
Positional Language Models for Information Retrieval

Yuanhua Lv
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801
ylv2@uiuc.edu

ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

czhai@cs.uiuc.edu

ABSTRACT
Although many variants of language models have been pro-
posed for information retrieval, there are two related re-
trieval heuristics remaining “external” to the language mod-
eling approach: (1) proximity heuristic which rewards a doc-
ument where the matched query terms occur close to each
other; (2) passage retrieval which scores a document mainly
based on the best matching passage. Existing studies have
only attempted to use a standard language model as a“black
box” to implement these heuristics, making it hard to opti-
mize the combination parameters.

In this paper, we propose a novel positional language model
(PLM) which implements both heuristics in a unified lan-
guage model. The key idea is to define a language model for
each position of a document, and score a document based
on the scores of its PLMs. The PLM is estimated based
on propagated counts of words within a document through
a proximity-based density function, which both captures
proximity heuristics and achieves an effect of “soft” pas-
sage retrieval. We propose and study several representa-
tive density functions and several different PLM-based doc-
ument ranking strategies. Experiment results on standard
TREC test collections show that the PLM is effective for
passage retrieval and performs better than a state-of-the-
art proximity-based retrieval model.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms

Keywords
Positional language models, proximity, passage retrieval

1. INTRODUCTION
As a new generation of probabilistic retrieval models, lan-

guage modeling approaches [23] to information retrieval (IR)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$5.00.

have recently enjoyed much success for many different tasks
[30]. In the past decade, many variants of language mod-
els have been proposed, mostly focusing on improving the
estimation of query language models (e.g., [31, 15]) and doc-
ument language models (e.g., [17]). Although these language
models are motivated in a different way than a traditional
model such as the vector-space model, they tend to boil
down to retrieval functions that implement retrieval heuris-
tics similar to those implemented in a traditional model,
such as TF-IDF weighting and document length normaliza-
tion [32]. With sound statistical foundation, these language
models make it easier to set and optimize retrieval parame-
ters and often outperform traditional retrieval models.

Although much work has been done in language mod-
els, there are two related retrieval heuristics remaining “ex-
ternal” to the language modeling approach: (1) proxim-
ity heuristic which rewards a document where the matched
query terms occur close to each other; (2) passage retrieval
which scores a document mainly based on the best match-
ing passage. Existing studies have only attempted to use a
standard language model as a black box to implement these
heuristics, which means that these heuristics have not really
been incorporated into a language model as a component
and make it hard to leverage advantages of language mod-
els to optimize the combination parameters. For example,
proximity heuristic has been studied in [28] where the au-
thors proposed heuristic proximity measures and combined
them with the scores of documents computed using standard
language models. Also, passage retrieval has been studied in
[16] where the authors explored different ways of segmenting
text to create passages and then applied standard language
models on top of the passages as if they were regular doc-
uments. A common deficiency of these studies is that the
proximity and passage retrieval heuristics are not modeled
from language modeling perspective, making it difficult to
optimize the way of combining them with language models.

In this paper, we propose a novel positional language model
(PLM) which implements both heuristics in a unified lan-
guage model. The key idea is to define a language model
for each position of a document (thus the name positional
language model), and score a document based on the scores
of its PLMs. This is in contrast with virtually all the exist-
ing work in which a document language model is generally
defined for the entire document. An important advantage
of introducing a language model for each position is that
it can allow us to model the “best-matching position” in a
document with probabilistic models, thus supporting “soft”
passage retrieval naturally.

The PLM at a position of a document would be estimated
based on the propagated word counts from the words at all
other positions in the document. Specifically, we let each
word at each position of a document to propagate the ev-
idence of its occurrence to all other positions in the doc-
ument so that positions close to the word would get more
share of the evidence than those far away. This way, each
position would receive propagated counts of words from all
the words in the document with most propagated counts
coming from words near the position. We can then estimate
a language model for the position based on the propagated
counts reaching the position.

A main technical challenge in implementing this idea is
how to define the propagation function and estimate the
PLM accordingly. We propose and evaluate several differ-
ent proximity-based density functions for propagation. With
some specific choices, we show that the PLM can cover the
standard whole document language model and the fixed-
window passage language model, as special cases. Since in
all these density functions, close-by positions would receive
more propagated counts than positions far away from the
current word, the PLM also captures the proximity heuris-
tics.

Once we have a language model estimated for each po-
sition, we can use one or multiple PLMs of a document as
regular document language models to generate a score for
the document. We propose and study three general doc-
ument ranking strategies for combining different PLMs to
score documents, including scoring based on the best PLM,
combining scores from PLMs at multiple positions, and com-
bining PLMs with different propagation ranges.

Experiment results on several standard test collections
show that among all the proximity-based density functions,
the Gaussian density kernel performs the best, and that
combining PLMs with different propagation ranges is the
best document ranking strategy. It is also observed that
the proposed PLM not only outperforms the general doc-
ument language model, but also outperforms the regular
sliding-window passage retrieval method and a state-of-the-
art proximity-based retrieval model. Overall, the PLM is
shown to be able to achieve “soft” passage retrieval and cap-
ture proximity heuristic effectively in a unified probabilistic
framework.

