

Query perturbation was also examined by Vinay et al. (56), who studied the effect of small
modifications to the query term weights on the search results. Similarly, if results were changed
drastically then the query is presumed to be difficult.

Another type of robustness with respect to the query perturbation was measured by the overlap
between the result set retrieved in response to the entire query and the result sets retrieved in response
to sub-queries composed of individual query terms (65). This was done following the observation
that some query terms have little or no influence on the retrieved documents, especially in difficult
queries. The overlap between the results returned in response to the full query and a sub-query (that
is, a query based on a single query term) is measured as the size of intersection between the top ten
results of the two queries. The overlaps between the query and all sub-queries are represented by a
histogram h(i), i = 0, 1, ..., 10, where entry h(i) counts the number of sub-queries that agree with
the full query for exactly i documents in the top 10 results. This histogram represents the agreement
between the query to its sub-queries and is closely related to the κ-statistics (65), which is a standard
measure for the strength of agreement between experts.

Figure 5.3 illustrates a typical histogram for a difficult query and an easy query. The figure
shows the average histogram for all difficult queries in a training set of 250 queries (P@10 ≤ 0.3)
and the average histogram for the easy queries (P@10 ≥ 0.5). Queries that perform poorly have
their overlaps clustered in the lower area of the histogram and vice versa. This suggests that a good
pattern for estimating query difficulty would be one where the query is not dominated by a single
keyword. Rather, all (or at least most) keywords contribute somewhat to the final results.

One of the advantages of the overlap estimator is the search engine’s ability to apply it efficiently
during query execution since all data it uses can be generated by the search engine during its normal
mode of operation. The top results for each of the sub-queries can be accumulated simultaneously
during evaluation of the full query.

5.2.2 DOCUMENT PERTURBATION
The effect of document perturbations on the resultant retrieved list is another form of robustness
estimation (56; 70). The top results are injected with noise (e.g., by adding or removing terms)
and then re-ranked. High similarity between the original list and the re-ranked list reveals query
robustness. The reason is that small random perturbations of documents are unlikely to result in
major changes to documents’ retrieval scores. Thus, if the retrieval-scores of documents in the result
set are spread over a wide range, then these perturbations are unlikely to result in significant changes
to the ranking. Consequently, the list could be considered as robust with respect to documents’
perturbations.
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Figure 5.3: A typical histogram of overlaps for difficult queries (left) and for easy queries (right). The
horizontal axis measures the amount of document overlap and the vertical the fraction of query terms
with this overlap. From (65).

5.2.3 RETRIEVAL PERTURBATION
In general, different retrieval methods retrieve different results for the same query, when applied over
the same document collection. Therefore, a high overlap in results retrieved by different methods
may be related to high agreement on the (usually sparse) set of relevant results for the query. In
contrast, low overlap may indicate no agreement on the relevant results, hence, query difficulty.

Aslam and Pavlu (2) studied robustness of the query with respect to using different retrieval
methods. Specifically, they showed that the disagreement between result lists returned for the query
by multiple scoring functions is an indication for query difficulty. Therefore, query difficulty is
predicted by submitting the query to different retrieval methods and measuring the diversity of the
ranked lists obtained. To measure the diversity of a set of ranked lists, each ranking is mapped to
a distribution over the document collection, where highly ranked documents are associated with
higher distribution weights, and vice versa. Given the set of distributions, the JSD distance is used
to measure the diversity of the distributions corresponding to these ranked lists.

Experimental results on TREC data show a relatively high correlation between systems agree-
ment and query performance. By analyzing the submissions of all participants to several TREC
tracks, Aslam and Pavlu showed that the agreement between submissions highly correlates with the
query difficulty, as measured by the median performance (AP) of all participants. Moreover, as the
JSD between more submissions is analyzed, the prediction quality improves.

5.2.4 COHESION
The cohesion of the result set, another aspect of robustness, can be measured by its clustering
patterns, and relates to query difficulty (56). Following the “cluster hypothesis” (54), which states
that documents relevant to a given query are likely to be similar to one another, the lack of “clear”
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clusters in the result set implies that the list does not contain many relevant documents. Therefore,
a good retrieval returns a single, tight cluster, while a poorly performing retrieval returns a loosely
related set of documents covering many topics. Vinay et al. (56) measured the “clustering tendency”
of the result set by the distance between a randomly selected document and it’s nearest neighbor
from the result set. When the list contains inherent clusters, the distance between the random
document and its closest neighbor, dnn, is likely to be much larger than the distance between dnn

and its own nearest neighbor in the list. This measure corresponds to using the Cox-Lewis statistic,
which measures the “randomness” level of the documents retrieved for the query by the system.

The utilization of the cluster hypothesis for query-performance prediction was also demon-
strated by Diaz (16) who showed that query performance correlates with the extent to which the
result set respects the cluster hypothesis, that is, the extent to which similar documents receive similar
retrieval scores. In contrast, a difficult query might be detected when similar documents are scored
differently.

In Diaz’s spatial autocorrelation approach, a document’s “regularized” retrieval-score is the
average of the scores of its most similar documents, weighted according to their similarity to the
document. Then, the linear correlation of the regularized scores with original scores is used for
difficulty estimation. Comprehensive experiments demonstrate that autocorrelation outperforms
Clarity on several TREC benchmarks. However, as the author noted, there are several cases, e.g.,
when diversity of results is in favor, that high autocorrelation may indicate a poor performance as
we prefer only one representative from a cluster at the top results.

5.3 SCORE DISTRIBUTION ANALYSIS
Measuring the Clarity or the robustness of a query requires an analysis of the result set—a time-
consuming task in most cases, especially when retrieving the content of the top results. An appealing
and less expensive alternative is to analyze the score distribution of the result set to identify query
difficulty. The following section describes several predictors that are based on score distribution
analysis.

In most retrieval models, the similarity of documents to a query is reflected by their retrieval
scores. Hence, the distribution of retrieval scores can potentially help predict query performance.
Indeed, the highest retrieval-score and the mean of top scores indicate query performance (53) since,
in general, low scores of the top-ranked documents exhibit some difficulty in retrieval. As another
example, the difference between retrieval scores produced in a query-independent manner (e.g.,based
on link analysis) and those produced in a query-dependent way, which reflects the “discriminative
power” of the query, was also shown to be an indicator for query performance (6).

A recently proposed predictor is the Weighted Information Gain (WIG) measure (71). WIG
essentially measures the divergence between the mean retrieval score of top-ranked documents and
that of the entire corpus. The hypothesis is that the more similar these documents are to the query,
with respect to the query similarity exhibited by a general non-relevant document (i.e., the corpus),
the more effective the retrieval.
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WIG was originally proposed and employed in the MRF retrieval framework (38), which
allows for arbitrary text features to be incorporated into the scoring formula, in particular features
that are based on occurrences of single terms, ordered phrases, and unordered phrases. However,
if no term-dependencies are considered – i.e., a bag-of-words representation is used, then MRF
reduces to using the query likelihood model. Indeed, it was noted that WIG is very effective under
such implementation (69).

Specifically, given query q, collection D, a ranked list Dq of documents, and the set of k

top-ranked documents, Dk
q , WIG is calculated as follows:

WIG(q) = 1
k

∑

d∈Dk
q

∑

t∈q

λ(t) log
Pr(t |d)

P r(t |D)

where λ(t) reflects the relative weight of the term’s type t and is inversely related to the square root
of the number of query terms of that type. For the simplified case when all query terms are simple
keywords, this parameter collapses to λ(t) = 1√|q| , a normalization with respect to the query length,
which supports inter-query compatibility.

Another predictor suggested recently that belongs to this score-analysis family of predictors is
based on estimating the potential amount of query drift in the list of top-retrieved documents. Work
on pseudo-relevance feedback based query expansion often uses a centroid representation of the list
Dk

q as an expanded “query model”. While using only the centroid yields poor retrieval performance,
anchoring it to the query via interpolation yields improved performance, leading to the conclusion
that the centroid manifests query drift (39). Thus, the centroid could be viewed as a prototypical
“misleader” as it exhibits (some) similarity to the query by virtue of the way it is constructed, but
this similarity is dominated by non-query-related aspects that lead to query drift. Shtok et al. (48)
showed that µ, the mean score of results in Dk

q , corresponds in several retrieval methods to the
retrieval score of a centroid-based representation of Dk

q .Thus, the standard deviation of the retrieval
scores in Dk

q , which measures the dispersion of scores around the average, reflects the divergence of
results from a non-relevant document that exhibits high query similarity (the centroid).

The Normalized Query Commitment (NQC) predictor (48) measures the standard deviation
of retrieval scores in Dk

q , normalized by the score of the whole collection Score(D):

NQC(q) =

√
1
k

∑
d∈Dk

q
(Score(d) − µ)2

|Score(D)| .

