Information Retrieval Evaluation

Jing He hejing@iro.umontreal.ca October 21, 2012

Outline

- Background and Problem
- Evaluation Methods
 - User Study
 - Cranfield Paradigm (Test Collections)
 - Implicit Feedback
- Summary

Outline

- Background and Problem
- Evaluation Methods
 - User Study
 - Cranfield Paradigm
 - Implicit Feedback
- Summary

Commercial Search Engines

Information Retrieval Algorithms

vector space model

text 0.2
mining 0.1
association 0.01
clustering 0.02
 fa a d 0 00001
1000 0.00001

•••

language model

probabilistic model

Problem

What is a better search engine (IR system)?

Wait.....Better?

What do you mean?

Outline

Background and Problem

• IR Evaluation

- User Study
- Cranfield Paradigm
- Implicit Feedback
- Summary

Outline

- Background and Problem
- IR Evaluation
 - User Study
 - Cranfield Paradigm
 - Implicit Feedback
- Summary

User Study

- Process
 - Actual users are hired
 - They use the systems to complete some tasks
 - They report their subjective feeling

User Study

- Strength
 - Close to real
- Weakness
 - Too subjective
 - Too expensive \rightarrow Small Scale \rightarrow Bias

User Study

- Strength
 - Close to real
- Weakness
 - Too subjective
 - Too expensive \rightarrow Small Scale \rightarrow Bias

User Study [Kagolovsky et al., 03]

- Process
 - Actual users are hired
 - They use the systems to finish a task
 - Their performance is measured
 - # of relevant documents found in a given time
 - 🚫 of finding required answers

IR Evaluation: User Study

- Strength
 - Close to real
- Weakness
 - Too expensive \rightarrow Small Scale \rightarrow Bias

Outline

- Background and Problem
- IR Evaluation
 - User Study
 - Cranfield Paradigm (Test Collection)
 - Implicit Feedback
- Summary

Satisfaction/Happiness: Divide and Conquer

- Efficiency
 - Response Time
 - Throughput
- Effectiveness

- Quality of the returned list
- Interface
 - e.g. faceted search
 - Usually rely on the user study

Web	Show options
Schol	arly articles for information retrieval
X	Information retrieval: data structures and algorithms - Frakes - Cited Modern information retrieval - Baeza-Yates - Cited by 6656 Information storage and retrieval - Korfhage - Cited by 612
Infor	metion retrievel. Wilkingdia the free approach and a
mo	nauon reuteval - wikipedia, trie nee encyclopedia - 2 visits -
Inforr docum <u>Histor</u> en.wik	Inductin Teurieval - v/intpedia, ine interent voltagedia - 2 visita attation retrieval (IR) is the science of searching for documents, for infor ents and for metadata about documents, as well as that of - Voenteive - Performance measures - Model types ipedia org/wiki/Information_retrieval - <u>Cached</u> - <u>Similar</u> - ♡ ★ IX
Inforr docum Histor en.wik	Inductin Heureval - vinitizedia, in line encyclopedia - 2 visits autoin retrieval (IR) is the science of searching for documents, for infor ents and for metadata about documents, as well as that of / Overview - Performance measures - Model types pedia arg/wiki/Information_retrieval - <u>Cached</u> - <u>Similar</u> - ♥ ● ▼ uction to Information Retrieval - 3 visits - Jun 14
Inforr docum Histor en.wil Introc The be science	Inductin Heureval - vinipleuta, in energe encyclopeura - 2 visita - ation retrieval (IR) is the science of searching for documents, for infor- ents and for metadata about documents, as well as that of, / - Oxerview - Performance measures - Model types pedia arg/wik/information, retrieval - Cached - Similar - ∞ T ⊗ uction to Information Retrieval - 3 visits - Jun 14 ok aims to provide a modern approach to information retrieval from a e perspective. It is based on a course we have been teaching in sis is stanford edul/information-retrieval-book html - Cached - Similar -
Inforr docun Histor en.wik Introc The be scient	Induori retrieval - vinitedia, interinee encyclopedia - 2 visite- ation retrieval (IR) is the science of searching for documents, for infor ents and for metadata about documents, as well as that of (- <u>Overeive</u> - <u>Performance measures - Model types</u> uppedia.org/wiki/Information_retrieval - <u>Cached</u> - <u>Similar</u> - <u>Wellon to Information Retrieval</u> - 3 visits - Jun 14 ok aims to provide a modem approach to information retrieval from a r e perspective. It is based on a course we have been teaching in sis tanford edu/information-retrieval-book.html - <u>Cached</u> - <u>Similar</u> - Information Retrieval Resources

Efficiency

- Same as any database/Architecture/Software
- benchmark/test collection
 - Document collection
 - Query set
- Because the test collection is reusable, so
 - Cheap
 - Easy for Error Analysis

Effectiveness

• A reusable test collection for effectiveness ?