2. RELATED WORK
Term proximity in information retrieval has been previ-

ously studied in [11, 12, 7, 5, 24, 20, 2, 3, 28, 27]. Keen’s
work [11, 12] is among the earliest efforts, in which, a“NEAR”
operator was introduced to address proximity in Boolean re-
trieval model. The shortest interval containing a match set
was first used as a measure of proximity in [5, 7]. Recent
work has attempted to heuristically incorporate proximity
into an existing retrieval model (often through score combi-
nations) [21, 24, 2, 3, 28]. A variety of proximity measures
were proposed, e.g., minimum term span, minimum pair-
wise distance, etc.; in [28], the authors systematically exam-
ined different measures and concluded that the minimum
pair-wise distance is most effective.

An indirect way to capture proximity in the language
modeling framework is to use high-order n-grams as units
to represent text. For example, in [26], bigram and trigram
language models were shown to outperform simple unigram
language models. However, n-gram language models cannot

capture dependency of non-adjacent terms (we may attempt
to capture such proximity by increasing the length of an n-
gram, but it is impractical to enumerate all lengths). A
more general way to capture proximity through using ap-
propriate “matching units” is Metzler and Croft’s work on
term dependency [20]. In that work, term structures with
different levels of proximity can be defined in a general prob-
abilistic model. Unfortunately, they only attempted to use
a standard language model as a black box to implement the
proximity heuristic.

Our work differs from the previous studies in two impor-
tant aspects. First, we propose a new type of language
model that incorporates the term proximity evidence in a
model-based approach; thus, the existing language modeling
techniques (e.g., mixture-model based feedback [31]) can be
applied to our model naturally. Second, we capture term
proximity directly based on proximity-based term propaga-
tion functions.

In passage retrieval [25, 4, 9, 16, 29], documents are of-
ten pre-segmented into small passages, which are then taken
as units for retrieval. Also documents can be segmented
in a more dynamic way defined at query time, referred to
as arbitrary passages [9] (“arbitrary” means that a passage
can start at any position in a document). Two subclasses
are further defined: fixed-length arbitrary passages resem-
ble overlapped windows but with an arbitrary starting point;
variable-length arbitrary passages can be of any length. Fixed-
length arbitrary passage retrieval was shown to be as effec-
tive as, but more efficient than variable-length arbitrary pas-
sages [9]. The proposed PLM covers the fixed-length arbi-
trary passage as a special case, and can be viewed as a “soft”
fixed-length passage. However, different from general pas-
sage retrieval, which only models term position evidence in-
directly using a standard language model as a black box, our
model can incorporate term position information directly
into the estimation of language models using a proximity-
based propagation function.

Proximity-based density functions have been used to prop-
agate term influence in [6, 13, 19, 22]. Kretser’s work [6]
proposed to propagate the tf · idf score of each query term
to other positions, based on several proximity-based kernel
functions. The document is scored using the position with
the highest accumulative tf · idf score finally. But their
methods have not been able to achieve effective retrieval
performance. The studies [13, 19] are very similar to [6]
and based on the vector space model and Boolean model
respectively. In our work, we also evaluate the kernel func-
tions proposed in these studies. In addition, we also pro-
pose several other density functions that are more effective
than theirs. Compared with this previous work, our work
also differs in that we use the language modeling framework,
and incorporate such density functions into the estimation
of language models.

Similar to our work, Petkova and Croft’s work [22] pro-
posed a proximity-based document representation for name
entities. Their work emphasizes terms of proximity to en-
tities by using a proximity-based density function, which is
then used to build description for entities. Our work, how-
ever, proposes a positional language model for general doc-
ument retrieval, and we evaluate the empirical performance
of a number of proximity-based density functions systemat-
ically.

������� ���� 	
 ����	�
���������
 � �� �������� ����� �����

Figure 1: Examples of term propagation.

3. POSITIONAL LANGUAGE MODEL
In this section, we propose a positional language model

(PLM) to incorporate term position information into the
language model so that we can naturally implement retrieval
heuristics such as proximity and passage retrieval.

In most existing work on language models, a document
language model is estimated based on only the counts of
words in a document, but not the position of words. The
main idea of the PLM is to break this limitation and estimate
language models based on the position-dependent counts of
words. At a high-level, our idea is to define a language model
for each word position in a document. This language model
is intended to capture the content of the document at the
position, which is roughly like a “fuzzy passage” centered
at this position but can potentially cover all the words in
the document with less weight on words far away from the
position.

Specifically, we assume that a term at each position can
propagate its occurrence at that position to other positions
within the same document through a proximity-based den-
sity function, as shown in Figure 1. The idea is that if a
word w occurs at position i, we would like to pretend that
the same word has also occurred at all other positions with
a discounted count such that if the position is closer to i,
the propagated count for word w at that position would be
larger than the propagated count at a position farther away,
even though both propagated counts would be less than one,
which is the count of w at position i.

The PLM at each position can then be estimated based on
all the propagated counts of all the words that to the position
as if all the words had appeared actually at the position with
discounted counts. Such a PLM intuitively gives a position-
specific view of the content of the document, and thus can
naturally support passage retrieval. It can also implement
the proximity heuristic because of the use of a proximity-
based propagation function.

Once we obtain a PLM for each position in a document,
we can use each PLM as a regular document language model
for matching with a query. We can then score the document
by using one or combining multiple PLMs as we will explain
later.