Documents with retrieval scores (much) higher than µ, the score of a prototypical misleader, are
potentially less likely to manifest query drift; therefore, high positive divergence from µ of the
retrieval scores of these documents correlates with improved retrieval effectiveness. Such documents
could be considered as exhibiting positive query commitment. For documents with scores lower than
µ, if we assume that there are only a few relevant documents in the corpus that yield “reasonable”
query similarity, then a small overall number of documents exhibiting query similarity can potentially
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indicate a small number of misleaders. The lower the retrieval score of a document with respect to
µ, the less it exhibits reasonable query similarity. Hence, the overall number of misleaders in Dk

q

decreases with increased negative divergence from µ. As a consequence, high standard deviation
correlates with lower query drift of Dk

q and hence with better query performance.
Figure 5.4 shows a geometric interpretation of NQC . The two top graphs present retrieval

scores curves for the top 100 results for “difficult” and “easy” queries, respectively. The shift between
these two scenarios, which is further exemplified in the bottom graph, amounts to rotating (and
curving) the retrieval scores line in a clockwise manner. The extent of the rotation is measured by
NQC .
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Figure 5.4: Geometric interpretation of NQC . The top two graphs present retrieval-scores curves for
“difficult” and “easy” queries. The shift between these two scenarios, which is further exemplified in the
bottom graph, amounts to rotating (and curving) the retrieval-scores line in a clockwise manner. The
extent of the rotation is measured by NQC . From Shtok et al. (48).

NQC analyzes the score distribution of the top results similarly to WIG. In contrast to WIG,
this estimator measures the divergence of results from the centroid, a “pseudo non-relevant docu-
ment” that exhibits a relatively high query similarity, as reflected by the standard deviation of the
score distribution. WIG, in contrast, measures the dispersion of the top results’ scores from the whole
collection, a non-relevant pseudo document that is not necessarily similar to the query. The high
“predictive power” of both NQC and WIG over several benchmarks, as well as their computational
efficiency, reflects the suitability of score distribution analysis for query performance prediction.
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Table 5.1: Test collections and topics. The last column reports the average number of
relevant documents per topic. From (49).
Collection Data Number of TREC topic Avg. number of rel.

source documents numbers docs per topic
TREC4 Disks 2&3 567,529 201-250 130
TREC5 Disks 2&4 524,929 251-300 110
ROBUST Disk 4&5-CR 528,155 301-450,601-700 69
WT10G WT10g 1,692,095 451-550 61
GOV2 GOV2 25,205,179 701-850 181

Table 5.2: The prediction quality (Pearson correlation) of post-retrieval
predictors. The two best results in a column are boldfaced. From (49).
Predictor TREC4 TREC5 WT10G ROBUST GOV2
Clarity 0.453 0.42 0.348 0.512 0.433
WIG 0.544 0.297 0.376 0.543 0.479
NQC 0.588 0.354 0.488 0.566 0.36
QF 0.627 0.414 0.426 0.285 0.476

5.4 EVALUATING POST-RETRIEVAL METHODS
Similarly, to the evaluation of pre-retrieval predictors, there are many works that study the prediction
quality of post-retrieval predictors (12;71;16;48).However, to provide a coherent comparison picture
we should measure the prediction quality of different predictors on the same scale, using the same
datasets, the same sets of queries, and the same retrieval methods. Shtok et al. (49) conducted such
an experiment on the TREC collections, summarized in Table 5.1.

In these experiments, the authors used the TREC topic titles for queries, except for TREC4
for which no titles are provided, and hence, topic descriptions are used. They applied tokenization,
Porter-stemming, and stopword removal (using the INQUERY list) to all data via the Lemur toolkit
(www.lemurproject.org). The query likelihood language model with Dirichlet smoothing was used
for retrieval (67).

The post-retrieval predictors compared in this experiment were Clarity (14), WIG (71),
NQC (48) and query feedback (QF ) (71). Recall that Clarity measures the KL divergence be-
tween a (language) model induced from the result-list and the corpus model. The WIG predictor
measures the divergence of retrieval scores of the top-ranked results from that of the corpus. NQC
measures the normalized standard deviation of the top scores, and QF measures the divergence
between the original top results for the query and the results obtained for a query constructed from
the top results. The number of documents in the result-list was set to 100 for NQC , Clarity and the
QF predictors. For WIG, this number was set to five following previous recommendations (69).

Table 5.2 shows the Pearson correlation between the actual and predicted AP obtained by
the predictors over those datasets. Table 5.3 shows the Kendall′s-τ correlation. Similarly, to the
experimental results with the pre-retrieval methods, there is no clear “winner”. All predictors exhibit
comparable results. NQC exhibits good performance over most collections but does not perform
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Table 5.3: The prediction quality (Kendall′s-τ correlation) of post-
retrieval predictors. The two best results in a column are boldfaced.
From (49).
Predictor TREC4 TREC5 WT10G ROBUST GOV2
Clarity 0.352 0.296 0.291 0.403 0.293
WIG 0.491 0.252 0.300 0.386 0.336
NQC 0.451 0.318 0.292 0.413 0.231
QF 0.475 0.400 0.273 0.261 0.306

very well on the GOV2 collection. Similarly, QF performs well over some of the collections but is
inferior to other predictors on the ROBUST collection.

5.5 PREDICTION SENSITIVITY
The prediction quality of all post-retrieval predictors discussed so far depend on several configuration
parameters, especially on the number of top results used for analysis. We question the sensitivity of
the predictors to these parameters.

Figure 5.5 presents the results of some experiments with the sensitivity of various predictors.
The figure plots the prediction quality (measured by Pearson correlation) of Clarity, WIG, and NQC
predictors, over four TREC collections, as a function of the result-list size.

The first observation is that the prediction quality of Clarity is robust, with respect to the
number of top results used for the language model construction, over all collections. This is due to
the fact that the language model constructed from top results weights the documents by their query
likelihood retrieval scores. Hence, low-scored documents have little effect on the constructed model
and, consequently, on the resultant Clarity values.

In contrast, the prediction quality of both WIG and NQC is sensitive to the number of results.
This finding could potentially be attributed to the fact that both measures calculate their prediction
based on score-distribution analysis. Specifically, for all collections,WIG prediction quality is optimal
for low values of retrieved results (often 5), which corresponds to previous findings (71); WIG
prediction quality significantly drops when we increase the number of results used for calculation.
The prediction quality of NQC is usually optimal for 80, and then it gradually drops and levels off
for higher values2. We note, however, that no single predictor of the three dominates the others over
the entire tested range of number of retrieved results.

5.6 SUMMARY
In this chapter, we covered post-retrieval prediction methods that analyze the search results while
looking for clues for retrieval quality.Clarity based approaches measure the coherence of search results

2In a later work Shtok et al. (49) showed that NQC is sensitive to the average number of relevant documents per topic in the
collection. For GOV2, which has high such value, NQC prediction quality improves with the number of top results used for
calculation.
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Figure 5.5: Prediction quality (measured by Pearson correlation) of Clarity, WIG, and NQC , over four
TREC collections, as a function of the result-list size.

as reflected by their divergence from the whole collection. Robustness-based approaches measure
the robustness of results in the presence of perturbations in the query, the document content, and
the retrieval method. Score analysis based approaches analyze the score distribution of results. The
experimental results with prediction quality over some TREC benchmarks showed comparable
performance between leading methods of all types.

The post-retrieval methods described in this chapter are very different in nature as each
prediction type focuses on analyzing another aspect of the search results. Therefore, combining
several predictors of different types may bring some merit to prediction quality. Similarly, it seems
that there is also potential for combining pre-retrieval methods with post-retrieval ones. In the
next chapter, we discuss how different predictors can be combined to provide better performance
prediction.
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C H A P T E R 6

Combining Predictors
6.1 LINEAR REGRESSION
The performance predictors described so far measure different aspects of the query; thus, a question
arises whether combining these predictors can enhance prediction quality. Many works in the ma-
chine learning domain have shown that combining individual classifiers is an effective technique for
improving accuracy of classification (30). The basic idea is that a group of experts tends to classify
better than a single expert. Similarly, it can be assumed that better performance could be expected
as each predictor of the group would have advantages under different circumstances. In other words,
if an individual predictor makes a mistake, the others may be able to correct it.

One possible approach for prediction combination uses linear regression based on training
data. Given a set of n training queries, each associated with known AP, and a vector of p predicted
values given by different predictors, we can learn a weight vector β̄ that associates a relative weight for
each predictor based on its relative contribution to the combined prediction.A linear regression model
assumes that the relationship between AP(q) and the p-vector of predictions x̄i is approximately
linear. Thus, the model takes the form of n linear equations, for the n training queries:

AP(qi) = x̄i β̄ + εi , i = 1, . . . , n

where x̄i β̄ is the inner-product between vectors x̄i and β̄, and εi is an unobserved random variable,
normally distributed, that adds noise to the linear relationship. The linear regression task is to find
β̄ that mostly fits the n equations, usually by minimizing the root mean square error (RMSE)

RMSE =
√

1
n

∑

i

(
AP(qi) − x̄i β̄

)2
.

