

Jian-Yun Nie RALI, Dept. IRO University of Montreal, Canada http://www.iro.umontreal.ca/~nie

Brief history of IR and NLP

- Statistical IR (tf*idf)
- Attempts to integrate NLP into IR
 - Identify compound terms
 - Word disambiguation
 - **...**
 - Mitigated success
- Statistical NLP
- Trend: integrate statistical NLP into IR (language modeling)

- Language model
 - Interesting theoretical framework
 - Efficient probability estimation and smoothing methods
 - Good effectiveness
- Limitations
 - Most approaches use uni-grams, and independence assumption
 - Just a different way to weight terms
- Extensions
 - Integrating more linguistic analysis (term relationships)
 - Experiments
- Conclusions

Principle of language modeling

- Goal: create a statistical model so that one can calculate the probability of a sequence of words $S = W_1, W_2, ..., W_n$ in a language.
- General approach:

4

Prob. of a sequence of words

$$P(s) = P(w_1, w_2,...w_n)$$

$$= P(w_1)P(w_2 | w_1)...P(w_n | w_{1,n-1})$$

$$= \prod_{i=1}^{n} P(w_i | h_i)$$

Elements to be estimated: $P(w_i | h_i) = \frac{P(h_i w_i)}{P(h_i)}$

- If h_i is too long, one cannot observe (h_i, w_i) in the training corpus, and (h_i, w_i) is hard generalize
- Solution: limit the length of *h_i*

Estimation

History: short long

modeling: coarse refined

Estimation: easy difficult

Maximum likelihood estimation MLE

n-grams

- Limit hi to n-1 preceding words
 - Uni-gram: $P(s) = \prod_{i=1}^{n} P(w_i)$
 - **Bi-gram:** $P(s) = \prod_{i=1}^{n} P(w_i \mid w_{i-1})$
 - Tri-gram: $P(s) = \prod_{i=1}^{n} P(w_i \mid w_{i-2} w_{i-1})$
- Maximum likelihood estimation MLE

$$P(w_i) = \frac{\#(w_i)}{|C_{uni}|} P(h_i w_i) = \frac{\#(h_i w_i)}{|C_{n-eram}|} \text{ problem: } P(h_i w_i) = 0$$

 Goal: assign a low probability to words or n-grams not observed in the training corpus

Smoothing methods

- n-gram: α
- Change the freq. of occurrences
 - Laplace smoothing (add-one):

$$P_{add_one}(\alpha \mid C) = \frac{|\alpha| + 1}{\sum_{\alpha_i \in V} (|\alpha_i| + 1)}$$

• Good-Turing change the freq. r to $r^* = (r+1) \frac{n_{r+1}}{n_r}$ $n_r = \text{no. of n-grams of freq. } r$

Smoothing (cont'd)

- Combine a model with a lower-order model
 - Backoff (Katz)

$$P_{Katz}(w_i \mid w_{i-1}) = \begin{cases} P_{GT}(w_i \mid w_{i-1}) & \text{if } |w_{i-1}w_i| > 0\\ \alpha(w_{i-1})P_{Katz}(w_i) & \text{otherwise} \end{cases}$$

Interpolation (Jelinek-Mercer)

$$P_{JM}(w_i \mid w_{i-1}) = \lambda_{w_{i-1}} P_{ML}(w_i \mid w_{i-1}) + (1 - \lambda_{w_{i-1}}) P_{JM}(w_i)$$

In IR, combine doc. with corpus

$$P(w_i \mid D) = \lambda P_{ML}(w_i \mid D) + (1 - \lambda) P_{ML}(w_i \mid C)$$

Smoothing (cont'd)

Dirichlet

$$P_{Dir}(w_i \mid D) = \frac{tf(w_i, D) + \mu P_{ML}(w_i \mid C)}{|D| + \mu}$$

Two-stage

$$P_{TS}(w_i \mid D) = (1 - \lambda) \frac{tf(w_i, D) + \mu P_{ML}(w_i \mid C)}{|D| + \mu} + \lambda P_{ML}(w_i \mid C)$$