We now present PLM more formally. We first introduce
the following notations. Let D = (w1, ..., wi, ..., wj , ..., wN)
be a document, where 1, i, j, and N are absolute positions
of the corresponding terms in the document, and obviously
N is the length of the document.
c(w, i): the count of term w at position i in document D.
If w occurs at position i, it is 1, otherwise 0.
k(i, j): the propagated count to position i from a term at

position j (i.e., wj). Intuitively, given wj , k(i, j) serves as
a discounting factor and can be any non-increasing function
of |i − j|, that is, k(i, j) favors positions close to j. k(i, j)
plays an important role in PLMs, and we will analyze and
explore a number of proximity-based density functions.
c′(w, i): the total propagated count of term w at posi-
tion i from the occurrences of w in all the positions. That
is, c′(w, i) =

∑N
j=1 c(w, j)k(i, j). Thus even if c(w, i) is 0,

c′(w, i) may be greater than 0. As shown in Figure 1, after
propagation, position ′∗′ has a non-zero “count” of terms Q2

and Q1.
Based on term propagation, we have a term frequency vec-

tor 〈c′(w1, i), ..., c
′(wN , i)〉 at position i, forming a virtual

document Di. We can see that term position information
has been translated to term frequency information stored in
this vector. Thus the language model of this virtual docu-
ment can be estimated as:

p(w|D, i) =
c′(w, i)∑

w′∈V c′(w′, i)
(1)

where V is the vocabulary set. We call p(w|D, i) a Posi-
tional Language Model (PLM) at position i.

Intuitively, we can imagine that the PLMs give us multiple
representations of D. Thus given a query Q, we can adopt
the KL-divergence retrieval model [14] to score each PLM
as follows:

S(Q, D, i) = −
∑

w∈V

p(w|Q) log
p(w|Q)

p(w|D, i)
(2)

where p(w|Q) is an estimated query language model. We
can estimate p(w|Q) with the maximum likelihood estimate
or through some pseudo relevance feedback algorithms (e.g.,
relevance model [15] or mixture model [31]).

Similar to a regular document language model, the PLM
also needs to be smoothed to solve the zero probability prob-
lem and to penalize common terms [32]. We consider two
popular smoothing methods: Dirichlet prior and Jelinek-
Mercer. Dirichlet prior smoothing has proven an effective
smoothing method for document language models and cap-
tures the document length normalization heuristic [32]. For
a PLM, the length of the virtual document at position i is
Zi =

∑
w∈V c′(w, i). We use the general collection language

model p(w|C) as our background model. Thus the smoothed
model is given by:

pµ(w|D, i) =
c′(w, i) + µp(w|C)

Zi + µ
(3)

where µ is a smoothing parameter. Although previous work
has shown that Jelinek-Mercer does not work as well as
Dirichlet prior [32], it is unclear whether the same conclu-
sion holds for PLMs because the virtual document length Zi

at different positions are similar to each other [18]. We thus
also consider it as an alternative smoothing method, which
is given by:

pλ(w|D, i) = (1− λ)p(w|D, i) + λp(w|C) (4)

where λ is a smoothing parameter.

3.1 Proximity-based count propagation
Clearly, a major technical challenge in PLMs is how to

define the propagation function k(i, j). Following some pre-
vious work [6, 13, 22], we present here four representative

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-20 -10 0 10 20

pr
op

ag
at

ed
 c

ou
nt

s

distance (i - j)

Gaussian
Triangle
Cosine

Circle
Passage

Figure 2: Proximity-based kernel functions. We set
σ = 12.5 for all kernels.

kernel functions: Gaussian, Triangle, Cosine, and Circle, as
shown in Figure 2. Different kernels lead to different PLMs.
1. Gaussian kernel

k(i, j) = exp

[−(i− j)2

2σ2

]
(5)

2. Triangle kernel

k(i, j) =

{
1− |i−j|

σ
if |i− j| ≤ σ

0 otherwise
(6)

3. Cosine (Hamming) kernel

k(i, j) =

{
1
2

[
1 + cos

(|i−j|·π
σ

)]
if |i− j| ≤ σ

0 otherwise
(7)

4. Circle kernel

k(i, j) =





√
1−

(|i−j|
σ

)2
if |i− j| ≤ σ

0 otherwise
(8)

All these four kernels have one parameter σ to tune, which
controls the spread of kernel curves, i.e., it restricts the prop-
agation scope of each term. In general, the optimal setting
of σ for a term may vary according to the term and may also
depend on the query because some general terms presum-
ably would have wider semantic scope in a document, thus
requiring a higher value of σ, and similarly, some general
query might match a longer relevant passage than a more
specific query. Our definition of PLMs would in principle
allow us to explore such options. However, as a first study
of PLMs, in this paper, we simply assume that σ is set to
the constant across all the terms and all the queries, leaving
further optimization of σ as a future work.

As a baseline, we also present the following non-proximity-
based Passage kernel:
5. Passage kernel:

k(i, j) =

{
1 if |i− j| ≤ σ

0 otherwise
(9)

With the passage kernel, the PLM can recover the fixed-
length arbitrary passage retrieval method [9] in the language
modeling framework. We would use this kernel as a base-
line to examine whether the proximity-based kernel func-
tions perform better than this non-proximity-based kernel.

According to the proximity-based propagation property,
p(w|D, i) is mainly influenced by terms around the position
i, all of which form a “soft” passage together. Hence, the
PLM captures a “soft passage” naturally in the language

modeling framework. Moreover, different from general pas-
sage retrieval, which only captures term position evidence
indirectly, our model can measure term position informa-
tion and incorporate it into a language model directly.