Linear regression analysis can be applied to quantify the strength of the relationship between
AP(q) and the prediction values x̄i , to assess which predictor may have no relationship with AP(q)

at all, and to identify which subsets of predictions contain redundant information about AP(q).
Thus, once one of them is known, the others are no longer informative.

6.2 COMBINING PRE-RETRIEVAL PREDICTORS
The pre-retrieval prediction methods described in Chapter 4 measure different aspects of the query
as an indication of query difficulty.Therefore, such methods are good candidates to combine, which,
hopefully, will lead to improved prediction accuracy.
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However, before a combination can take place, we carefully investigate how different the
predictors really are,as strong dependency between predictors points out that they measure exactly the
same aspect of the query. Hauff (21) studied the correlation between various pre-retrieval predictors
over several TREC benchmarks. Table 6.1 shows the linear correlation between prediction values of
the predictors over queries 301-450 of the TREC ROBUST collection. Similar results were obtained
over other benchmarks.

Table 6.1: Pearson correlation between the prediction values of
various pre-retrieval predictors for topics 301-450 over the TREC’s
ROBUST collection. From (21).

avgIDF maxIDF avgICTF SCS SumSCQ QS
avgIDF 0.721 0.933 0.875 0.155 0.683
maxIDF 0.694 0.651 0.165 0.417
avgICTF 0.915 0.138 0.693
SCS 0.053 0.723
SumSCQ 0.076

As expected, the table shows that avgIDF is highly correlated with avgICTF, as both measure
similar term statistics (Pearson correlation of 0.933). The two predictors are also highly correlated
with the simplified Clarity score, SCS (0.875 and 0.915, respectively) as there is strong dependency
between SCS and avgICTF (see Chapter 4). The correlation between other predictor pairs is much
lower. Interestingly, there is relatively substantial correlation between the query scope predictor (QS)
and all other predictors, excluding SumSCQ, which does not correlate with any of the predictors.

The low correlation between SumSCQ and all other predictors illustrates the potential of
combining it with other predictors. Hauff et al. (22) experimented with combining pre-retrieval
predictors in principled way using several variants of linear regression methods. Ideally, a training
set of queries should be used for learning a regression model and this model should be tested on a
different, independent set of queries. However, due to the very limited query set size, cross-validation
was applied by splitting the query set into k partitions.The linear model was tuned on k − 1 partitions
and the k’th partition was used for testing. This process was repeated and the evaluation is based
on averaging the evaluation results for the k partitions. The results show that in terms of Pearson
correlation, the combined predictor is better than individual predictors, although it is comparable to
the best single predictor in terms of RMSE. It is likely that the main reason for the disagreement
between the two evaluation metrics is the fact that the training data is over-represented at the lower
end of the average precision values (0.0-0.2) while very few training queries exist in the middle and
high range, which in turn leads to deficient RMSE performance of the (combined) predictor.

6.3 COMBINING POST-RETRIEVAL PREDICTORS
Post-retrieval prediction methods can be combined with each other, as well as with pre-retrieval
methods, using the same linear regression and by other regression methods. Unfortunately, not
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much work has been done in this direction. Yom-Tov et al. (64) combined the pre-predictor avgIDF
with the post-predictor based on an overlap histogram and reported some improvement in prediction
quality. Zhou and Croft (71) integrated WIG and QF using a simple linear combination where the
combination weight is learned from the training data set. A similar linear integration was applied by
Diaz (16) for incorporating the spatial autocorrelation predictor with Clarity and with the document
perturbation based predictor (70). In all those trials, the results of the combined predictor were
significantly better than the results of the single predictors, suggesting that the single predictors
measure orthogonal properties of the retrieved results that relate to query performance.

6.3.1 COMBINING PREDICTORS BASED ON STATISTICAL DECISION
THEORY

The successful combination of WIG and QF (71) and of autocorrelation and Clarity (16) demon-
strated the high potential in combining independent predictors and led to attempts to develop a
general framework for combining post-retrieval predictors in a principled way.

Shtok et al. (49) suggested such a framework based on statistical decision theory. The frame-
work, denoted UEF for utility-estimation-framework, is inspired by the risk minimization frame-
work (35). In UEF, the ranked list of results, Dq , could be viewed as a decision made by the retrieval
method in response to a query, q, so as to satisfy the user’s hidden information need, Iq .The retrieval
effectiveness of Dq reflects the utility provided to the user by the system, denoted by U(Dq |Iq).

Therefore, the prediction task in this framework is interpreted as the prediction of the utility
the user can gain from the retrieved result list Dq . Suppose that there is an oracle that provides us
with a “true” model of relevance RIq representing the “true” information need. Suppose also that
RIq can be used to re-rank the result list, π(Dq, RIq ). Then, according to the probability ranking
principle (45),using RIq yields a ranking of maximal utility (e.g., all relevant documents are positioned
at the highest ranks, and all non-relevant documents are positioned below the relevant documents).
Thus, we can use the maximal-utility ranked list to estimate the utility of the given ranked list, based
on their “similarity”.

U(Dq |Iq) ≈ Sim(Dq,π(Dq, RIq )). (6.1)

In practice, we have no explicit knowledge of the underlying information need except for the
information in q — nor do we have an oracle to provide us with a model of relevance. Hence, we use
estimates that are based on the information in q and in the corpus. Using statistical decision theory
principles, we can approximate Equation 6.1 by the expected similarity between the given ranking
and the rankings induced by estimates for RIq :

U(Dq |Iq) ≈
∫

R̂q

Sim(π(Dq, R̂q), Dq)P r(R̂q |Iq)dR̂q . (6.2)

R̂q is an estimate to the “true” relevance model RIq ; π(Dq, R̂q) is the re-ranking of Dq based on
the relevance model estimate; Pr(R̂q |Iq) is the probability that R̂q is equal to RIq .
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Equation 6.2 can be instantiated in numerous ways to yield a specific query-performance
predictor. We have to (i) derive estimates for the true relevance model (R̂q ), (ii) estimate the extent
to which these estimates represent the hidden information need (Pr(R̂q |Iq)), and (iii) select mea-
sures of similarity between ranked lists. Given a sample of relevance model estimates, we can then
approximate Equation 6.2 as follows:

U(Dq |Iq) ≈
∑

R̂q

Sim
(
π(Dq, R̂q), Dq

)
Pr(R̂q |Iq). (6.3)

Figure 6.1 illustrates the prediction process in the UEF framework. Given a query q and the
corresponding list of retrieved results Dq , a sample of relevance models are induced from the list.
Each relevance model is then used to re-rank Dq , and its quality is estimated as a representative
of the “true” information need. The similarity of the re-rankings to the original ranking is then
measured and scaled by the quality estimation of the relevance model. The (weighted) average of
these similarity values provides the final performance prediction.
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Figure 6.1: A flow diagram of the prediction process in the UEF framework.

6.3.2 EVALUATING THE UEF FRAMEWORK
In this section, we describe the instantiation applied in (49) to evaluate the UEF framework for
performance prediction.
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6.3.2.1 Relevance model estimation
In general, sampling estimates for the relevance model is done as follows: an estimate is constructed
by sampling a set of documents S from Dq . Then, the relevance model estimate constructed from
S is the language model induced from S (36), R̂q;S = Pr(·|S), which is a probability distribution
over the vocabulary.

In the experiments described below, the sampling strategy from Dq , to define a sampled
relevance-model estimate, is based on using all Dq as a single sampled set. The resultant predictor
instantiated from Equation 6.3 could be regarded as the posterior-mode estimate for the integral
in Equation 6.2 (35). In this case, the summation in Equation 6.3 is reduced to one relevance-
model estimate only. Hence, the utility prediction is based on measuring the similarity between the
original ranking Dq and the re-ranking induced over Dq by the single relevance model estimate
(constructed from Dq ).This similarity is multiplied by the “quality” of the relevance model estimate,
Pr(R̂q;Dq |Iq), i.e., the extent to which this estimate represents the information need.

6.3.2.2 Quality of the relevance model estimate
Estimating the extent to which a relevance-model estimate, R̂q;Dq , represents Iq is addressed by
adapting four performance predictors, originally proposed for predicting the quality of a result list.
These predictors represent the different post-retrieval query-performance prediction paradigms,
surveyed in Chapter 5; namely, the Clarity method, the WIG and NQC measures that rely on score
distribution, and the query-feedback predictor (QF ) that is based on ranking robustness.

Clarity measures the quality of R̂q;Dq directly; thus it is the most natural estimator for the
relevance model quality. WIG and NQC both predict the average precision of Dq . Using these
predictors for quality estimation is based on the assumption that the higher the AP of Dq , the better
R̂q;Dq in representing the true information need.