Using LM in IR

- Principle 1:
 - Document D: Language model $P(w|M_D)$
 - Query Q = sequence of words $q_1, q_2, ..., q_n$ (uni-grams)
 - Matching: $P(Q|M_D)$
- Principle 2:
 - Document D: Language model $P(w|M_D)$
 - Query Q: Language model P(w|M_Q)
 - Matching: comparison between $P(w|M_D)$ and $P(w|M_D)$
- Principle 3:
 - Translate D to Q

Principle 1: Document LM

- Document D: Model M_D
- Query Q: $q_1, q_2, ..., q_n$: uni-grams
- $P(Q|D) = P(Q|M_D)$ = $P(q_1|M_D) P(q_2|M_D) ... P(q_n|M_D)$
- Problem of smoothing
 - Short document
 - Coarse M_D
 - Unseen words

Smoothing

- Change word freq.
- Smooth with corpus

Exemple
$$P(w_i | D) = \lambda P_{GT}(w_i | D) + (1 - \lambda) P_{ML}(w_i | C)$$

Determine λ_i

$$P(w_i) = \lambda_1 P_1(w_i) + \lambda_2 P_2(w_i) \text{ with } \lambda_1 + \lambda_2 = 1$$

- Expectation maximization (EM): Choose λ_i that maximizes the likelihood of the text
 - Initialize λ_i
 - E-step

$$C_i = \sum_{w} \frac{\lambda_i P_i(w)}{\sum_{j} \lambda_j P_j(w)}$$

M-step

$$\lambda_i = \frac{C_i}{\sum_j C_j}$$

Loop on E and M

Principle 2: Doc. likelihood / divergence between M_d and M_Q

Question: Is the document likelihood increased when a query is submitted?

$$LR(D,Q) = \frac{P(D \mid Q)}{P(D)} = \frac{P(Q \mid D)}{P(Q)}$$

(Is the query likelihood increased when D is retrieved?)

- P(Q|D) calculated with P(Q|M_D)
- P(Q) estimated as P(Q|M_c)

$$Score(Q, D) = log \frac{P(Q | M_D)}{P(Q | M_C)}$$

Divergence of Mp and Mq

Assume Q follows a multinomial distribution:

$$P(Q \mid M_D) = \frac{|Q|!}{\prod_{q_i \in Q} tf(q_i, Q)!} \prod_{q_i \in Q} P(q_i \mid D)^{tf(q_i, Q)}$$

$$P(Q \mid M_C) = \frac{|Q|!}{\prod_{q_i \in Q} tf(q_i, Q)!} \prod_{q_i \in Q} P(q_i \mid C)^{tf(q_i, Q)}$$

$$Score(Q, D) = \sum_{i=1}^{n} tf(q_{i}, Q) * \log \frac{P(q_{i} | M_{D})}{P(q_{i} | M_{C})}$$

$$\propto \sum_{i=1}^{n} P(q_{i} | M_{Q}) * \log \frac{P(q_{i} | M_{D})}{P(q_{i} | M_{C})}$$

$$= \sum_{i=1}^{n} P(q_{i} | M_{Q}) * \log \frac{P(q_{i} | M_{D})}{P(q_{i} | M_{Q})} - \sum_{i=1}^{n} P(q_{i} | M_{Q}) * \log \frac{P(q_{i} | M_{C})}{P(q_{i} | M_{Q})}$$

$$= -KL(M_{Q}, M_{D}) + Constant = H(M_{Q} | M_{C}) - H(M_{Q} | M_{D})$$

KL: Kullback-Leibler divergence, measuring the divergence of two probability distributions

Noisy channel: message received

Transmit D through the channel, and receive Q

$$P(Q \mid D) = \prod_{i} P(q_i \mid D) = \prod_{i} \sum_{j} P(q_i \mid w_j) P(w_j \mid D)$$

- P(w_j|D): prob. that D generates w_j
- P(q_i|w_i): prob. of translating w_i by q_i
- Possibility to consider relationships between words
- How to estimate P(q_i|w_i)?
 - Berger&Lafferty: Pseudo-parallel texts (align sentence with paragraph)

- Can a query be generated from a document model?
- Does a document become more likely when a query is submitted (or reverse)?
- Is a query a "translation" of a document?