Furthermore, if we set σ to a very large or infinite value
for any of the proposed kernels, we would have k(i, j) = 1 for

all i and j. Thus, we have c′(w, i) =
∑N

j=1 c(w, j)k(i, j) =

c(w, D), which means that p(w|D, i) degenerates to the basic
whole document language model p(w|D). This shows that
the PLM can cover the basic language model as a special
case. In general, we can balance the local term proximity
evidence and the document level term statistics by tuning
the parameter σ (a small σ would emphasize more on local
term proximity). Thus, PLM captures term proximity in-
formation in the language modeling framework in a natural
way.

3.2 PLM-Based Document Ranking
As discussed earlier, with PLMs, we can compute a position-

specific score S(Q, D, i) for each position i using the KL-
divergence of the PLM at the position and the query lan-
guage model. Such position-specific scores serve as the basis
for computing an overall score for document D. We now
discuss several different ways of doing this.

3.2.1 Best Position Strategy
Our first strategy is to simply score a document based on

the score of its best matching position, formally,

S(Q, D) = max
i∈[1,N]

{S(Q, D, i)} (10)

This strategy resembles most existing studies on passage
retrieval, which generally considered evidences from the best
matching passage [4, 9, 16].

3.2.2 Multi-Position Strategy
A more flexible alternative strategy is to first compute

the scores of top-k positions separately, and then combine
these scores together to take advantage of the evidence from
several top ranked positions. Particularly, we can take the
average of the top-k scores to score a document:

S(Q, D) =
1

k

∑

i∈TopK

S(Q, D, i) (11)

where TopK is the set of positions corresponding to the top-
k highest scores of S(Q, D, i).

3.2.3 Multi-σ Strategy
In this strategy, we compute the best position scores for

several different σ values, and then combine these scores to-
gether as the final score for a document. The idea is to use
different σ values to capture proximity at different propaga-
tion ranges.

S(Q, D) =
∑

σ∈R

[βσ ·max{Sσ(Q, D, i)}] (12)

where R is a predefined set of σ values, Sσ(·) is the score
function for PLMs with parameter σ, βσ is the weight on
different σ (

∑
σ∈R βσ = 1). In particular, if R = {σ0,∞},

this strategy equals to an interpolation of the PLM (with
a parameter σ0) and the regular document language model.
Considering the efficiency issue, we only evaluate this special
case of multi-σ strategy, defined formally as follows:

S(Q, D) = γ · max
i∈[1,N]

{Sσ0 (Q, D, i)}+(1−γ) ·[−D(θQ||θD)
]

(13)

3.3 Model Implementation
If the PLM is naively implemented, the cost of estimating

and ranking PLMs can be extremely high, since the number
of positions is much larger than the number of documents or
predefined passages. Fortunately, with some mathematical
transformation, we may significantly reduce the computa-
tional complexity. Below we will show that under reason-
able assumptions, PLMs can be implemented similarly to
the fixed-length arbitrary passage retrieval.

Given a query, suppose all terms in a document have the
same propagation function with the same σ, and the curve
of the kernel density function is symmetric. Then we have
k(i, j) = k(j, i). Since the most time-consuming part is
to compute the normalized length Zi =

∑
w∈V c′(w, i), we

rewrite it as:

∑

w∈V

c
′
(w, i) =

∑

w∈V

N∑

j=1

c(w, j)k(i, j) =
N∑

j=1


 ∑

w∈V

c(w, j)


 k(i, j)

=
N∑

j=1

k(i, j) =
N∑

j=1

k(j, i)

This means the sum of propagated count to a position is
equal to that propagated from the position. We show the
computation of Zi for the Gaussian kernel as an example:

N∑

j=1

k(j, i) =

N∑

j=1

(
exp

[
−(j − i)2

2σ2

])

≈
√

2πσ2 ·
∫ N

1

1√
2πσ2

exp

[
−(x− i)2

2σ2

]
dx

=
√

2πσ2 ·
[
Φ

(
N − i

σ

)
− Φ

(
1− i

σ

)]

where φ(·) is the cumulative normal distribution and N is
the document length. To calculate φ(·), we can adopt some
existing algorithms, such as the algorithm 26.2.17 [1]. For
other kernels considered by us, it is also easy to obtain their
cumulative distribution functions through integration.

From this analysis, we can see that our PLM can be imple-
mented similarly to fixed-length arbitrary passage retrieval
model. Thus, we can use the techniques proposed in [10] for
passage retrieval to implement PLMs; with such an imple-
mentation, ranking documents based on PLMs has a com-
plexity of the same order as regular document ranking.

4. EXPERIMENTS

4.1 Testing Collections and Evaluation
We used several standard TREC data sets in our study:

AP88-89, FR, TREC8, and WT2G. They represent differ-
ent sizes and genre of text collections. AP88-89 is chosen
as a homogeneous collection. FR is selected as a collection
of long documents, with a large variance in the document
length. TREC8 is a relatively large heterogeneous collection,
while WT2G is Web data. Queries are taken from the title
field of the TREC topics 1. Table 1 shows some basic statis-
tics about these data sets. The preprocessing of documents
and queries is minimum, involving only stemming with the
Porter stemmer. No stop words have been removed.

In each experiment, we first use the baseline model (KL-
divergence) to retrieve 2, 000 documents for each query, and
then use the PLM (or a baseline method) to re-rank them.