QF measures the (overlap based) similarity between Dq and a new result list constructed
using R̂q;Dq as a query run against the entire corpus. The idea is that a relevance model constructed
from a high quality list would not yield a ranking that drifts much from the original ranking. Thus,
QF can be utilized as a measure for relevance model quality – the less drift the ranking it induces
manifests, the more likely it is to represent the information need.

6.3.2.3 Similarity between ranked lists
The remaining task for instantiating Equation 6.2 is the estimation of the similarity
Sim(π(Dq, R̂q;Dq ), Dq) between two rankings of the given result list Dq . Naturally, in the ex-
periments described below, Pearson correlation is used for that task.

6.3.3 RESULTS
The prediction quality of the UEF -based predictors, when using the four quality measures for the
relevance model estimate, is presented inTable 6.2.Evidently, the UEF -based predictors consistently
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and substantially improve over using the quality measures as predictors in their own right; i.e., to
directly predict the search effectiveness of the original list.

For example, using UEF with Clarity improves prediction quality by more than 30% on
average, over the five TREC benchmarks, with respect to direct usage of Clarity for performance
prediction. Furthermore, the improvements over all four quality measures for the WT10G bench-
mark is quite striking as it is known to posit a difficult challenge for performance prediction (71);
the relative improvements for GOV2, on the other hand, are in general smaller than those for the
other collections.

Table 6.2: Prediction quality of UEF when fixing the inter-ranking similarity mea-
sure to Pearson, and using four predictors for quality estimates.The prediction quality
of each predictor, when used to directly predict search effectiveness, is presented for
reference in the first row of a block. The best result in a column is boldfaced. From
Shtok et al (49).
Predictor TREC4 TREC5 WT10G ROBUST GOV2 avg. improv.
Clarity 0.453 0.42 0.348 0.512 0.433
UEF (Clarity) 0.623 0.629 0.483 0.635 0.462

(+37.5%) (+49.8%) (+38.8%) (+24%) (+6.7%) (+31.4%)
WIG 0.544 0.297 0.376 0.543 0.479
UEF (WIG) 0.638 0.555 0.453 0.644 0.458

(+17.3%) (+86.9%) (+20.5%) (+18.6%) (−4.4%) (+27.8%)
NQC 0.588 0.354 0.488 0.566 0.36
UEF (NQC) 0.641 0.545 0.522 0.619 0.393

(+9%) (+53.9%) (+6.9%) (+9.4%) (+9.2%) (+17.7%)
QF 0.627 0.414 0.426 0.285 0.476
UEF (QF ) 0.666 0.538 0.526 0.459 0.491

(+6.2%) (+29.9%) (+23.5%) (+61%) (+3.1%) (+24.7%)

6.3.4 COMBINING PREDICTORS IN THE UEF MODEL
Integrating WIG and QF was shown to be of merit (71). As such, an integration yields a predictor
for the quality of the initial list from which we construct a relevance model; we can use it in the
UEF framework as a quality measure. Shtok et al. (49) conducted such an experiment.The resultant
predictor is denoted UEF (WIG +QF ), where WIG +QF is the interpolation-based predictor. For
comparison, the prediction performance of UEF (WIG)+ UEF (QF ) that interpolates UEF (WIG)
and UEF (QF ) is also given. Linear interpolation with equal weights is performed in all cases upon
the min-max normalized values assigned by predictors. The prediction performance quality values
are presented in Table 6.3.

In accordance with previous findings (71), we see in Table 6.3 that integrating WIG and QF
results in prediction performance superior to that of each over most corpora. Using the integrated
predictor in the UEF framework (UEF (WIG +QF )) yields further prediction improvements for
three out of the five corpora. Furthermore, for all corpora, except for GOV2, it is clearly better to
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integrate UEF based predictors — i.e., UEF (WIG)) and UEF (QF ) – than to integrate WIG and
QF directly.

Table 6.3: Integrating predictors using linear interpolation (+). The best
result in a column is boldfaced. From (49).

TREC4 TREC5 WT10G ROBUST GOV2
WIG 0.544 0.297 0.376 0.543 0.479
QF 0.627 0.414 0.426 0.285 0.476
WIG +QF 0.676 0.446 0.472 0.503 0.555
UEF (WIG +QF ) 0.663 0.562 0.513 0.586 0.501
UEF (WIG)+UEF (QF ) 0.679 0.591 0.521 0.591 0.490

6.4 SUMMARY
This chapter discussed the high potential in combining performance predictors, especially when
the different predictors are independent and measure different aspects of the query and the search
results. Linear regression has been proposed as a general framework for incorporating predictors.The
UEF framework, which is based on statistical decision theory, provides an alternative framework for
integrating post-retrieval predictors while used as relevance model estimates. The estimate of the
relevance model scales the similarity between the re-ranking it induces with the original ranking to
provide a performance prediction.

Empirical evaluation shows that combined post-retrieval predictors from both frameworks
consistently and substantially improve over using the predictors in their own right. Moreover, the
prediction quality of the UEF based predictors are significantly and consistently better than the
prediction quality of pre-retrieval and post retrieval predictors presented so far.
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C H A P T E R 7

A General Model for Query
Difficulty

7.1 GEOMETRICAL ILLUSTRATION
An interesting illustration for typical difficulties in retrieval is proposed in (55). We can represent all
documents in the collection, including the query, as vectors (points) in the high dimensional vector
space. The retrieval process can then be described as finding the k-nearest neighbors of the query,
where each neighboring document is scored by inverse proportion to its distance from the query.
When relevance information is also given, the retrieval effectiveness can be measured by the fraction
of relevant documents from the set of k neighbors. When no such information is available, query
performance prediction methods can be applied—based on the geometric pattern of the retrieved
set—to predict the expected retrieval effectiveness.

Figure 7.1 illustrates four typical retrieval scenarios in a two-dimensional vector space. The
query is marked by a solid square in the middle of the figure; relevant documents are marked by
plusses (’+’) and non-relevant document by dots (’.’). The points within the circle around the query
are the k nearest neighbors retrieved.

In an ideal scenario, the set of relevant documents will be centralized around the query,
separated from the rest of the collection. In such a case, the query is “easy” as most nearest neighbors
are relevant, and the most relevant documents are similar to the query as well as to each other. Figure
7.1 (a) illustrates this case. Note that all post-retrieval prediction methods are expected to predict
high performance for the query in this case as the retrieval set is coherent and separated from the
whole collection.

Unfortunately, in real scenarios, it is more likely that only a few of the similar documents to
the query are relevant and most are not. Figure 7.1 (b) shows a typical scenario when the nearest
neighbors contain relevant and non-relevant documents. Still, the retrieved set is separable from the
whole collection; thus we can assume reasonable retrieval (high Clarity score).

Figures 7.1 (c) and (d) represent undesirable retrieval scenarios. The first one (c) is the case
when the nearest results are too far from the query. Increasing the radius around the query (for
accumulating k neighbors) may lead to poor results. Apparently, poor performance can be predicted
as the retrieval set is very sensitive to any perturbation in the query or documents, and additionally,
score distribution analysis might predict poor performance as the scores of top results are low. The
second scenario, (d), is the case when the result set exhibits no unique structure that distinguishes
it from the rest of the collection. The lack of cohesiveness is an indication of the low quality of the
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(a) Ideal scenario

(d) Non-coherence scenario(c) Sensitive scenario

(b) Typical scenario

Figure 7.1: Four typical retrieval scenarios. The query is marked by a solid square in the middle of the
figure; relevant documents are marked by plusses (’+’) and non-relevant document by dots (’.’).The points
within the circle around the query are the k nearest neighbors retrieved. Based on (55).

result set. Moreover, we can see that the (d) collection is more difficult than the other collections, as
most retrievals from this collection are expected to be poor.

7.2 GENERAL MODEL
A typical information retrieval scenario comprises a collection of documents and a search engine
that retrieves documents in response to user queries. Users submitting a query to the search engine
have an idea of the information they are trying to find. They are also able to judge the search results
according to their relevance to this information need. Thus, the query and the relevant documents
are two facets of the same information need.

An alternative general model for query difficulty is suggested by Carmel et al. (12). In this
model, the primal object of the model is a Topic. A topic is the information pertinent to a defined
subject. The topic comprises two objects: a set of queries, Q, and a set of relevant documents, R.
The queries are possible expressions reflecting the information need, while the relevant documents
contain the information satisfying that need. The topic is also dependent on the specific document
collection, C, from which R is chosen. Thus, a topic is denoted as:

T opic = (Q, R|C) (7.1)

For each topic, it is important to measure how broad the topic is and how well it is separated
from the collection. In terms of clustering, this is akin to measuring the in-cluster variability and
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Queries Documents

Collection

d(Q,C) d(R,C)

d(Q,R)
d(R,R)d(Q,Q)

Figure 7.2: A general model of a topic based on the queries, expressing the specific information need, the
relevant documents for those queries, the entire collection, and the distances between the sets involved.
From (12).

the between-class variability. These measurements can be performed on both facets of the model.
An additional measurement, which is of even greater interest, is the distance between the two facets
of the model; i.e., the distance between Q and R. We hypothesize that a large distance translates to
a difficult topic while a small distance results in an easy topic.