Effectiveness Evaluation Assumption

- Information need q
- Document *d*
- User u
- Satisfaction S(q,d,u)

Cranfield Paradigm

- A test collection
 - Document collection D
 - Topic set T
 - Relevance Judgments R
- A retrieval system runs
 - Retrieve lists L from D for topic T
- A measure is used to score the system
 score = f(R, L)

Cranfield Paradigm: Process

• Given

- a) A test collection (T, D, R)
- b) A retrieval run for the test collection : a doc-list L_t for each topic t in T
- For each topic t in T
 - Use a measure (e.g. P@10) to compute the quality of L_t
- Combine scores
 - e.g., arithmetic average

Test Collection/Benchmark

Assumption R(d, q, u1) == R(d, q, u2)

Organizations for Standard Test Collections

• Cranfield

- Cranfield College, UK, 1950s
- TREC (Text REtrieval Conference)
 - by U.S. National Institute of Standards and Technology
 - 1992-now
- NTCIR (NII Test Collection for IR Systems)
 - East Asian languages
- CLEF (Cross Language Evaluation Forum)
 - European languages

Cranfield Paradigm: Process

• Given

- a) A test collection (*T*, *D*, *R*)
- b) A retrieval run for the test collection : a doc-list L_t for each topic t in T
- For each topic t in T
 - Use a measure (e.g. P@10) to compute the quality of L_t
- Combine scores
 - e.g., arithmetic average

- Binary Judgment Measures
 - Unranked Results
 - Ranked Results Measures
- Graded Judgment Measures

 $J: Q X D \rightarrow \{0,1\}$

 $J: Q X D \rightarrow \{0, 1, 2, 3\}$

- Binary Judgment Measures
 - Unranked Results: a document set
 - Ranked Results: a document list
- Graded Measures

- Binary Judgment Measures
 - Unranked Results: a document set
 - Precision
 - Recall
 - F-score
 - Ranked Results: a document list
- Graded Measures

Measures: Precision and Recall

 Precision (P) is the fraction of retrieved documents that are relevant

 $Precision = \frac{\#(relevant items retrieved)}{\#(retrieved items)} = P(relevant|retrieved)$

• Recall (R) is the fraction of relevant documents that are retrieved

$$Recall = \frac{\#(relevant items retrieved)}{\#(relevant items)} = P(retrieved|relevant)$$

Measures: Precision and Recall

	Relevant	Nonrelevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

P = TP / (TP + FP)R = TP / (TP + FN)

- Trade-off between precision and recall
 - Return more docs → higher recall, (usually) lower precision

Measures: Combining Precision and Recall

• Combine precision and recall in F-score

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- α ∈ [0, 1] is used to control the relative importance of precision/recall
 - Precision is more important for Web search
 - Recall is more important for patent search
- When α =0.5, it is the harmonic mean

Why harmonic average?

• A kind of soft-minimum

Measures: a Example

	relevant	not relevant	
retrieved	20	40	60
not retrieved	60	1,000,000	1,000,060
	80	1,000,040	1,000,120

• P = 20/(20 + 40) = 1/3
• R = 20/(20 + 60) = 1/4
•
$$F_1 = 2\frac{1}{\frac{1}{3} + \frac{1}{4}} = 2/7$$

Measures: a Example

	relevant	not relevant	
retrieved	20	40	60
not retrieved	60	1,000,000	1,000,060
	80	1,000,040	1,000,120

• Why not using accuracy?