1Topic 110 in AP88-89 was left out accidently due to a for-
mat problem in preprocessing.

AP88-89 FR TREC8 WT2G
queries 51-100 51-100 401-450 401-450

#qry(with qrel) 49 21 50 50
mean(ql) 3.70 4.19 2.46 2.46

#total qrel 4418 502 4728 2279
#documents 164, 597 45, 820 528, 155 247, 491

mean(dl) 462 1498 481 1056

Table 1: Document set characteristic

The top-ranked 1, 000 documents for all runs are compared
using the mean average precisions (MAP) as the main met-
ric.

4.2 Best Position Strategy
We first examine the effectiveness of the Best Position

Strategy for scoring documents based on PLM. Since the
performance of this strategy is directly determined by the ef-
fectiveness of the kernel function used to estimate the PLM,
we first compare the proposed four different proximity-based
kernel functions to see which one performs the best. For this
comparison, the initial retrieval results were obtained us-
ing the KL-divergence retrieval model with Dirichlet prior
smoothing; since the relative performance of different kernel
functions would presumably not be affected by the setting of
the smoothing parameter in the initial retrieval, we did not
tune the smoothing parameter and simply set it to 1, 000.
To compare different kernel functions, we follow [9] and sys-
tematically test a set of fixed σ values from 25 to 300 in
increments of 25. For the sake of efficiency, positions start
at 25-word intervals, which was shown by [8] to be an effec-
tive way for passage retrieval.

Since we also smooth an estimated PLM when computing
retrieval scores, we test both Dirichlet prior smoothing (with
parameter 1, 000) and Jelinek-Mercer (with parameter 0.5)
(see Equations 3 and 4). The results of comparing differ-
ent kernel functions when using each smoothing method are
shown in Table 2 and Table 3, respectively. The best result
for each σ value is highlighted. Overall, we see that for all
kernels, a relatively large σ value, e.g., 125, 175, and 275,
often brings the best performance. It seems that the perfor-
mance of all runs stabilizes after σ reaches 125. Considering
the length of the soft passage is approximately 2σ (as shown
in Figure 2), this result confirms the observation in recent
studies of passage retrieval [9, 16] that setting passage length
to a value around 350 often achieves the best performance.
Among all the kernel functions, the Gaussian kernel clearly
has the best performance; it contributed 15 best MAP scores
out of 20 for Dirichlet prior smoothing and 13 out of 20 for
Jelinek-Mercer. To see whether the setting of the smooth-
ing parameter may have affected the relative performance of
these kernel functions, we further compare them for a wide
range of values of the Dirichlet prior parameter on TREC8
in Figure 3, where we fix σ = 175 for all kernels. The re-
sults clearly show that the Gaussian kernel is the winner
among all the four functions. One way to explain why the
Gaussian kernel performs the best is that it is the only one
of all the functions that exhibits the following property: the
propagated count would drop slowly when the distance value
|i − j| is small, but drop quickly as the distance value is in
a middle range, and then drop slowly again when distance
value becomes very large. Such an “S-shape” trend is rea-
sonable for the following reason. Dependent terms are not
always adjacent in documents, but can be a little far from
each other, thus we would not like to make the propaga-

 0.23

 0.235

 0.24

 0.245

 0.25

 0.255

 0.26

 0 1000 2000 3000 4000 5000

av
er

ag
e

pr
ec

is
io

n

prior

Gaussian
Triangle
Cosine

Circle

Figure 3: Sensitivity to Dirichlet smoothing param-
eter of different kernels over TREC8

tion so sensitive to the distance when the distance is small.
However, when the distance is just around the boundary of
strong semantic associations (semantic scope of a term), the
propagated count should be more sensitive to the distance
change. Then as the distance increases further, all terms
are presumably only loosely associated, and thus the prop-
agated term count again should not be so sensitive to the
difference of distances.

Since the Gaussian kernel performs the best, in all the
following experiments, we use this kernel function. In or-
der to see whether PLM can effectively capture proximity
and passage retrieval, we compare the performance of Gaus-
sian kernel (σ = 175) with the baseline whole document
language model using both Dirichlet prior smoothing and
Jelinek-Mercer smoothing (both the PLM and the baseline
would use the same smoothing method). The results are
shown in Figure 4, where we vary the smoothing parameters
for both smoothing methods on all the four data sets. We
can observe that the PLM improves performance on WT2G
and FR clearly and consistently, which shows that, similar
to general passage retrieval, the PLM can bring added ben-
efits to document retrieval when documents are relatively
long. Some improvements are also found on TREC8, pos-
sibly because it is a heterogeneous data set as compared to
AP88-89, which is homogeneous; a heterogeneous collection
is relatively nosier, thus term dependence information may
be more helpful. Unfortunately, the PLM does not seem to
show its advantages on AP88-89 for Dirichlet prior smooth-
ing even though it is so for Jelinek-Mercer smoothing.

By comparing the results of the two smoothing methods
in Figure 4, we see that in general, Dirichlet prior performs
better than Jelinek-Mercer for PLM, and the Dirichlet prior
smoothing method seems to perform stably for a range of µ
values around 500.