Figure 7.2 shows a schema of the topic difficulty model and the different distances among its
elements:

1. d(Q, C) - The distance between the queries, Q, and the collection, C. This distance is analo-
gous to the simplified Clarity score (SCS) (25).

2. d(Q, Q) - The distance among the queries, i.e., the diameter of the set Q.

3. d(R, C) - The distance between the relevant documents, R, and the collection, C. This is
analogous to the Clarity score of the query (14).

4. d(R, R) - The distance among the relevant documents, i.e., the diameter of the set R. This is
analogous to the cohesion score (56).

5. d(Q, R) - The distance between the queries, Q, and the relevant documents, R.

The measures d(Q, C), d(R, C), and d(Q, R), as defined above, can be estimated using
the KL (or JSD) distance between the language models of the sets Q, R, and C, respectively.
Estimating d(Q, Q) and d(R, R) can be done by measuring the set cohesion according to its
clustering patterns (56). Section 7.4 discusses an alternative estimation of d(R, R), which is based
on the number of clusters in R, for the experiments described below.

In some cases, it is possible to obtain only one of the model objects (Q or R). For example, a
search engine manager inspecting the search engine query log has access to the queries regarding a
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certain topic, but the relevant documents to this topic are not supplied. That is, he has access to the
documents in the collection, but the documents are not labeled as relevant to a specific topic. In this
case, the model is still very useful, as it is possible to approximate R from the top results retrieved
by the search engine for the given queries.

Similarly, a content manager might not have access to the specific queries users are typing
while trying to find the information in her site, only to the documents he manages. In such cases, the
model can still be used to estimate how easily the information can be found, by estimating d(R, C)

and d(R, R) distances. This is similar to the notion of Findability in the context of search engine
optimization where the objective is to optimize web pages so that their content is optimally findable.

7.3 VALIDATING THE GENERAL MODEL
The general model for query difficulty has been validated by measuring the correlation between the
model-induced measurements ( JSD distances of the model components) and the median average
precision (AP) of all systems that participated in the TREC Terabyte tracks (12). In these tracks,
participants searched the GOV2 document collection, experimenting with short queries based on
the topic titles while using the TREC topics 701-800 of the 2004 and 2005 Terabyte tracks.

As shown in Figure 7.2, there are five distances of interest in the model. However, because
TREC topics provide a single query for each topic, the inter-query distance could not be used.Thus,
four distances and their correlations with AP were evaluated.

Table 7.1 shows the Pearson and the Spearman′s-ρ correlation values for each of the dis-
tances with the median AP. All correlations with an absolute value larger than 0.164 are statistically
significant at p < 0.05. Clarity, the distance of the relevant documents from the collection is by far
the most important factor influencing topic average precision. The explanation for this phenomena
is that a longer distance reflects better separability of the set of relevant documents from the entire
collection. The distance of the query to the collection, d(Q, C), and the number of topic aspects,
d(R, R), have a lower, yet substantial, effect on precision, while the distance of the query to the
relevant documents, d(Q, R) has almost no effect.

Table 7.1: The correlation between
the model distances and the me-
dian AP of all TREC participants in
the 2004 and 2005 Terabyte tracks.
From (12).

TREC median AP
Distance Pearson Spearman′s-ρ
d(Q, C) 0.298 0.292
d(R, C) 0.331 0.323
d(Q, R) -0.019 0.004
d(R, R) 0.119 0.155
Combined 0.476
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We note that the signs of the regression coefficient show that a longer distance between
the queries and the relevant documents from the collection results in a higher AP, while a shorter
distance between queries and documents results in lower AP. Interestingly, a larger number of aspects
correlates positively with AP.

The values of Pearson’s non-parametric correlation and Spearman′s-ρ parametric correlation
are remarkably similar, suggesting that the values are linearly correlated. The Pearson correlation of
AP with the combination of the four model parameters (the row denoted by “Combined”) is relatively
high, suggesting that the model captures important aspects of the query difficulty.

7.4 THE RELATIONSHIP BETWEEN ASPECT COVERAGE
AND QUERY DIFFICULTY

Most retrieval models assume that the relevance of a document is independent of the relevance of
other documents. In reality, however, this assumption rarely holds; relevant documents can relate
to different aspects of the topic; hence, the entire utility of the result set strongly depends on the
number of relevant aspects it covers.

The aspect coverage problem has to do with finding documents that cover as many different
aspects of the topic as possible.This problem has been investigated in the interactive track of TREC-
7 where the purpose was to study how systems can best cover all relevant aspects of a topic (41).
Zhai et al. (66) describe some evaluation measures for aspect coverage of a given result set.

The aspect coverage problem is another facet of query difficulty.This is clearly demonstrated by
the failure categories identified in the RIA workshop (20), given in Table 1.1, where five of the nine
failure categories relate to poor aspect coverage. Therefore, the difficulty of a topic can be measured
by the number of different aspects related to the topic.

According to the general model of query difficulty, the broadness of the relevant results
is measured by the distance d(R, R). A small distance would reflect a coherent set of relevant
documents, all providing the same information. However, this measure suffers from the drawback
that identical (or extremely similar) documents are very close together, despite adding no information
to the user.

Thus, aspect coverage can be used as an alternative indication of d(R, R). Given a topic with
the set of relevant documents, the number of topic aspects is estimated by clustering the relevant
documents. Using the square root of the JSD as a distance measure between documents, the set of
documents is clustered and the broadness of the topic is estimated by the number of clusters formed.
This is, of course, only an approximation since it assumes that every document focuses on one aspect
only. However, in reality, a document could describe more than one aspect of a topic.

In the experiments described below, we use the number of aspects (the number of clusters) of
the topic’s relevant documents to estimate the diameter d(R, R) of the difficulty model.
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7.5 VALIDATING THE RELATIONSHIP BETWEEN ASPECT
COVERAGE AND QUERY DIFFICULTY

To estimate the relationship between the query difficulty model distances and topic aspect coverage,
the correlation between the model distances and the number of aspects covered by the top results
retrieved by the search engine was measured for the 100 GOV2 topics.

Given a ranked list of results for a query retrieved by the retrieval system, the number of
covered aspects is measured as follows:

1. Find all aspects of the topic by clustering R, the set of its relevant documents, assuming each
cluster relates to a different aspect.

2. For each aspect, mark the top result in the ranking belonging to the corresponding cluster as
relevant, and mark all other relevant documents in the result set belonging to that cluster as
non-relevant. In this way, every aspect covered by the result set has one representative in the
ranking.

3. Compute average precision using the new marked documents. The aspect coverage measure
promotes rankings that cover more aspects and also takes into consideration the ranks of the
relevant documents. A ranking that includes documents from many different aspects on top
of the list is preferred over a ranking containing documents that redundantly cover the same
aspect.

Table 7.2 shows the correlation between the difficulty model distances and the aspect coverage
of top results for the 100 GOV2 topics.

Table 7.2: The correlation between
the model distances and the aspect
coverage of top results for the 100
GOV2 topics. From (12).

Aspect Coverage
Distance Pearson Spearman′s-ρ
d(Q, C) 0.047 0.047
d(R, C) 0.143 0.194
d(Q, R) -0.271 -0.285
d(R, R) -0.364 -0.418
Combined 0.482

As Table 7.2 shows, the distance between the query and the relevant documents, d(Q, R), and
the broadness of the topic,d(R, R), have the most significant influence on the ability to retrieve many
topic aspects. (All correlations with an absolute value larger than 0.164 are statistically significant
at p < 0.05.) As expected, the more aspects a topic has (larger d(R, R)), the harder it is to retrieve
all of them. The separation of the query and the relevant documents from the collection (d(Q, C)
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and d(R, C), respectively) has a very minor role in aspect coverage. Interestingly, the combined
correlation of all four measurements is extremely similar to that of regular AP and is a relatively high
value.

7.6 SUMMARY
This chapter addressed a general model that captures the main components of a query and the
relations between those components and query difficulty. The three components of a topic are
the textual expression describing the information need (the query or queries), the set of relevant
documents of the topic, and the entire collection of documents. We showed that query difficulty
depends on the distances between those components. The larger the distance of the queries and the
relevant documents from the entire collection, the better the topic can be answered. The smaller
the distance between the queries and relevant documents, and the smaller the number of different
aspects in the relevant documents (a smaller d(R, R)), more topic aspects can be anticipated to be
covered.