- Binary Judgment Measures
 - Unranked Results: a document set
 - Ranked Results: a document list
 - P@n, R@n, precision-recall curve, MRR, MAP
- Graded Measures

Measures: P@n and R@n

- For each cutoff n, take top n docs as a set
- Drawback
 - Only contains incomplete information of a list
 - Insensitive to the rank of relevant docs
 - e.g. P@5 values are identical for the following lists
 - 1,1,0,0,0
 - 0,0,0,1,1
- P-R curve

- Contains complete information

Measures: P-R curve

- For each cut off n, get a (R@n, P@n) pair
- Take R@n as x-axis, and P@n as y-axis, we get the P-R curve

Interpolation (in red): Take maximum of all future points

 P-R curve is usually only plotting for Recall (0.0, 0.1, ..., 0.9, 1.0) – for easy combination

Measures: Average Precision

- Not easy to compare systems by P-R curves
- Approximate area under the P-R: Average Precision
 - Average the precision at the positions of relevant docs

AvgPrec= 52.0%

Measures: MRR

- Mean Reciprocal Rank
 - Reciprocal of rank of the first relevant doc
- Used for some kinds of queries
 - Navigational Queries
 - "glassdoor"
 - Specific Informational Queries
 - "when was the first Olympic Game?"

- Binary Judgment Measures
 - Unranked Results: a document set
 - Ranked Results: a document list
- Graded Judgment Measures
 nDCG

- Graded Judgment
 - Relevant documents can provide different amount of useful information
 - Highly relevant doc vs. Marginal relevant doc
- Gain from a doc (G)
 - Determined by its relevance degree

• Cumulated Gain (CG)

- Sum of gain from docs in the list

- Discounted Cumulated Gain (DCG)
 - Top ranked docs are more important for users
 - Top ranked docs should be weighted highly

$$DCG_p = rel_1 + \sum_{i=1}^{p} \frac{rel_i}{\log_2 i}$$

- Gain
 - 3, 2, 3, 0, 0, 1, 2, 2, 3, 0
- Discounted Gain

3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0

• Discounted Cumulated Gain

3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

- Normalized Discounted Cumulated Gain (nDCG)
 - Why normalizing?
 - Value ranges for queries are quite different
 - e.g.
 - q1 has only 1 relevant doc in D
 - q2 has 1000 relevant docs in D
 - The average score of DCG will be dominated by q2
- Normalized Factor

- DCG value for an ideal (best) doc list

- G and DCG (assume it contains all rel docs)
- 3, 2, 3, 0, 0, 1, 2, 2, 3, 0
- 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
 - Ideal G and DCG
- 3, 3, 3, 2, 2, 2, 1, 0, 0, 0
- 3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10.88
 - nDCG
- 1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88

- Binary Judgment Measures
 - Unranked Results: a document set
 - Precision, Recall, F
 - Ranked Results: a document list
 - P@n, R@n, P-R curve, Average Precision, MRR
- Graded Judgment Measures

– nDCG

Cranfield Paradigm: Process

• Given

- a) A test collection (T, D, R)
- b) A retrieval run for the test collection : a doc-list L_t for each topic t in T
- For each topic t in T
 - Use a measure (e.g. P@10) to compute the quality of L_t
- Combine scores
 - e.g., arithmetic average

Combine Scores and Compare

- Two systems (A and B), which is better?
- Compare the arithmetic average score?
 - Difference between scores
 - Sample size
- Principle Comparison: Significant Test
 - For comparison: One-sided test
 - Widely used: t-test, Wilcoxon signed-rank test

Cranfield Paradigm

- Strength
 - Cheap

- Large Sample for More Confidence
- Repeatable

Cranfield Paradigm: Weakness

- test collection
 - Document collection D
 - Topic set T
 - Relevance Judgments R
- Weakness
 - Relevance Judgments are expensive \rightarrow incomplete

Problem of Relevance Judgments

• Collect Relevance Judgments from Real User?

Outline

- Background and Problem
- IR Evaluation
 - User Study
 - Cranfield Paradigm
 - Implicit Feedback
- Summary

Implicit Feedback

• User Behavior \rightarrow Relevance Judgments

Implicit Feedback

- Strength
 - Real User
 - Cheaper than cranfield paradigm
 - Much Larger sample size
- Challenge
 - User behavior noise
 - Long-tail search

Implicit Feedback

- A/B test
 - Use a small proportion of traffic (1%) for evaluation
 - Option 1: Show results from different retrieval methods alternatively
 - Option 2: Merge results in a doc list
 - Compare the clickthrough-rate of two results

Outline

- Background and Problem
- IR Evaluation
 - User Study
 - Cranfield Paradigm
 - Implicit Feedback
- Summary

Summary

- Real users are ground-truth
- Evaluation of methods can be decomposed
- Reusable test collection is useful
- User behavior (log) is really a kind of wealth