Figure 4 shows that PLM outperforms whole document
LM baseline likely due to the use of proximity and passage-
retrieval heuristics. We would like to further understand
whether PLM, which captures “soft” passages, is also bet-
ter than the fixed-length arbitrary passage retrieval method.
Thus, we compare the PLM (using the Gaussian kernel,
σ = 175, Dirichlet prior smoothing, µ = 500) with the
fixed-length arbitrary passage retrieval method [9] (i.e., the
Passage kernel). The MAP scores are summarized in Table
4, where the best result for each σ is highlighted. We can
observe that the PLM indeed outperforms the standard pas-
sage retrieval baseline significantly, which shows that model-
ing term proximity directly using a proximity-based density
function is more effective and robust than assuming fixed
lengths.

WT2G
– 25 75 125 175 275

Psg 0.2962 0.3176 0.3225 0.3265 0.3249

PLM 0.2989 0.3213 0.3286+ 0.3307+ 0.3285
TREC8

Psg 0.2358 0.2433 0.2492 0.2511 0.2518
PLM 0.2364 0.2465+ 0.2503 0.2535+ 0.2550+

FR
Psg 0.2899 0.2704 0.2878 0.2887 0.2860
PLM 0.2913 0.2679 0.2895 0.2880 0.2846

AP88-89
Psg 0.1854 0.2054 0.2130 0.2142 0.2154
PLM 0.1926+ 0.2112+ 0.2162+ 0.2177+ 0.2198+

Table 4: Comparison of fixed-length arbitrary pas-
sage retrieval (Psg) and PLM. ′+′ means that im-
provements over the Psg are statistically significant.

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 5 10 15 20 25 30

av
er

ag
e

pr
ec

is
io

n

k

WT2G
TREC8

FR
AP88-89

Figure 5: Sensitivity to the parameter k of multi-
position strategy

4.3 Multi-position Strategy
We now evaluate the multi-position ranking strategy. Based

on the observation in the previous section, we use the Gaus-
sian kernel (σ = 175) with Dirichlet smoothing (µ = 500)
for the PLM. We vary parameter k and plot the MAP re-
sults of multi-position strategy in Figure 5. We see that
the multi-position strategy does not lead to any noticeable
improvement over the best position strategy (i.e., k = 1),
and if we use a relatively large k, the performance can even
degrade dramatically. Hence, given a single σ value, the
best position strategy is a robust and reasonable method for
document ranking.

4.4 Multi-σ Strategy
We now turn to the evaluation of the multi-σ strategy –

in particular, the special case of interpolating a PLM with
the whole document language model (i.e., σ = ∞). To test
this special case of Multi-σ strategy, we fix one σ value to
∞, and vary the other one from 25 to 300 in increments
of 25. For each σ value, we again use the Gaussian ker-
nel and the Dirichlet prior smoothing method (µ = 500).
The results are presented in Table 5, where we tune the
interpolation coefficient γ in the range of [0.0, 1.0] to its op-
timal value for each σ. It shows that, when interpolated
with document language models, the PLM performs more
robustly and effectively. One possible explanation is that a
locally focused PLM alone does not model document-level
retrieval heuristics as effectively as the whole document lan-
guage model does, even though the former captures term
proximity heuristic better, thus balancing them will get bet-
ter results. Another interesting observation is that the best
results are always obtained when we use a smaller σ value,
e.g. 25 or 75, which also suggests that the PLM is bet-

WT2G
kernel�σ 25 75 125 175 275
Gaussian 0.2989 0.3213 0.3286 0.3307 0.3285
Triangle 0.2661 0.3028 0.3149 0.3211 0.3288
Cosine 0.2621 0.3007 0.3128 0.3181 0.3243
Circle 0.2797 0.3140 0.3225 0.3273 0.3267

FR
Gaussian 0.2913 0.2679 0.2895 0.2880 0.2846
Triangle 0.2585 0.2898 0.2858 0.2682 0.2897
Cosine 0.2603 0.2910 0.3000 0.2948 0.2858
Circle 0.2685 0.2754 0.2673 0.2877 0.2873

TREC8
kernel�σ 25 75 125 175 275
Gaussian 0.2364 0.2465 0.2503 0.2535 0.2550
Triangle 0.2244 0.2379 0.2438 0.2475 0.2500
Cosine 0.2257 0.2390 0.2430 0.2457 0.2486
Circle 0.2315 0.2401 0.2464 0.2492 0.2523

AP88-89
Gaussian 0.1926 0.2112 0.2162 0.2177 0.2198
Triangle 0.1709 0.1987 0.2077 0.2117 0.2173
Cosine 0.1682 0.1969 0.2063 0.2107 0.2144
Circle 0.1801 0.2034 0.2093 0.2135 0.2159

Table 2: MAP Results of different kernel functions with Dirichlet smoothing method.

WT2G
kernel�σ 25 75 125 175 275
Gaussian 0.3024 0.3170 0.3133 0.3096 0.3010
Triangle 0.2711 0.3057 0.3118 0.3170 0.3131
Cosine 0.2622 0.2855 0.2681 0.2452 0.2039
Circle 0.2813 0.3130 0.3188 0.3179 0.3148

FR
Gaussian 0.2639 0.2606 0.2592 0.2827 0.2822
Triangle 0.2458 0.2681 0.2607 0.2610 0.2834
Cosine 0.2463 0.2476 0.2424 0.2249 0.1593
Circle 0.2512 0.2557 0.2613 0.2591 0.2833