- Smoothing is crucial
- Often use uni-grams

4

Beyond uni-grams

Bi-grams

$$P(w_i \mid w_{i-1}, D) = \lambda_1 P_{MLE}(w_i \mid w_{i-1}, D) + \lambda_2 P_{MLE}(w_i \mid D) + \lambda_3 P_{MLE}(w_i \mid C)$$

- Bi-term
 - Do not consider word order in bi-grams

(analysis, data) – (data, analysis)

Relevance model

- LM does not capture "Relevance"
- Using pseudo-relevance feedback
 - Construct a "relevance" model using topranked documents
- Document model + relevance model (feedback) + corpus model

Experimental results

- LM vs. Vector space model with tf*idf (Smart)
 - Usually better
- LM vs. Prob. model (Okapi)
 - Often similar
- bi-gram LM vs. uni-gram LM
 - Slight improvements (but with much larger model)

Contributions of LM to IR

- Well founded theoretical framework
- Exploit the mass of data available
- Techniques of smoothing for probability estimation
- Explain some empirical and heuristic methods by smoothing
- Interesting experimental results
- Existing tools for IR using LM (Lemur)

Problems

- Limitation to uni-grams:
 - No dependence between words
- Problems with bi-grams
 - Consider all the adjacent word pairs (noise)
 - Cannot consider more distant dependencies
 - Word order not always important for IR
- Entirely data-driven, no external knowledge
 - e.g. programming → computer
- Logic well hidden behind numbers
 - Key = smoothing
 - Maybe too much emphasis on smoothing, and too little on the underlying logic
- Direct comparison between D and Q
 - Requires that D and Q contain identical words (except translation model)
 - Cannot deal with synonymy and polysemy

Some Extensions

Classical LM:

```
Document \rightarrow t1, t2, ... \rightarrow Query (ind. terms)
```

- Document → comp.archi. → Query (dep. terms)
- Document → prog. → comp. → Query (term relations)

- Dependence LM (Gao et al. 04):
 Capture more distant dependencies within a sentence
 - Syntactic analysis
 - Statistical analysis
 - Only retain the most probable dependencies in the query

Estimate the prob. of links (EM)

For a corpus C:

- Initialization: link each pair of words with a window of 3 words
- 2. For each sentence in C:
 Apply the link prob. to select the strongest links that cover the sentence
- Re-estimate link prob.
- 4. Repeat 2 and 3

Calculation of P(Q|D)

Determine the links in Q (the required links)

$$L = \underset{L}{\operatorname{arg max}} P(L \mid Q) = \underset{L}{\operatorname{arg max}} \prod_{(i,j) \in L} P_C(R \mid q_i, q_j)$$

2. Calculate the likelihood of Q (words and links)

$$\begin{split} P(Q \mid D) &= P(L \mid D) P(Q \mid L, D) \\ P(L \mid D) &= \prod_{l \in L} P(l \mid D) \quad \Big\} \text{ links} \\ P(Q \mid L, D) &= P(q_h \mid D) \prod_{(i,j) \in L} P(q_j \mid q_i, L, D) = \dots \\ &= \prod_{i = 1 \dots n} P(q_i \mid D) \prod_{(i,j) \in L} \frac{P(q_i, q_j \mid L, D)}{P(q_i \mid D) P(q_j \mid D)} \\ \text{Requirement on words} \quad \text{and} \quad \text{bi-terms} \end{split}$$