The difficulty model described in this chapter is based on the relationship between the main
topic components. However, there are many more important features affecting topic difficulty that
the current model ignores. For example, ambiguity of the query terms. Extending the model to
encapsulate other facets of topic difficulty is still an open challenge.
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C H A P T E R 8

Applications of Query Difficulty
Estimation

So far, we have addressed query difficulty estimation as a goal in its own right, i.e., the ability to
predict query performance using various estimators. In this chapter, we show how such information
can be used for various applications that improve and enhance retrieval.

8.1 FEEDBACK: TO THE USER AND TO THE SYSTEM

The most straightforward application of query difficulty estimation is as direct feedback to the user.
The idea is to present a user with immediate feedback on the predicted performance of a query, so
that he can decide to reformulate the query or to use another source of information when results are
expected to be poor. In addition to the top results presented to the user, the search engine can also
provide (visual) feedback on the predicted query performance. In this way, users are informed about
poor retrieval and can act accordingly. An example of such feedback is presented in Figure 8.1.

Additionally, performance prediction technologies can be used by search engines to improve
their interaction with their users. For example, query refinement is an interactive process that can be
used to narrow down the scope of search results, by expansion or modification.Terms for refinement
can be extracted from various sources such as query logs, collocates of the query terms, external
resources, and more. Given a query and a set of candidate terms for refinement, the expected utility
of each term can be estimated based on predicting the performance of the query refined with that
term. Some preliminary work has been conducted in this direction (31).

Similarly, personalizing the search results should be better performed selectively based on the
query and the specific user. There is a lot of variation across queries in the benefits that the user can
gain through personalization. For some queries, everyone who issues the query is looking for the
same thing. For other queries, different people look for different results even though they express
their need in the same way. Teevan et al. (52) studied a variety of features of the query, the results,
and the user’s interaction history, as inferred from the system’s query log. These features were used
to build a predictive model to identify queries that can benefit from personalization.

Feedback based applications that are based on query difficulty estimation have not, to the best
of our knowledge, been put to commercial use yet. However, we believe that this is only a matter of
time before this technology emerges. It will be interesting to see how such feedback can be utilized
by real users to improve their general search experience.
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Figure 8.1: Snapshot of a search results screen with estimation of the query difficulty, provided as
feedback to the user.

8.2 FEDERATION AND METASEARCH

Another application of query difficulty estimation is metasearch and federation. Instead of retrieving
information from a single information source using one search engine, one can utilize multiple search
engines or a single search engine retrieving documents from a plethora of document collections. A
scenario where multiple engines are used is known as metasearch, while the scenario where a single
engine retrieves from multiple collections is known as federation. In both these scenarios, the final
result of the retrieval effort needs to be a single, unified ranking of documents, based on several
ranked lists.

Metasearch is of major interest when retrieving information from the Web. For example, it is
desirable to have a single interface for submitting a query to many Web search engines such as Yahoo!
Google, and Bing, and receiving a unified list of results based on the combined results returned by
these engines. The unified list should include the most relevant documents from each of the lists
returned by the individual search engines. Dreilinger & Howe (17) give an overview of metasearch
engines on the Web.

Federation of document collections is addressed mainly in the context of retrieving information
from a multitude of specialized datasets, using a single search engine. Several datasets may hold

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00235ED1V01Y201004ICR015&iName=master.img-070.jpg&w=285&h=244
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information which cannot be unified due to scalability, privacy, or security issues. It is therefore
required that a single search engine retrieves documents from each of these datasets for a given
query, and merges them into a unified list.

One approach to using query difficulty estimation in federation and metasearch is to apply
a query performance predictor for each dataset and search engine combination. When a query is
executed, the ranked list of documents is returned from each dataset and search engine combination
and the prediction of query difficulty is computed for each. The predicted performance is used for
weighting the retrieved list of documents and the final ranking is built by merging the lists using these
weights. This allows for a query-by-query weight for each search engine and document collection
pair. Yom-Tov et al. (65) applied this strategy for both scenarios, using a predictor based on average
document frequency of the query terms (avgIDF ) and the overlap between the result list returned for
a full query and that returned for individual query terms (however, since this method is independent
of the prediction method, other prediction methods could equally have been applied). In that paper,
this fusion approach was shown to improve metasearch (as measured by P@10) by 7% over the best
single search engine and by 12% over other metasearch strategies. The corresponding improvement
in federation was 15%. Interestingly, a noticeable improvement in performance was found using
federation with query difficulty estimation over the performance obtained from a single index repre-
senting the unified document collection.This suggests that the federation with fusion strategy, based
on performance prediction, is superior to a one-index search solution for heterogeneous document
collections, even when the collections can be integrated together.

One alternative to metasearch is to select the best search engine for a given query. This is the
approach taken by White et al. (62), who built a predictor for choosing one of several web search
engines for a given query. In their work, queries were represented by numerous features that describe
attributes of the query, the search engine, the results returned by each search engine, and features
that capture the similarity between the query and results. Using a linear classifier to learn a predictor
that categorizes each query for the most appropriate search engine, significant improvement in
accuracy was obtained, over the accuracy of results while using a single engine for all queries. In
fact, according to the results of this work, half of all queries could be improved by selecting the
correct search engine; although, in practice, since the classifier is not always correct, a much smaller
improvement in accuracy is expected.

In a similar vein, Berger and Savoy (5) used different translation tools to translate queries from
English to Spanish and German, in order to retrieve documents in these languages. They showed
that there is a wide variability in performance of the different translation tools, both on average
and for each query specifically. This suggests using query difficulty estimation to identify which of
the tools is most likely to be correct for each query. Using features based on term frequency in the
target collection and on linguistic analysis (existence of personal or geographic proper nouns in the
translation, presence of proper names, etc.), a logistic-regression predictor was built and applied.
The result showed an impressive improvement in performance over the best single translation tool.
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8.3 CONTENT ENHANCEMENT USING MISSING
CONTENT ANALYSIS

A fundamental question we addressed in Chapter 1 is why a query is difficult for a search engine.
Briefly, this is due to ambiguity, poor relationships between query and content, and insufficient
content. In this section, we address an application of query difficulty estimation to identifying the
queries with insufficient content.

There are some queries for which all the results returned by the search engine are irrelevant,
simply because no relevant content exists in the document collection. For example, a collection
of medical documents has few, if any, relevant documents for queries in the domain of computer
hardware support. In such cases, it is important to either notify the user that no relevant content exists
or to automatically augment the document collection with relevant information from an external
source such as the Web.

One approach to identifying missing content was suggested by Yom-Tov et al. (64). In that
paper, a binary approach to missing content was taken; that is, either there were relevant documents
for queries, or there were none. In practice, this approach was validated by removing the relevant
documents for some queries,while keeping the relevant documents of other queries.A query difficulty
predictor was then trained to identify the patterns associated with missing content and applied to
new queries.The performance of the predictor showed that missing content can indeed be identified
by training an appropriate query difficulty estimator.

Another approach to finding queries with missing content was taken by Spangler and
Kreulen (51), who analyzed a help-desk knowledge base by scoring queries according to their nearest
document in the collection of existing solutions. Queries with no close solutions were considered to
be lacking in corpus-pertinent content.

Beyond reporting queries suspected of missing content,a logical step,especially in the setting of
a specialized or inter-organizational document collection, is to augment the collection with relevant
documents from a third source such as the Web. If done correctly, over time, these supplements to
the collection will improve responsiveness to users, without compromising the collection’s focus.

Since user needs change dynamically over time and new missing content queries are expected
to appear on a regular basis, the collection repository should be updated regularly to satisfy those
new needs. There is a definite need for a tool that can identify new popular information needs
not covered well by the current content. Such a tool would dynamically analyze the query log of
the system, identify missing content queries, and then direct the system to enrich its data, thereby
improving its ability to better satisfy its users’ needs.

The quality of the content can also be evaluated in relation to a given taxonomy of knowledge.
A taxonomy may refer to either a hierarchical classification of topics or the principles underlying
the classification of the content into those specific topics. Given a taxonomy that specifies desired
knowledge, the repository can be analyzed by identifying the topics in the taxonomy that are not well
covered by the current content. Important topics that are not well covered by the existing content
can be used to direct the system to enrich the repository to better cover those missing topics.
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Figure 8.2: Outline of a system for information augmentation

As an example, consider a portal intended for use by system administrators (SAs). The portal
lets SAs search for technical information that can help them solve daily problems occurring on the
servers for which they are responsible. The information is obtained from multiple sources such as
internal problem ticketing systems, server monitoring records, and other technical documents. In
such a narrow domain, the usability of the portal depends on its ability to support the information
needs of the SAs and provide the right information at the right time so SAs can solve problems within
a reasonable time. Therefore, identifying and eliminating knowledge gaps between the information
existing in the portal and that required by the SAs is a crucial factor in providing fast and reliable
support to customers. On the other hand, a general purpose document collection will not serve
its audience well. Therefore, it is important that all relevant information, and only the relevant
information, be brought to the portal.