TREC8
kernel�σ 25 75 125 175 275
Gaussian 0.2454 0.2510 0.2548 0.2575 0.2576
Triangle 0.2335 0.2477 0.2491 0.2506 0.2562
Cosine 0.2335 0.2423 0.2356 0.2227 0.2058
Circle 0.2369 0.2456 0.2498 0.2528 0.2555

AP88-89
Gaussian 0.1892 0.2016 0.2054 0.2066 0.2049
Triangle 0.1718 0.1933 0.1968 0.2002 0.2051
Cosine 0.1701 0.1910 0.1815 0.1636 0.1349
Circle 0.1735 0.1933 0.1962 0.2010 0.2049

Table 3: MAP Results of different kernel functions with Jelinek-Mercer smoothing method

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

pr
ec

is
io

n

gamma

WT2G
TREC8

FR
AP88-89

Figure 6: Sensitivity to γ value of multi-σ strategy.

ter at capturing local term proximity evidence rather than
document-level evidence (e.g., term frequency).

method�data WT2G TREC8 FR AP88-89
KL 0.2931 0.2509 0.2697 0.2196

σ = 25 0.3247+ 0.2562+ 0.2936 0.2237+

σ = 75 0.3336+ 0.2553+ 0.2896+ 0.2227

σ = 125 0.3330+ 0.2559+ 0.2885 0.2201

σ = 175 0.3324+ 0.2574+ 0.2858 0.2196

σ = 275 0.3255+ 0.2561+ 0.2852 0.2193

Table 5: The best performance of multi-σ strategy
for different σ. ′+′ means that improvements over
the baseline KL method are statistically significant.

To further look into the sensitivity to γ, we set R =
{75,∞} and vary γ on all the four data sets. The re-
sults are shown in Figure 6. Interestingly, for collections
of long documents (i.e., FR and WT2G), we can rely more
on PLMs (larger γ), likely because the whole document lan-
guage models may contain much noise, but for collections
of short-documents (i.e., TREC8 and AP88-89), the sensi-
tivity curves are generally flatter and a relatively smaller γ
seems working better, suggesting that regular document lan-
guage models work reasonably well without term proximity
information.

We finally compare our multi-σ strategy (R = {75,∞},
γ = 0.8 for FR and WT2G, and γ = 0.4 for TREC8 and

method�data WT2G TREC8 FR AP88-89
R1 + MinDist 0.3197 0.2568 0.2708 0.2220
R = {75,∞} 0.3336 0.2553 0.2896 0.2227

Table 6: MAP Comparison of the multi-σ strategy
and the best method proposed by Tao and Zhai.

AP88-89) with a state-of-the-art proximity retrieval method
proposed in [28]. Our parameter setting gives PLM near
optimal performance. To be fair, we also use the best lan-
guage modeling retrieval formula suggested in [28] (i.e., R1

+ MinDist), and tune their parameter α to its optimal value
to re-rank documents. We label this run as ’R1 + MinDist’
and report the comparison results in Table 6. Interestingly,
we see both methods perform similarly on short-document
collections (i.e., TREC8 and AP88-89), but our method is
clearly better on long-document collections (i.e., WT2G and
FR), suggesting that the proposed PLM can capture the pas-
sage and proximity heuristics more effectively.

5. CONCLUSIONS
In this paper, we proposed a novel positional language

model which implements both proximity heuristic and pas-
sage retrieval in a unified language model. We proposed and
studied four different proximity-based density functions to
estimate PLMs. Experiment results show that the Gaussian
density kernel performs the best, followed by Circle, Trian-
gle, and Cosine. As for the smoothing of PLM, the Dirich-
let smoothing method performs better than Jelinek-Mercer
smoothing.

In addition, we further proposed three PLM-based doc-
ument ranking strategies. We evaluated their performance
and found that the multi-σ strategy performs the best. Our
experiments on several standard test collections show that
the proposed PLM not only outperforms the regular docu-
ment language models, but also outperforms the fixed-length
arbitrary passage retrieval method and a state-of-the-art
proximity-based retrieval model.

As a new family of language models, the PLM opens up

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 1000 2000 3000 4000 5000

av
er

ag
e

pr
ec

is
io

n

prior

TREC8-PLM
TREC8-LM

FR-PLM
FR-LM

WT2G-PLM
WT2G-LM

AP88-89-PLM
AP88-89-LM

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

pr
ec

is
io

n

lambda

TREC8-PLM
TREC8-LM

FR-PLM
FR-LM

WT2G-PLM
WT2G-LM

AP88-89-PLM
AP88-89-LM

Figure 4: Sensitivity to the smoothing parameters of Dirichlet smoothing (left) and Jelinek-Mercer smoothing
(right) of basic language modeling methods (LM) and the PLM on four collections.

many interesting future research directions. One of the most
interesting directions is to further study whether setting a
term-specific and/or query-specific σ can further improve
performance. Another interesting direction is to study how
to optimize σ automatically based on statistics such as IDF
of terms and discourse structures of documents.

6. ACKNOWLEDGMENTS
We thank the anonymous SIGIR’09 reviewers for their

useful comments. This material is based upon work sup-
ported by the National Science Foundation under Grant
Numbers IIS-0347933, IIS-0713581, and IIS-0713571.

7. REFERENCES
[1] Milton Abramowitz and Irene A. Stegun. Handbook of

Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. Dover, New York, 1964.

[2] Stefan Buttcher and Charles L. A. Clarke. Efficiency vs.
effectiveness in terabyte-scale information retrieval. In
Proceedings of TREC ’05, 2005.