Experiments

Models	WSJ			PAT			FR		
	AvgP	% change over	% change over	AvgP	%change over	% change over	AvgP	% change over	% change over
		BM	UG		BM	UG		BM	UG
BM	22.30			26.34			15.96		
UG	17.91	-19.69**		25.47	-3.30		14.26	-10.65	
DM	22.41	+0.49	+25.13**	30.74	+16.70	+20.69	17.82	+11.65*	+24.96*
BG	21.46	-3.77	+19.82	29.36	+11.47	+15.27	15.65	-1.94	+9.75
BT1	21.67	-2.83	+20.99*	28.91	+9.76	+13.51	15.71	-1.57	+10.17
BT2	18.66	-16.32	+4.19	28.22	+7.14	+10.80	14.77	-7.46	+3.58

Table 2. Comparison results on **WSJ**, **PAT** and **FR** collections. * and ** indicate that the difference is statistically significant according to t-test (* indicates p-value < 0.05, ** indicates p-value < 0.02).

Models	SJM			AP			ZIFF		
	AvgP	% change over	% change over	AvgP	%change over	% change over	AvgP	% change over	% change over
		BM	UG		BM	UG		BM	UG
BM	19.14			25.34			15.36		
UG	20.68	+8.05		24.58	-3.00		16.47	+7.23	
DM	24.72	+29.15*	+19.54**	25.87	+2.09	+5.25**	18.18	+18.36*	+10.38**
BG	24.60	+28.53*	+18.96**	26.24	+3.55	+6.75*	17.17	+11.78	+4.25
BT1	23.29	+21.68	+12.62**	25.90	+2.21	+5.37	17.66	+14.97	+7.23
BT2	21.62	+12.96	+4.55	25.43	+0.36	+3.46	16.34	+6.38	-0.79

Table 3. Comparison results on **SJM**, **AP** and **ZIFF** collections. * and ** indicate that the difference is statistically significant according to t-test (* indicates p-value < 0.05, ** indicates p-value < 0.02).

Extension (2): Inference in IR

Logical deduction

$$(A \rightarrow B) \land (B \rightarrow C) \mid A \rightarrow C$$

In IR: D=Tsunami, Q=natural disaster

$$(D \rightarrow Q') \land (Q' \rightarrow Q) \mid -D \rightarrow Q$$

Direct matching Inference on query

$$(D \to D') \land (D' \to Q) \vdash D \to Q$$

Inference on doc. Direct matching

Is LM capable of inference?

- Generative model: P(Q|D)
- $P(Q|D) \sim P(D \rightarrow Q)$
- Smoothing:

$$\begin{split} P(t_i \mid D) &= \lambda P_{ML}(t_i \mid D) + (1 - \lambda) P_{ML}(t_i \mid C) \\ t_i \not\in D : P_{ML}(t_i \mid D) &= 0 \\ \text{change to } P(t_i \mid D) > 0 \end{split}$$

- E.g. D=Tsunami, P_{ML}(natural disaster|D)=0
 change to P(natural disaster|D)>0
- No inference
 - P(computer|D)>0

Effect of smoothing?

- Smoothing ≠inference
- Redistribution uniformly/according to collection

Expected effect

- Using Tsunami → natural disaster
- Knowledge-based smoothing

Extended translation model

Translation model:
$$P(q_{j} | D) = \sum_{q'_{j}} P(q_{j} | q'_{j}) P(q'_{j} | D)$$

 $P(Q | D) = \prod_{j} \sum_{q'_{j}} P(q_{j} | q'_{j}) P(q'_{j} | D)$

Using other types of knowledge?