Such an information augmentation system, developed by Carmel et al. (13) is shown in
Figure 8.2. The first component of the system identifies topic areas that are missing content. Once
missing content topics are identified, they are sent to the data gathering component so a search
can be conducted for relevant content. The data gathering component uses an external information
source to find relevant content. This content is passed to the local repository via a quality estimation
component, which assesses whether the content found by the data gathering component is indeed
relevant to the topics lacking in content. The appropriate content can then be added to the local
repository.

The precision of the search engine used in (13) improved four-fold over time, by identifying
missing content and augmenting it with pages from the Web. This shows the immense value that
can be gained by building domain specific repositories, which are updated with relevant information
from general repositories.
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8.4 SELECTIVE QUERY EXPANSION
Automatic query expansion is a widely used method for improving the quality of search and has
been shown to improve (average) retrieval performance. A popular post-retrieval expansion ap-
proach, termed pseudo-relevance feedback (PRF) (39), considers the (few) top-ranked documents to
be relevant, and uses them to expand the query. In general, PRF has been shown to improve query
performance; however, it has not been used in many operational systems because of the fact that it
can greatly degrade the performance of a system for certain individual queries. For many queries,
PRF deteriorates query results due to query drift (39), which relates to the changes in the focus of
the query in its expanded form. This happens either because non-relevant documents infiltrate into
the top results or relevant results contain irrelevant aspects of the query’s original intention.

Many PRF methods employ the Rocchio formula for query expansion (46). In Rocchio, the
query and documents are represented as vectors in the same vector-space, and the expanded query is
obtained by combining the original query and the centroid of the top results. This adds new terms
to the query and reweighs the original terms. Increasing the relative weight of the original query
compared to the centroid’s weight in the Rocchio formula “anchors” the expanded query to the
original query, thus discouraging the query drift.

Formally, given a query q, and the top-k results Dk
q , a new query is formulated as follows:

q ′ = (1 − α) q + α
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k

∑

d∈Dk
q

d



 (8.1)

where α is known as the feedback coefficient that balances the original query with the centroid of
the top results.

PRF methods work well when the highest ranked documents are relevant to the query, and
thus the frequent terms in them may correctly expand the user’s original query as to better reflect its
scope. Unfortunately, for poor performing queries, the highest ranked documents will be irrelevant,
and thus it may lead to query drift.

Hence, it is not beneficial to apply PRF for every query. Instead, it is expected that selectively
applying it to those queries that are predicted to be “easy” while not applying them to other queries
will produce better results than either applying PRF to all queries or not applying it at all.

This is the approach taken in several studies. Amati el al. (1) set a threshold on the predicted
difficulty, beyond which queries would be expanded. In this approach, only “easy” queries, i.e., those
with highly predicted performance, are expanded. In contrast, a classifier was trained in (64) to
identify queries for which PRF might be beneficial, based on a training set where queries were
assessed as to the increase or decrease in performance caused by expansion. He and Ounis (26)
developed a method that combines metasearch with selective query expansion. In their work, two
collections were used for retrieval: a local, preferred collection and an external collection. A decision
mechanism was used to decide on one of three strategies: retrieve from the local collection, perform
query expansion using the local collection, or perform query expansion using the external collection.
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The decision on which of the options should be chosen was based on the avgICTF statistics of the
query: If this was low for both collections, no expansion was used, and retrieval was based on the
local collection. If it was high, the collection with higher avgICTF value was chosen for retrieval, and
expansion was performed. This approach was shown to work with some collections, but it brought
no gain with others. In all these cases, the gain obtained over the baselines (not applying expansion
at all or applying it to all queries) was marginal, indicating that although selective query expansion
has value, additional investigation is required to obtain more robust methods.

8.4.1 SELECTIVE EXPANSION BASED ON QUERY DRIFT ESTIMATION
A different method for predicting the success of PRF for individual queries was taken by Cronen-
Townsend et al. (15). This method requires a system to run both the unexpanded and expanded
queries, and then compares the two retrieved lists to decide which results to present to the user.
Instead of directly predicting the success of an expanded query, this approach measures how far the
language model of the expanded query’s results strayed from the language model of the unexpanded
query’s results. The rational, which is in line with the query feedback predictor (71) described in
Chapter 5, is that if an expanded query’s model is very far from the unexpanded query’s model; this
may be an indication for query drift.

The comparison between the language models is based on the distribution of the important
terms used for expansion, which are those with the largest influence on the Clarity score of the query.
When the important terms are less frequent in the expanded model than in the unexpanded model,
we can hypothesize that the expanded retrieval is less likely to reflect the original meaning of the
query. In this case, the original results are presented to the user. In contrast, when the frequency of
the important terms has grown, the expanded retrieval is thus more likely to be useful; therefore,
the expanded results are given. In practice, this method shows only marginal improvements over
expanding all queries. This means that the idea of “strayed” query results is useful to some extent
in identifying cases where expanded queries failed, they are not the only factor in determining the
success or failure of expansion.

Measuring the query drift of the expanded query, based on its language model, can be taken
further. A large set of relevance models for each query can be generated by varying the parameters’
values of some expansion method, and then selecting the one that is predicted to perform the best
for expansion. Winaver et al. (63) show that this multi-model selection strategy yields performance
that is almost indistinguishable from that of a manually optimized relevance model.

8.4.2 ADAPTIVE USE OF PSEUDO RELEVANCE FEEDBACK
The attempts described above for selective query expansion focus on deciding for each query whether
to expand it or not. This is a binary decision that is based on the predicted performance of the
expanded query. An alternative adaptive approach, suggested by Lv and Zhai (37), selectively decides
how much to expand a given query, by dynamically predicting the optimal α, the feedback coefficient.
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Specifically, this method estimates a potentially different feedback coefficient for each query and
each set of expanded documents, rather than manually setting it to a fixed constant.

The value of the feedback coefficient was estimated for every query, using three types of query
difficulty features as input to the prediction module:

1. Discrimination of the query: the more discriminative the query, the more tolerant it is to
adding information from relevant documents.

2. Discrimination of feedback documents: clearer feedback documents are likely to be more useful
for adding to the query.

3. Divergence between query and feedback documents: dissimilarity between the query and
documents indicates that the query was too narrow, and that a larger feedback coefficient is
required.

Lv and Zhai generated a set of features from the above-mentioned categories, and trained a
logistic regression algorithm, which finds the best weights for combining the features to predict the
correct feedback coefficient for a given query. By following this direct route to predicting the correct
feedback coefficient, they were able to achieve a significant improvement in retrieval compared to
cases where the feedback coefficient was set to a fixed value.They concluded that the three categories
are all very important as each captures another aspect of the query and the top results, and the
proposed adaptive relevance feedback is more robust and effective than the regular fixed-coefficient
feedback.

8.5 OTHER USES OF QUERY DIFFICULTY PREDICTION
The ability to predict the difficulty of a query, even if the accuracy of the prediction is not extremely
high, opens the door to several novel applications. We describe some here.

Collaborative filtering is the ability to recommend new content to users, based on the prefer-
ences of a larger population. For example, movies may be recommended to a person, based on the
movies people similar to him found interesting. A core problem in this field is determining what
constitutes a similarity between people. Such similarity may be based on demographic information
or the degree to which users liked or disliked similar items.

Bellogin and Castells (3) used a modification of the Clarity score (14) to measure the lack
of ambiguity in a users’ preference. In an analogy to query difficulty, an “easy” user is one whose
preferences are clear-cut, and thus contributes much to a neighbor. As an illustration, a user who
is only interested in action movies can give a clearer recommendation on these types of movies
than a user with broader interests. The Clarity of a user is then used to weight his recommendation
to other users. An evaluation performed by the authors showed that this method improves the
recommendations when looking at a small set of nearest neighbors, but it does not make a difference
when averaged over the whole population. This might be the effect of averaging over many people,
which cancels some of the noise associated with ambiguous users.
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Queries submitted to commercial search engines usually contain one to three terms. Longer
queries may be more focused, but in other cases, they contain terms which degrade retrieval perfor-
mance by adding irrelevant terms to the query. Kumaran and Carvalho (33) attempted to identify
these irrelevant query terms using performance prediction. Their method was to create 2N queries
from each query with N original terms. Each query was then described by a series of attributes such
as the number of sub-query terms, the Clarity score (14), mutual information, and the average in-
verse document frequency of sub-query terms. A predictor was then trained to rank the sub-queries
as to their relative retrieval performance using the attributes of each sub-query. The end result is
that a given query can be divided into sub-queries, and the most likely query is identified using per-
formance prediction. Kumaran and Carvalho showed an 8% improvement in retrieval performance
and, furthermore, that the Clarity score was the most influential feature for ranking sub-queries.