[3] Stefan Buttcher, Charles L. A. Clarke, and Brad Lushman.
Term proximity scoring for ad-hoc retrieval on very large text
collections. In Proceedings of SIGIR ’06, pages 621–622, 2006.

[4] James P. Callan. Passage-level evidence in document retrieval.
In Proceedings of SIGIR ’94, pages 302–310, 1994.

[5] Charles L. A. Clarke, Gordon V. Cormack, and Forbes J.
Burkowski. Shortest substring ranking (multitext experiments
for trec-4). In Proceedings of TREC ’95, pages 295–304, 1995.

[6] Owen de Kretser and Alistair Moffat. Effective document
presentation with a locality-based similarity heuristic. In
Proceedings of SIGIR ’99, pages 113–120, 1999.

[7] David Hawking and Paul B. Thistlewaite. Proximity operators
- so near and yet so far. In Proceedings of TREC ’95, pages
500–236, 1995.

[8] Marcin Kaszkiel and Justin Zobel. Passage retrieval revisited.
In Proceedings of SIGIR ’97, pages 178–185, 1997.

[9] Marcin Kaszkiel and Justin Zobel. Effective ranking with
arbitrary passages. Journal of the American Society for
Information Science and Technology, 52(4):344–364, 2001.

[10] Marcin Kaszkiel, Justin Zobel, and Ron Sacks-Davis. Efficient
passage ranking for document databases. ACM Transactions
on Information Systems, 17(4):406–439, 1999.

[11] E. Michael Keen. The use of term position devices in ranked
output experiments. The Journal of Documentation,
47(1):1–22, 1991.

[12] E. Michael Keen. Some aspects of proximity searching in text
retrieval systems. Journal of Information Science,
18(2):89–98, 1992.

[13] Koichi Kise, Markus Junker, Andreas Dengel, and Keinosuke
Matsumoto. Passage Retrieval Based on Density
Distributions of Terms and Its Applications to Document
Retrieval and Question Answering, volume 2956 of Lecture
Notes in Computer Science. Springer Berlin/Heidelberg, 2004.

[14] John D. Lafferty and Chengxiang Zhai. Document language
models, query models, and risk minimization for information
retrieval. In Proceedings of SIGIR ’01, pages 111–119, 2001.

[15] Victor Lavrenko and W. Bruce Croft. Relevance-based
language models. In Proceedings of SIGIR ’01, pages 120–127,
2001.

[16] Xiaoyong Liu and W. Bruce Croft. Passage retrieval based on
language models. In Proceedings of CIKM ’02, pages 375–382,
2002.

[17] Xiaoyong Liu and W. Bruce Croft. Cluster-based retrieval
using language models. In Proceedings of SIGIR ’04, pages
186–193, 2004.

[18] David E. Losada and Leif Azzopardi. An analysis on document
length retrieval trends in language modeling smoothing.
Information Retrieval, 11(2):109-138, 2008.

[19] Annabelle Mercier and Michel Beigbeder. Fuzzy proximity
ranking with boolean queries. In Proceedings of TREC ’05,
2005.

[20] Donald Metzler and W. Bruce Croft. A markov random field
model for term dependencies. In Proceedings of SIGIR ’05,
pages 472–479, 2005.

[21] Christof Monz. Minimal span weighting retrieval for question
answering. In Rob Gaizauskas, Mark Greenwood, and Mark
Hepple, editors, SIGIR Workshop on Information Retrieval
for Question Answering, pages 23–30, 2004.

[22] Desislava Petkova and W. Bruce Croft. Proximity-based
document representation for named entity retrieval. In
Proceedings of CIKM ’07, pages 731–740, 2007.

[23] Jay M. Ponte and W. Bruce Croft. A language modeling
approach to information retrieval. In Proceedings of SIGIR
’98, pages 275–281, 1998.

[24] Yves Rasolofo and Jacques Savoy. Term proximity scoring for
keyword-based retrieval systems. In Proceedings of ECIR ’03,
pages 207–218, 2003.

[25] Gerard Salton, J. Allan, and Chris Buckley. Approaches to
passage retrieval in full text information systems. In
Proceedings of SIGIR ’93, pages 49–58, 1993.

[26] Fei Song and W. Bruce Croft. A general language model for
information retrieval. In Proceedings of CIKM ’99, pages
316–321, 1999.

[27] Ruihua Song, Ji-Rong Wen, and Wei-Ying Ma. Viewing term
proximity from a different perspective. In Proceedings of ECIR
’08, 2008.

[28] Tao Tao and ChengXiang Zhai. An exploration of proximity
measures in information retrieval. In Proceedings of SIGIR
’07, pages 295–302, 2007.

[29] Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernandes, and
Gregory Marton. Quantitative evaluation of passage retrieval
algorithms for question answering. In Proceedings of SIGIR
’03, pages 41–47, 2003.

[30] ChengXiang Zhai. Statistical language models for information
retrieval a critical review. Found. Trends Inf. Retr.,
2(3):137–213, 2008.

[31] ChengXiang Zhai and John D. Lafferty. Model-based feedback
in the language modeling approach to information retrieval. In
Proceedings of CIKM ’01, pages 403–410, 2001.

[32] ChengXiang Zhai and John D. Lafferty. A study of smoothing
methods for language models applied to ad hoc information
retrieval. In Proceedings of SIGIR ’01, pages 334–342, 2001.