- Different ways to satisfy a query (q. term)
 - Directly though unigram model
 - Indirectly (by inference) through Wordnet relations
 - Indirectly trough Co-occurrence relations
 - ...
- D \rightarrow t_i if D \rightarrow _{UG}t_i or D \rightarrow _{WN}t_i or D \rightarrow _{CO}t_i

$$P(t_i \mid D) = \lambda_1 \sum_{j} P_{WN}(t_i \mid t_j) P(t_j \mid D) + \lambda_2 \sum_{j} P_{CO}(t_i \mid t_j) P(t_j \mid D) + \lambda_3 P_{UG}(t_i \mid C)$$

Illustration (Cao et al. 05)

Experiments

Table 3: Different combinations of unigram model, link model and co-occurrence model										
	WS	J	1	AP	SJM					
Model	AvgP	Rec.	AvgP	Rec.	AvgP	Rec.				
UM	0.2466	1659/2172	0.1925	3289/6101	0.2045	1417/2322				
CM	0.2205	1700/2172	0.2033	3530/6101	0.1863	1515/2322				
LM	0.2202	1502/2172	0.1795	3275/6101	0.1661	1309/2322				
UM+CM	0.2527	1700/2172	0.2085	3533/6101	0.2111	1521/2322				
UM+LM	0.2542	1690/2172	0.1939	3342/6101	0.2103	1558/2332				
UM+CM+LM	0.2597	1706/2172	0.2128	3523/6101	0.2142	1572/2322				

UM=Unigram, CM=co-occ. model, LM=model with Wordnet

Experimental results

			Dependency Model					
Call	Unigram Model		LM with unique WN rel.			LM with typed WN rel.		
Coll.	AvgP	Rec.	AvgP	%change	Rec.	AvgP	%change	Rec.
WSJ	0.2466	1659/2172	0.2597	+5.31*	1706/2172	0.2623	+6.37*	1719/2172
AP	0.1925	3289/6101	0.2128	+10.54**	3523/6101	0.2141	+11.22**	3530/6101
SJM	0.2045	1417/2322	0.2142	+4.74	1572/2322	0.2155	+5.38	1558/2322

Integrating different types of relationships in LM may improve effectiveness

Doc expansion v.s. Query expansion

$$P(t_i \mid Q) = P_{UG}(t_i \mid D)$$

$$Document expansion$$

$$P(t_i \mid D) = \sum_{t_j} P(t_i \mid t_j) P(t_j \mid D)$$

$$P(t_i \mid D) = \lambda_1 \sum_{t_j} P_{WN}(t_i \mid t_j) P(t_j \mid D) + \lambda_2 \sum_{t_j} P_{CO}(t_i \mid t_j) P(t_j \mid D) + \lambda_3 P_{UG}(t_i \mid D)$$

$$P(t_i \mid D) = P_{UG}(t_i \mid Q)$$
Query expansion
$$P(t_i \mid Q) = \sum_{t_j} P(t_i \mid t_j) P(t_j \mid Q)$$

$$P(t_i | Q) = \lambda_1 \sum_{t_i} P_R(t_i | t_j) P(t_j | Q) + \lambda_2 P_{UG}(t_j | Q)$$

Implementing QE in LM

KL divergence:

$$Score(Q, D) = -KL(Q; D) = \sum_{t_i \in Q} P(t_i \mid Q) \log \frac{P(t_i \mid D)}{P(t_i \mid Q)}$$

$$= \sum_{t_i \in Q} P(t_i \mid Q) \log P(t_i \mid D) - \sum_{t_i \in Q} P(t_i \mid Q) \log P(t_i \mid Q)$$

$$\propto \sum_{t_i \in Q} P(t_i \mid Q) \log P(t_i \mid D)$$

$$Query expansion = a new P(t_i \mid Q)$$

Expanding query model

$$P(q_i | Q) = \lambda P_{ML}(q_i | Q) + (1 - \lambda)P_R(q_i | Q)$$

 $P_{ML}(t_i | Q)$: Max.Likelihood unigram model (not smoothed)

 $P_R(t_i | Q)$: Relational model

$$Score(Q, D) = \sum_{q_i \in V} P(q_i | Q) \times \log P(q_i | D)$$

$$= \sum_{q_i \in V} [\lambda P_{ML}(q_i \mid Q) + (1 - \lambda)P_R(q_i \mid Q)] \times \log P(q_i \mid D)$$

$$=\lambda \sum_{q_i \in Q} P_{ML}(q_i \mid Q) \times \log P(q_i \mid D) + (1-\lambda) \sum_{q_i \in V} P_R(q_i \mid Q) \times \log P(q_i \mid D)$$

Classical LM

Relation model

How to estimate $P_R(t_i | Q)$?