8.6 SUMMARY
This chapter discusses several applications developed recently that utilize query performance predic-
tion. While traditional approaches handle all queries equally, these new applications can dynamically
choose the right handling approach for each query based on its predicted difficulty.This trend is likely
to grow with coming improvements in prediction methods; hence much more selective applications
are expected to appear in the near future that are based on query performance prediction.

Prediction based applications have not yet been adopted by commercial vendors for the general
public, and they are mostly used by the research community. This is probably due to the brief time
this technology has existed and the assumption that it is not sufficiently mature to be productized.
However, the advantages of performance prediction methods are so clear that we can safely assume
that this technology will find its way to the market very soon.
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C H A P T E R 9

Summary and Conclusions
9.1 SUMMARY

Query difficulty estimation is a new emerging area of research that has recently attracted a lot of
attention in the IR field. While traditionally IR research mainly focuses on evaluating the relevance
of each document to a query, independently of the other documents, the new performance prediction
approaches attempt to evaluate the quality of the whole result list to the query. Such evaluation is
beneficial for many IR tasks, including a feedback to the end user on the expected quality of retrieved
results, a feedback to the search system which can assess its performance at retrieval time, before
conducting an intensive process such as query expansion, a feedback to system administrators for
taking care of problematic cases such as missing content queries, and for IR applications which can
serve dynamically and selectively each query based on its predicted performance.

Query performance prediction is an extremely ambitious task as many factors affect the quality
of a ranked list of documents in satisfying the user’s information need. These include the number
of relevant documents in the list, the rank of those relevant documents, and the inner relations
between them, especially for informational queries where users seek for results that cover many
different aspects of their needs. The numerous factors that affect the query difficulty can be roughly
categorized to those that relate to the query (e.g. ambiguity), to the data (e.g., heterogeneity), to
the search system (e.g., inappropriate retrieval method), and to the inter-relations between those
components.

In this lecture, we surveyed the current state-of-the-art research on query difficulty estimation
for IR. We began by discussing the reasons that cause search engines to fail for some of the queries,
and we reviewed several reasons for the high variability in performance among queries as well as
among systems. We then summarized several approaches for query performance prediction, and
we classified prediction methods to pre-retrieval methods and post-retrieval methods. Pre-retrieval
approaches predict the quality of the search results before the search takes place, by analyzing the
query text and term statistics. Post-retrieval methods, which have the benefit of access to the search
results, are usually more expensive in terms of computational need, as results are analyzed after
retrieval. However, these methods are directly applied to the actual results, which means that they
are more suitable for identifying inconsistency, incoherency, and other characteristics that reflect low
performance.

The common methodology for evaluating the prediction quality of a performance predictor
is based on measuring the linear and the rank correlation between the actual performance and the
predicted performance of a retrieval system, over a given set of testing queries. We reviewed the
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results of various evaluation studies conducted over several TREC benchmarks. These results show
that state-of-the-art existing predictors are able to identify difficult queries, i.e. to predict their
poor performance, by demonstrating a reasonable prediction quality as reflected by the correlation
with actual performance. However, prediction quality is still moderate and should be substantially
improved in order to be widely used in IR tasks.

Current linguistic-based predictors, which evaluate linguistic features of the query terms
(e.g., lexical ambiguity) do not exhibit meaningful correlation with query performance (40; 21), as
reflected by the low correlation between actual to predicted performance. This is quite surprising as
intuitively poor performance can be expected for ambiguous queries.There is still no good theoretical
explanation for this failure. Further research on query linguistic analysis for performance prediction
is needed.

In contrast, statistical features such as sumSCQ, the similarity of the corpus to the query,
and maxVar, the maximum variance of query term weights over the documents in collection, have
relatively significant predictive ability of performance prediction (68).These pre-retrieval predictors,
and a few others, exhibit comparable performance to post-retrieval methods such as Clarity, QF ,
WIG, and NQC . This is counter-intuitive as post-retrieval methods are exposed to much more
information than pre-retrieval methods. However, an important insight from the evaluation studies
cited in this work is that the prediction quality of all predictors is sensitive to the sets of testing queries
used for evaluation, to the datasets, and to the specific method used for retrieval.Thus, current state-
of-the-art predictors still suffer from low robustness in prediction quality. This robustness, as well
as the moderate prediction quality of existing predictors, are two of the greatest challenges in query
difficulty prediction, that should be further explored in the future.

The moderate performance of existing predictors led to the question of whether combining
several predictors together may improve prediction quality, especially when the different predictors
are independent and measure different aspects of the query and the search results. We reviewed
two combination approaches. The first is based on linear regression of several predictors where the
regression task is to learn how to optimally combine the predicted performance values in order to
best fit them to the actual performance values (21). The quality of the combined predictor did not
outperform the best single predictors, probably due to the spareness of the training data, which
over-represents the lower end of the performance values.

The second combination approach we discussed is the UEF framework that is based on
statistical decision theory (49).This framework measures the utility to the user which is expected from
a given result list by multiplying two factors. The first one is the extent to which the corresponding
relevance model represents the hidden information need. The second is the similarity between the
original ranking and the re-ranking this relevance model induces over the list. The quality of a given
relevance model can be approximated by any post-retrieval predictor, and the similarity between two
ranks can be measured by any rank correlation measure. Empirical evaluation shows that predictors
instantiated from the UEF framework consistently and substantially improve prediction quality over
using the quality measures as predictors at their own right.
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Finally,we discussed a few applications that utilize query difficulty estimators by handling each
query individually based on its estimated difficulty. We gave an overview of several selective methods
that dynamically invoke the right retrieval process for each query based on its predicted performance,
instead of handling all queries equally.These methods that 1) attempt to find the best terms for query
refinement by measuring the expected gain in performance for each candidate term (31), 2) decide
whether to expand the query or not based on predicted performance of the expanded query (1; 64;
15; 37), and 3) personalize the query selectively, only in cases that personalization is expected bring
value (52). Other types of applications we surveyed are based on collection enhancement guided by
the identification of missing content queries in the systems’ query log (13), and the fusion of search
results from several sources based on their predicted quality (65). We believe that in the future, as
prediction quality increases, we will see many more IR applications that employ this new technology
for providing better services to their customers.

9.2 WHAT NEXT?
Most research conducted so far on query difficulty estimation has been focused on predicting the
performance of informational, TREC style queries over several TREC corpora. Predicting the per-
formance of other types of queries has attracted much less attention, with the exception of the study
on performance prediction of Web-based queries using visual features of the Web search results such
as titles, snippets, etc. (28), and the study on the performance prediction for navigational queries (7)
over the GOV2 collection (71). Predicting the performance for other query types and other data
types, has not attracted much attention of the research community so far. The difficulty of semi-
structured queries (e.g., Xpath, or Xquery queries) is an interesting topic to explore as the notion of
relevance in this domain is different than the typical notion of relevance in IR, as is the definition of
successful retrieval. Similarly, performance prediction over domain-specific collections (e.g., in the
healthcare domain) is a challenge in its own right, as domain-specific knowledge can contribute to
the prediction process. Multimedia search over images, audio, and video files, is another interesting
domain to explore for performance prediction technology.

Furthermore, all prediction methods described in this paper only consider the query, the
result list, and the collection. However, user satisfaction from the search results is affected by many
other factors such as geo-spatial features, temporal aspects, personal parameters, and more. We
hypothesize the emergence of new performance predictors that take such parameters into account
while predicting the utility of search results to a specific user in a specific context.

The underlying search scenario assumed by all current existing performance predictors is the
independent lookup paradigm for which the query is treated as a one-time conception of the searcher’s
information need. However, a real-life search session typically contains multiple query iterations,
post-query browsing, and result examination. In new search paradigms that have emerged recently,
such as multifaceted search, or exploratory search, the information-seeking process is considered an
iterative process where users interact with the system through a sequence of actions such as search,
browse and refinement.The utility of the iterative session depends on the quality of the search results,
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as provided by the search engine, and on the user responses. Predicting the effectiveness of such an
iterative process has not been explored yet, to the best of our knowledge.

9.3 CONCLUDING REMARKS
Research on query difficulty estimation has begun only a few years ago with the pioneering work of
Cronen-Townsend et. al on Clarity (14). Since then this subfield has attracted a lot of interest, and
it has found its place at the center of IR research, as demonstrated by the volume of related work.
These studies have revealed alternative prediction approaches, new evaluation methodologies, and
novel applications that benefit from performance prediction technology.

In this lecture, we surveyed the main research directions taken in this area and covered existing
performance prediction methods, some evaluation studies, existing applications, and some anticipa-
tions on future directions in the field. We tried to summarize the state-of-the-art research conducted
on query difficulty estimation, exposing the reader to coherent unified picture on its current status.
While the progress we see is enormous already, performance prediction is still challenging and far
from being solved. Much more accurate predictors are required in order to be widely adopted by IR
tasks. For that, we still need a better understanding to what makes a query difficult. There is room
for new research directions and ideas. We hope that this lecture will contribute to increase interest
in query difficulty estimation.
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