- Using co-occurrence information
- Using an external knowledge base (e.g. Wordnet)
- Pseudo-rel. feedback
- Other term relationships
- ...

Defining relational model

- HAL (Hyperspace Analogue to Language): a special co-occurrence matrix (Bruza&Song)
- "the effects of pollution on the population"

"effects" and "pollution" co-occur in 2 windows (L=3) HAL(effects, pollution) = 2 = L – distance + 1

From HAL to Inference relation

$$P_{HAL}(t_{2} | t_{1}) = \frac{HAL(t_{1}, t_{2})}{\sum_{t_{i}} HAL(t_{1}, t_{i})}$$

- superconductors: <U.S.:0.11, american:0.07, basic:0.11, bulk:0.13, called:0.15, capacity:0.08, carry:0.15, ceramic:0.11, commercial:0.15, consortium:0.18, cooled:0.06, current:0.10, develop:0.12, dover:0.06, ...>
- Combining terms: space⊕program
 - Different importance for space and program

From HAL to Inference relation (information flow)

$$\operatorname{degree}(t_{i_1}, \dots, t_{i_n} \middle| -t_j) = \operatorname{degree}(\bigoplus t_i \middle| -t_j) = \frac{P(\bigoplus t_i, t_j)}{\sum_{t_k \in QP(\bigoplus t_i)} P(\bigoplus t_i, t_k)}$$

$$P_{IF}(t_{i_{1}},...,t_{i_{n}}|-t_{j}) = \frac{\operatorname{degree}(t_{i_{1}},...,t_{i_{n}}|-t_{j})}{\sum_{t_{k}\in V}\operatorname{degree}(t_{i_{1}},...,t_{i_{n}}|-t_{k})}$$

space program | - {program: 1.00 space: 1.00 nasa: 0.97 new: 0.97 U.S.: 0.96 agency: 0.95 shuttle: 0.95 ... science: 0.88 scheduled: 0.87 reagan: 0.87 director: 0.87 programs: 0.87 air: 0.87 put: 0.87 center: 0.87 billion: 0.87 aeronautics: 0.87 satellite: 0.87, ... >

Inference relationship

$$P_{IF}(t_{i_{1}},...,t_{i_{n}}|-t_{j}) = \frac{\operatorname{degree}(t_{i_{1}},...,t_{i_{n}}|-t_{j})}{\sum_{t_{k}\in V}\operatorname{degree}(t_{i_{1}},...,t_{i_{n}}|-t_{k})}$$

 Inference relationships are less ambiguous and produce less noise (Qiu&Frei 93)

1. Query expansion with pairwise term relationships

$$\begin{split} &Score(Q,D) = \lambda \sum_{q_i \in Q} P_{ML}(q_i \mid Q) \times \log P(q_i \mid D) + (1-\lambda) \sum_{q_i \in V} P_R(q_i \mid Q) \times \log P(q_i \mid D) \\ &= \lambda \sum_{q_i \in Q} P_{ML}(q_i \mid Q) \times \log P(q_i \mid D) \\ &+ (1-\lambda) \sum_{q_i \in V} \sum_{q_j \in Q} P_{co}(q_i \mid q_j) \times P(q_j \mid Q) \times \log P(q_i \mid D) \\ &\approx \lambda \sum_{q_i \in Q} P_{ML}(q_i \mid Q) \times \log P(q_i \mid D) \\ &+ (1-\lambda) \sum_{q_i \in Q \land R(q_i,q_i) \in E} P_{co}(q_i \mid q_j) \times P(q_j \mid Q) \times \log P(q_i \mid D) \end{split}$$

Select a set (85) of strongest HAL relationships

2. Query expansion with IF term relationships

$$Score(Q, D) = \lambda \sum_{q_i \in Q} P_{ML}(q_i \mid Q) \times \log P(q_i \mid D) + (1 - \lambda) \sum_{q_i \in V} P_R(q_i \mid Q) \times \log P(q_i \mid D)$$

$$= \lambda \sum_{q_i \in Q} P_{ML}(q_i \mid Q) \times \log P(q_i \mid D)$$

$$+ (1 - \lambda) \sum_{q_i \in V} \sum_{Q_j \in Q} P_{IF}(q_i \mid Q_j) \times P(Q_j \mid Q) \times \log P(q_i \mid D)$$

$$\approx \lambda \sum_{q_i \in Q} P_{ML}(q_i \mid Q) \times \log P(q_i \mid D)$$

 $+ (1 - \lambda) \sum_{Q_j \in Q \land R(q_i, Q_j) \in E} P_{IF}(q_i \mid Q_j) \times P(Q_j \mid Q) \times \log P(q_i \mid D)$

85 strongest IF relationships

Experiments (Bai et al. 05) (AP89 collection, query 1-50)

	Doc. Smooth.	LM baseline	QE with HAL	QE with IF	QE with IF & FB
AvgPr	Jelinek- Merer	0.1946	0.2037 (+5%)	0.2526 (+30%)	0.2620 (+35%)
	Dirichlet	0.2014	0.2089 (+4%)	0.2524 (+25%)	0.2663 (+32%)
	Abslute	0.1939	0.2039 (+5%)	0.2444 (+26%)	0.2617 (+35%)
	Two- Stage	0.2035	0.2104 (+3%)	0.2543 (+25%)	0.2665 (+31%)
Recall	Jelinek- Merer	1542/3301	1588/3301 (+3%)	2240/3301 (+45%)	2366/3301 (+53%)
	Dirichlet	1569/3301	1608/3301 (+2%)	2246/3301 (+43%)	2356/3301 (+50%)
	Abslute	1560/3301	1607/3301 (+3%)	2151/3301 (+38%)	2289/3301 (+47%)
	Two- Stage	1573/3301	1596/3301 (+1%)	2221/3301 (+41%)	2356/3301 (+50%)

Experiments (AP88-90, topics 101-150)

	Doc. Smooth.	LM baseline	QE with HAL	QE with IF	QE with IF & FB
AvgPr	Jelinek- Mercer	0.2120	0.2235 (+5%)	0.2742 (+29%)	0.3199 (+51%)
	Dirichlet	0.2346	0.2437 (+4%)	0.2745 (+17%)	0.3157 (+35%)
	Abslute	0.2205	0.2320 (+5%)	0.2697 (+22%)	0.3161 (+43%)
	Two-Stage	0.2362	0.2457 (+4%)	0.2811 (+19%)	0.3186 (+35%)
Recall	Jelinek- Mercer	3061/4805	3142/3301 (+3%)	3675/4805 (+20%)	3895/4805 (+27%)
	Dirichlet	3156/4805	3246/3301 (+3%)	3738/4805 (+18%)	3930/4805 (+25%)
	Abslute	3031/4805	3125/3301 (+3%)	3572/4805 (+18%)	3842/4805 (+27%)
	Two-Stage	3134/4805	3212/3301 (+2%)	3713/4805 (+18%)	3901/4805 (+24%)

Observations

- Possible to implement query/document expansion in LM
- Expansion using inference relationships is more context-sensitive: Better than contextindependent expansion (Qiu&Frei)
- Every kind of knowledge always useful (coocc., Wordnet, IF relationships, etc.)
- LM with some inferential power

Conclusions

- LM = suitable model for IR
- Classical LM = independent terms (n-grams)
- Possibility to integrate linguistic resources:
 Term relationships:
 - Within document and within query (link constraint ~ compound term)
 - Between document and query (inference)
 - Both
- Automatic parameter estimation = powerful tool for data-driven IR
- Experiments showed encouraging results
- IR works well with statistical NLP
- More linguistic analysis for IR?